留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层次孔超细炭纤维及其对乙醇和丙酮的吸附性能

白宇 黄正宏 张政军 康飞宇

白宇, 黄正宏, 张政军, 康飞宇. 层次孔超细炭纤维及其对乙醇和丙酮的吸附性能. 新型炭材料, 2019, 34(6): 533-538. doi: 10.1016/S1872-5805(19)60029-6
引用本文: 白宇, 黄正宏, 张政军, 康飞宇. 层次孔超细炭纤维及其对乙醇和丙酮的吸附性能. 新型炭材料, 2019, 34(6): 533-538. doi: 10.1016/S1872-5805(19)60029-6
BAI Yu, HUANG Zheng-hong, ZHANG Zheng-jun, KANG Fei-yu. Ultrafine hierarchically porous carbon fibers and their adsorption performance for ethanol and acetone. New Carbon Mater., 2019, 34(6): 533-538. doi: 10.1016/S1872-5805(19)60029-6
Citation: BAI Yu, HUANG Zheng-hong, ZHANG Zheng-jun, KANG Fei-yu. Ultrafine hierarchically porous carbon fibers and their adsorption performance for ethanol and acetone. New Carbon Mater., 2019, 34(6): 533-538. doi: 10.1016/S1872-5805(19)60029-6

层次孔超细炭纤维及其对乙醇和丙酮的吸附性能

doi: 10.1016/S1872-5805(19)60029-6
基金项目: 国家自然科学基金(51672151);教育部先进材料重点实验室基金(2016AML02);中国博士后科学基金(2016M601013).
详细信息
    通讯作者:

    黄正宏,教授.E-mail:zhhuang@tsinghua.edu.cn;康飞宇,教授.E-mail:fykang@mail.tsinghua.edu.cn

  • 中图分类号: TQ342.+74

Ultrafine hierarchically porous carbon fibers and their adsorption performance for ethanol and acetone

