留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于碳纳米管纤维生长锌钴双金属氧化物纳米线森林的高能量纤维状超级电容器

杨钊 杨禹 吕春祥 张永毅 张骁骅 刘予宇

杨钊, 杨禹, 吕春祥, 张永毅, 张骁骅, 刘予宇. 基于碳纳米管纤维生长锌钴双金属氧化物纳米线森林的高能量纤维状超级电容器. 新型炭材料, 2019, 34(6): 559-568. doi: 10.1016/S1872-5805(19)60031-4
引用本文: 杨钊, 杨禹, 吕春祥, 张永毅, 张骁骅, 刘予宇. 基于碳纳米管纤维生长锌钴双金属氧化物纳米线森林的高能量纤维状超级电容器. 新型炭材料, 2019, 34(6): 559-568. doi: 10.1016/S1872-5805(19)60031-4
YANG Zhao, YANG Yu, LU Chun-xiang, ZHANG Yong-yi, ZHANG Xiao-hua, LIU Yu-yu. A high energy density fiber-shaped supercapacitor based on zinc-cobalt bimetallic oxide nanowire forests on carbon nanotube fibers. New Carbon Mater., 2019, 34(6): 559-568. doi: 10.1016/S1872-5805(19)60031-4
Citation: YANG Zhao, YANG Yu, LU Chun-xiang, ZHANG Yong-yi, ZHANG Xiao-hua, LIU Yu-yu. A high energy density fiber-shaped supercapacitor based on zinc-cobalt bimetallic oxide nanowire forests on carbon nanotube fibers. New Carbon Mater., 2019, 34(6): 559-568. doi: 10.1016/S1872-5805(19)60031-4

基于碳纳米管纤维生长锌钴双金属氧化物纳米线森林的高能量纤维状超级电容器

doi: 10.1016/S1872-5805(19)60031-4
基金项目: 国家自然科学基金(U1710122).
详细信息
    通讯作者:

    杨禹,研究员.E-mail:yangyv2003@sxicc.ac.cn;刘予宇,教授.E-mail:liuyuyu@shu.edu.cn

  • 中图分类号: TB33

A high energy density fiber-shaped supercapacitor based on zinc-cobalt bimetallic oxide nanowire forests on carbon nanotube fibers

