留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

4~10 K温区活性炭对氦气的吸附特性及其在4 K温区回热式制冷机中的潜在应用

席肖桐 王珏 陈六彪 郭璐娜 杨彪 周远 王俊杰

席肖桐, 王珏, 陈六彪, 郭璐娜, 杨彪, 周远, 王俊杰. 4~10 K温区活性炭对氦气的吸附特性及其在4 K温区回热式制冷机中的潜在应用. 新型炭材料, 2019, 34(6): 524-532. doi: 10.1016/S1872-5805(19)60028-4
引用本文: 席肖桐, 王珏, 陈六彪, 郭璐娜, 杨彪, 周远, 王俊杰. 4~10 K温区活性炭对氦气的吸附特性及其在4 K温区回热式制冷机中的潜在应用. 新型炭材料, 2019, 34(6): 524-532. doi: 10.1016/S1872-5805(19)60028-4
XI Xiao-tong, WANG Jue, CHEN Liu-biao, GUO Lu-na, YANG Biao, ZHOU Yuan, WANG Jun-jie. Adsorption characteristics of helium on an activated carbon at 4-10 K and its prospective application in 4 K-class regenerative cryocoolers. New Carbon Mater., 2019, 34(6): 524-532. doi: 10.1016/S1872-5805(19)60028-4
Citation: XI Xiao-tong, WANG Jue, CHEN Liu-biao, GUO Lu-na, YANG Biao, ZHOU Yuan, WANG Jun-jie. Adsorption characteristics of helium on an activated carbon at 4-10 K and its prospective application in 4 K-class regenerative cryocoolers. New Carbon Mater., 2019, 34(6): 524-532. doi: 10.1016/S1872-5805(19)60028-4

4~10 K温区活性炭对氦气的吸附特性及其在4 K温区回热式制冷机中的潜在应用

doi: 10.1016/S1872-5805(19)60028-4
基金项目: 国家自然科学基金(51706233,51427806,U1831203);中国科学院战略性先导科技专项(XDA15010400);中国科学院前沿科学重点研究计划(QYZDY-SSW-JSC028);中国科学院低温工程学重点实验室青年科技创新项目(CRYOQN201706).
详细信息
    作者简介:

    席肖桐,博士研究生.E-mail:xixiaotong17@mails.ucas.ac.cn

    通讯作者:

    陈六彪,副研究员.E-mail:chenliubiao@mail.ipc.ac.cn

  • 中图分类号: TQ127.1+1

Adsorption characteristics of helium on an activated carbon at 4-10 K and its prospective application in 4 K-class regenerative cryocoolers