Funds: National Natural Science Foundation of China (51672151); Fund of Key Laboratory of Advanced Materials of Ministry of Education (2016AML02); China Postdoctoral Science Foundation (2016M601013).
  • 摘要: 以酚醛树脂和乙酰丙酮铁为前驱体,通过静电纺丝和后续氨气气氛热处理制备得到层次孔超细炭纤维,并研究了其对挥发性有机物(VOCs)气体的吸附性能。本文阐述了层次孔性对于不同样品VOC吸附性能的影响。新型的层次孔超细炭纤维在高压力时展现了提高的乙醇和丙酮吸附量。酚醛树脂基层次孔超细炭纤维25℃时的乙醇和丙酮最高吸附量分别为7.55和12.56 mmol g-1,超过了原始超细炭纤维和聚丙烯腈(PAN)基超细炭纤维的吸附量。酚醛树脂作为静电纺丝前驱体用于制备新型纤维明显优于PAN。因此,该新型自支撑超细炭纤维是一种很有前景的用于去除VOC的吸附剂材料。
  • Xu F, Tang Z, Huang S, et al. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage[J]. Nat Commun, 2015, 6:7221.
    Wang H Y, Zhu T L, Fan X, et al. Adsorption and desorption of small molecule volatile organic compounds over carbide-derived carbon[J]. Carbon, 2014, 67:712-720.
    Teng W, Wu Z X, Fan J W, et al. Ordered mesoporous carbons and their corresponding column for highly efficient removal of microcystin-LR[J]. Energy Environ Sci, 2013, 6(9):2765-2776.
    Bhatt P M, Belmabkhout Y, Cadiau A, et al. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption[J]. J Am Chem Soc, 2016, 138(29):9301-9307.
    Yuan Y, Cui P, Tian Y, et al. Coupling fullerene into porous aromatic frameworks for gas selective sorption[J]. Chem Sci, 2016, 7(6):3751-3756.
    Reddy K S K, Al Shoaibi A, Srinivasakannan C. A comparison of microstructure and adsorption characteristics of activated carbons by CO2 and H3PO4 activation from date palm pits[J]. New Carbon Materials, 2012, 27(5):344-351.
    Kaneko K. Graphitic nanopores:Water capture in carbon cuboids[J]. Nat Chem, 2015, 7(3):194-196.
    Gales L, Mendes A, Costa C. Hysteresis in the cyclic adsorption of acetone, ethanol and ethyl acetate on activated carbon[J]. Carbon, 2000, 38(7):1083-1088.
    Hao G P, Jin Z Y, Sun Q, et al. Porous carbon nanosheets with precisely tunable thickness and selective CO2 adsorption properties[J]. Energy Environ Sci, 2013, 6(12):3740-3747.
    Popp N, Homburg T, Stock N, et al. Porous imine-based networks with protonated imine linkages for carbon dioxide separation from mixtures with nitrogen and methane[J]. J Mater Chem A, 2015, 3(36):18492-18504.
    Furukawa H, Gandara F, Zhang Y B, et al. Water adsorption in porous metal-organic frameworks and related materials[J]. J Am Chem Soc, 2014, 136(11):4369-4381.
    Zhou X, Huang W Y, Shi J, et al. A novel MOF/graphene oxide composite GrO@MIL-101 with high adsorption capacity for acetone[J]. J Mater Chem A, 2014, 2(13):4722-4730.
    Liao P Q, Chen X W, Liu S Y, et al. Putting an ultrahigh concentration of amine groups into a metal-organic framework for CO2 capture at low pressures[J]. Chem Sci, 2016, 7(10):6528-6533.
    Lee D G, Kim J H, Lee C H. Adsorption and thermal regeneration of acetone and toluene vapors in dealuminated Y-zeolite bed[J]. Sep Purif Technol, 2011, 77(3):312-324.
    Didas S A, Kulkarni A R, Sholl D S, et al. Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air[J]. ChemSusChem, 2012, 5(10):2058-2064.
    Belmabkhout Y, De Weireld G, Sayari A. Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas[J]. Langmuir, 2009, 25(23):13275-13278.
    Zhao L, Qiu Y J, Yu J, et al. Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density[J]. Nanoscale, 2013, 5(11):4902-4909.
    Li D, Xia Y N. Electrospinning of nanofibers:Reinventing the wheel?[J]. Adv Mater, 2004, 16(14):1151-1170.
    Bai Y, Huang Z H, Kang F. Synthesis of reduced graphene oxide/phenolic resin-based carbon composite ultrafine fibers and their adsorption performance for volatile organic compounds and water[J]. J Mater Chem A, 2013, 1(33):9536-9543.
    Kong Q, Yang M, Chen C, et al. Preparation and characterization of graphene-reinforced polyacrylonitrile-based carbon nanofibers[J]. New Carbon Mater, 2012, 27(3):188-193.
    Oh G Y, Ju Y W, Kim M Y, et al. Adsorption of toluene on carbon nanofibers prepared by electrospinning[J]. Sci Total Environ, 2008, 393(2-3):341-347.
    Bai Y, Huang Z H, Kang F. Electrospun preparation of microporous carbon ultrafine fibers with tuned diameter, pore structure and hydrophobicity from phenolic resin[J]. Carbon, 2014, 66:705-712.
    Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332(6037):1537-1541.
    Nugent P, Belmabkhout Y, Burd S D, et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation[J]. Nature, 2013, 495(7439):80-84.
    Hao G P, Li W C, Qian D, et al. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents[J]. J Am Chem Soc, 2011, 133(29):11378-11388.
    Qie L, Chen W, Xu H, et al. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors[J]. Energy Environ Sci, 2013, 6(8):2497-2504.
    Liang Y, Chen L, Zhuang D, et al. Fabrication and nanostructure control of super-hierarchical carbon materials from heterogeneous bottlebrushes[J]. Chem Sci, 2017, 8(3):2101-2106.
    Smallwood I M. Handbook of Organic Solvent Properties[M]. New York:Halsted Press, 1996.
    Papkov D, Goponenko A, Compton O C, et al. Improved graphitic structure of continuous carbon nanofibers via graphene oxide templating[J]. Adv Funct Mater, 2013, 23(46):5763-5770.
    Gu W T, Sevilla M, Magasinski A, et al. Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors:a case study for pseudocapacitance detection[J]. Energy Environ Sci, 2013, 6(8):2465-2476.
    Brunauer S, Deming L S, Deming W E, et al. On a theory of the van der Waals adsorption of gases[J]. J Am Chem Soc, 1940, 62:1723-1732.
    Wang S W, Abraham D, Vallejos-Burgos F, et al. Distorted graphene sheet structure-derived latent nanoporosity[J]. Langmuir, 2016, 32(22):5617-5622.
    Lillo-Ródenas M A, Fletcher A J, Thomas K M, et al. Competitive adsorption of a benzene-toluene mixture on activated carbons at low concentration[J]. Carbon, 2006, 44(8):1455-1463.
    Ma X Y, Li Y, Cao M H, et al. A novel activating strategy to achieve highly porous carbon monoliths for CO2 capture[J]. J Mater Chem A, 2014, 2(13):4819-4826.
    Ramos M E, Bonelli P R, Cukierman A L, et al. Adsorption of volatile organic compounds onto activated carbon cloths derived from a novel regenerated cellulosic precursor[J]. J Hazard Mater, 2010, 177(1-3):175-182.
  • 加载中
计量
  • 文章访问数:  362
  • HTML全文浏览量:  69
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-20
  • 录用日期:  2020-01-03
  • 修回日期:  2019-11-30
  • 刊出日期:  2019-12-28

目录

    /

    返回文章
    返回