Funds: National Natural Science Foundation of China (51706233, 51427806, U1831203); Strategic Pilot Projects in Space Science of China (XDA15010400); Key Research Program of Frontier Sciences of Chinese Academy of Sciences (QYZDY-SSW-JSC028); Chinese Academy of Sciences Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry (CRYOQN201706).
  • 摘要: 活性炭对氦气的吸附量数据是低温领域中吸附式制冷机、气隙式热开关和制冷机回热器研究中的重要参数。活性炭作为制冷机蓄冷材料时,其对氦气的高吸附量导致的高比热有望解决4 K制冷机目前磁性蓄冷材料蓄冷能力严重不足的瓶颈问题,另外还存在着无磁性优点。然而,目前液氦温区活性炭对氦气的吸附量还没有充足的实验数据。本文通过搭建实验台,测试了活性炭在4~10 K,0.5~3.5 MPa范围内的吸附量数据,并计算了吸附热。另外,为了充分验证使用吸附的氦气作为蓄冷材料的可行性,分别计算和测试了比热与流动阻力。结果表明,吸附氦气后的活性炭比热明显高于常规的回热器材料,其流动阻力也与目前Er3Ni等颗粒材料相当,能够适用于4 K制冷机回热器的蓄冷材料。
  • Reddy K S K, Al Shoaibi A, Srinivasakannan C. A comparison of microstructure and adsorption characteristics of activated carbons by CO2 and H3PO4 activation from date palm pits[J]. New Carbon Materials, 2012, 27(5):344-351.
    Shaaban A, Se S M, Ibrahim I M, et al. Preparation of rubber wood sawdust-based activated carbon and its use as a filler of polyurethane matrix composites for microwave absorption[J]. New Carbon Materials, 2015, 30(2):167-175.
    Chang K L, Chen C C, Lin J H, et al. Rice straw-derived activated carbons for the removal of carbofuran from an aqueous solution[J]. New Carbon Materials, 2014, 29(1):47-54.
    Shi Z L, Liu F M, Yao S H. Adsorptive removal of phosphate from aqueous solutions using activated carbon loaded with Fe (III) oxide[J]. New Carbon Materials, 2011, 26(4):299-306.
    Wu X X, Zhang C Y, Tian Z W, et al. Large-surface-area carbons derived from lotus stem waste for efficient CO2 capture[J]. New Carbon Materials, 2018, 33(3):252-261.
    Wang H L, Gao Q M, Hu J. High hydrogen storage capacity of porous carbons prepared by using activated carbon[J]. Journal of the American Chemical Society, 2009, 131(20):7016-7022.
    Matranga K R, Myers A L, Glandt E D. Storage of natural gas by adsorption on activated carbon[J]. Chemical Engineering Science, 1992, 47(7):1569-1579.
    Chen H, Guo Y C, Wang F, et al. An activated carbon derived from tobacco waste for use as a supercapacitor electrode material[J]. New Carbon Materials, 2017, 32(6):592-599.
    Wei Q L, Chen Z M, Wang X F, et al. A two-step method for the preparation of high performance corncob-based activated carbons as supercapacitor electrodes using ammonium chloride as a pore forming additive[J]. New Carbon Materials, 2018, 33(5):402-408.
    Lu Q, Xu Y Y, Mu S J, et al. The effect of nitrogen and/or boron doping on the electrochemical performance of non-caking coal-derived activated carbons for use as supercapacitor electrodes[J]. New Carbon Materials, 2017, 32(5):442-450.
    Volperts A, Dobele G, Zhurinsh A, et al. Wood-based activated carbons for supercapacitor electrodes with a sulfuric acid electrolyte[J]. New Carbon Materials, 2017, 32(4):319-326.
    Ou Y J, Peng C, Lang J W, et al. Hierarchical porous activated carbon produced from spinach leaves as an electrode material for an electric double layer capacitor[J]. New Carbon Materials, 2014, 29(3):209-215.
    Wu M B, Li R C, He X J, et al. Microwave-assisted preparation of peanut shell-based activated carbons and their use in electrochemical capacitors[J]. New Carbon Materials, 2015, 30(1):86-91.
    Zhang M Y, Jin X J, Zhao Q. Preparation of N-doped activated carbons for electric double-layer capacitors from waste fiberboard by K2CO3 activation[J]. New Carbon Materials, 2014, 29(2):89-95.
    Duband L, Collaudin B. Sorption coolers development at CEA-SBT[J]. Cryogenics, 1999, 39(8):659-663.
    Devlin M J, Dicker S R, Klein J, et al. A high capacity completely closed-cycle 250 mK3He refrigeration system based on a pulse tube cooler[J]. Cryogenics, 2004, 44(9):611-616.
    Duband L, Clerc L, Ercolani E, et al. Herschel flight models sorption coolers[J]. Cryogenics, 2008, 48(3-4):95-105.
    Torre J P, Chanin G. Heat switch for liquid-helium temperatures[J]. Review of Scientific Instruments, 1984, 55(2):213-215.
    Catarino I, Bonfait G, Duband L. Neon gas-gap heat switch[J]. Cryogenics, 2008, 48(1-2):17-25.
    Radebaugh R, Huang Y, O'Gallagher A, et al. Calculated performance of low-porosity regenerators at 4 K with He-4 and He-3[C]//Cryocooler. 2009,15:325-334.
    Chen W, Jaeger M, Rule K. Heat capacity characterization of a 4 K regenerator with non-rare earth material[C]//Cryocoolers 19th International Cryocooler Conference, USA. 2016:333-342.
    Daniels A, Du Pré F K. Triple-expansion Stirling-cycle refrigerator[M]//Advances in Cryogenic Engineering. Springer, Boston, MA, 1971:178-184.
    Vázquez I, Russell M P, Smith D R, et al. Helium Adsorption on Activated Carbons at Temperatures Between 4 and 76 K[M]//Advances in Cryogenic Engineering. Springer, Boston, MA, 1988:1013-1021.
    Duband L, Ravex A, Chaussy J. Adsorption isotherms of helium on activated charcoal[J]. Cryogenics, 1987, 27(7):397-400.
    Chen L B, Kong C H, Wu X L, et al. Specific heat capacities and flow resistance of an activated carbon with adsorbed helium as a regenerator material in refrigerators[J]. New Carbon Materials, 2018, 33(1):47-52.
    Van Sciver S W. Helium Cryogenics[M]. Springer Science & Business Media, 2012.
    Sircar S. Gibbsian surface excess for gas adsorption revisited[J]. Industrial & Engineering Chemistry Research, 1999, 38(10):3670-3682.
    Mehta S D, Danner R P. An improved potential theory method for predicting gas-mixture adsorption equilibria[J]. Industrial & engineering chemistry fundamentals, 1985, 24(3):325-330.
    Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4):603-619.
    Ruthven D M. Principles of Adsorption and Adsorption Processes[M]. John Wiley & Sons, 1984.
  • 加载中
计量
  • 文章访问数:  633
  • HTML全文浏览量:  231
  • PDF下载量:  227
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-02
  • 录用日期:  2020-01-03
  • 修回日期:  2019-11-30
  • 刊出日期:  2019-12-28

目录

    /

    返回文章
    返回