Funds: National Natural Science Foundation of China (U1710122).
  • 摘要: 随着可穿戴电子器件的发展,新型纤维状超级电容器逐渐成为最新一代储能器件。然而,纤维状超级电容器较低的电导率和较小的比电容限制了其在高能量密度器件中的应用。本工作采用水热法在碳纳米管纤维表面生长锌钴双金属氧化物纳米线森林设计高能量纤维状超级电容器,利用锌钴双金属氧化物和碳纳米管纤维的协同效应显著提高复合纤维的电化学性能。使用聚氯乙烯薄膜和聚乙烯醇/氯化锂凝胶电解质与复合纤维组装全固态纤维状对称超级电容器,并测试其电化学性能。组装的复合纤维比电容达到112.67 mF·cm-2,功率密度0.45 mw·cm-2时的能量密度为12.68 μwh·cm-2。复合纤维有较好的循环稳定性,以1 mA·cm-2的电流密度进行10 000次循环,其电容保持率为90.63%。此外,在几种不同弯曲角度下,循环伏安曲线的变化可以忽略不计,说明复合纤维具有良好的柔韧性和力学稳定性。全固态纤维状超级电容器的优异性能为便携式和可穿戴电子产品的发展提供了新的机遇。
  • El-Kady M F, Strong V, Dubin S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335:1326-1330.
    Chen L F, Huang Z H, Liang H W, et al. Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose[J]. Energy & Environmental Science, 2013, 6:3331.
    Pan S, Lin H, Deng J, et al. Novel wearable energy devices based on aligned carbon nanotube fiber textiles[J]. Advanced Energy Materials, 2015, 5:1401438.
    Lu X, Zeng Y, Yu M, et al. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors[J]. Advanced Materials, 2014, 26:3148-3155.
    Zhao J, Li C, Zhang Q, et al. An all-solid-state, lightweight, and flexible asymmetric supercapacitor based on cabbage-like ZnCo2O4 and porous VN nanowires electrode materials[J]. Journal of Materials Chemistry A, 2017, 5:6928-6936.
    Yu D, Qian Q, Wei L, et al. Emergence of fiber supercapacitors[J]. Chem Soc Rev, 2015, 44:647-662.
    Li Z, Shao M, Zhou L, et al. A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core-shell nanoarrays[J]. Nano Energy, 2016, 20:294-304.
    Dong X, Guo Z, Song Y, et al. Flexible and wire-shaped micro-supercapacitor based on Ni(OH)2-nanowire and ordered mesoporous carbon electrodes[J]. Advanced Functional Materials, 2014, 24:3405-3412.
    Yu J, Lu W, Smith J P, et al. A high performance stretchable asymmetric fiber-shaped supercapacitor with a core-sheath helical structure[J]. Advanced Energy Materials, 2017, 7:1600976.
    Yu N, Yin H, Zhang W, et al. High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics[J]. Advanced Energy Materials, 2016, 6:1501458.
    Meng F, Li Q, Zheng L. Flexible fiber-shaped supercapacitors:Design, fabrication, and multi-functionalities[J]. Energy Storage Materials, 2017, 8:85-109.
    Chen T, Hao R, Peng H, et al. High-performance stretchable wire-shaped supercapacitors[J]. Angewandte Chemie, 2015, 54:618-622.
    Sun H, Fu X, Xie S, et al. Electrochemical capacitors with high output voltages that mimic electric eels[J]. Advanced Materials, 2016, 28:2070-2076.
    Zhang Z, Mu S, Zhang B, et al. A novel synthesis of carbon nanotubes directly from an indecomposable solid carbon source for electrochemical applications[J]. Journal of Materials Chemistry A, 2016, 4:2137-2146.
    Zhou W, Zhou K, Liu X, et al. Flexible wire-like all-carbon supercapacitors based on porous core-shell carbon fibers[J].Journal of Materials Chemistry A, 2014, 2:7250-7255.
    Chen X, Qiu L, Ren J, et al. Novel electric double-layer capacitor with a coaxial fiber structure[J]. Advanced Materials, 2013, 25:6436-6441.
    Yang Z, Deng J, Chen X, et al. A highly stretchable, fiber-shaped supercapacitor[J]. Angewandte Chemie, 2013, 52:13453-13457.
    Choi C, Kim J H, Sim H J, et al. Microscopically buckled and macroscopically coiled fibers for ultra-stretchable supercapacitors[J]. Advanced Energy Materials, 2017, 7:1602021.
    Wang B, Fang X, Sun H, et al. Fabricating continuous supercapacitor fibers with high performances by integrating all building materials and steps into one process[J]. Advanced Materials, 2015, 27:7854-7860.
    Iglesias D, Senokos E, Aleman B, et al. Gas-phase functionalization of macroscopic carbon nanotube fiber assemblies:reaction control electrochemical properties and use for flexible supercapacitors[J]. ACS Appl Mater Interfaces, 2018, 10:5760-5770.
    Zhang Q, Wang X, Pan Z, et al. Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density[J]. Nano Lett, 2017, 17:2719-2726.
    Xia X H, Tu J P, Mai Y J, et al. Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance[J]. Journal of Materials Chemistry, 2011, 21:9319.
    Sun J, Zhang Q, Wang X, et al. Constructing hierarchical dandelion-like molybdenum-nickel-cobalt ternary oxide nanowire arrays on carbon nanotube fiber for high-performance wearable fiber-shaped asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5:21153-21160.
    Di J, Zhang X, Yong Z, et al. Carbon-nanotube fibers for wearable devices and smart textiles[J]. Advanced Materials, 2016, 28:10529-10538.
    Kong D, Luo J, Wang Y, et al. Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays:morphology control and electrochemical energy storage[J]. Advanced Functional Materials, 2014, 24:3815-3826.
    Zhou T, Jiang Q, Wang L, et al. Facile preparation of nitrogen-enriched hierarchical porous carbon nanofibers by Mg(OAc)2-assisted electrospinning for flexible supercapacitors[J]. Applied Surface Science, 2018, 456:827-834.
    Li M, Zu M, Yu J, et al. Stretchable fiber supercapacitors with high volumetric performance based on buckled MnO2/oxidized carbon nanotube fiber electrodes[J]. Small, 2017, 13.
    Xu P, Wei B, Cao Z, et al. Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO2 coated carbon nanotube fibers[J]. ACS Nano, 2015, 9:6088-6096.
    Zhang Q, Xu W, Sun J, et al. Constructing ultrahigh-capacity zinc-nickel-cobalt oxide@Ni(OH)2 core-shell nanowire arrays for high-performance coaxial fiber-shaped asymmetric supercapacitors[J]. Nano Lett, 2017, 17:7552-7560.
    Li X, Li X, Cheng J, et al. Fiber-shaped solid-state supercapacitors based on molybdenum disulfide nanosheets for a self-powered photodetecting system[J]. Nano Energy, 2016, 21:228-237.
    Huang Y, Hu H, Huang Y, et al. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles[J]. ACS Nano, 2015, 9:4766-4775.
    Jia L, Yu S, Jiang Y, et al. Electrochemical deposition of diluted magnetic semiconductor ZnMnSe2 on reduced graphene oxide/polyimide substrate and its properties[J]. Journal of Alloys and Compounds, 2014, 609:233-238.
    Xu P, Kang J, Choi J B, et al. Laminated ultrathin chemical vapor deposition graphene films based stretchable and transparent high-rate supercapacitor[J]. ACS Nano, 2014, 8:9437-9445.
    Wu X, Meng L, Wang Q, et al. Highly flexible and large areal/volumetric capacitances for asymmetric supercapacitor based on ZnCo2O4 nanorods arrays and polypyrrole on carbon cloth as binder-free electrodes[J]. Materials Letters, 2019, 234:1-4.
    Yang P, Ding Y, Lin Z, et al. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes[J]. Nano Lett, 2014, 14:731-736.
    Wu Y, Wang Q, Li T, et al. Fiber-shaped supercapacitor and electrocatalyst containing of multiple carbon nanotube yarns and one platinum wire[J]. Electrochimica Acta, 2017, 245:69-78.
    Pan Z, Qiu Y, Yang J, et al. Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated MnOx nanosheets on nanoporous current collectors[J]. Nano Energy, 2016, 26:610-619.
    Sharifi T, Xie Y, Zhang X, et al. Graphene as an electrochemical transfer layer[J]. Carbon, 2019, 141:266-273.
    Shen L, Che Q, Li H, et al. Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage[J]. Advanced Functional Materials, 2014, 24:2630-2637.
    Zhi M, Xiang C, Li J, et al. Nanostructured carbon-metal oxide composite electrodes for supercapacitors:a review[J]. Nanoscale, 2013, 5:72-88.
    Hu H, Pei Z, Fan H, et al. 3D Interdigital Au/MnO2/Au stacked hybrid electrodes for on-chip microsupercapacitors[J]. Small, 2016, 12:3059-3069.
    Wang Y, Song Y, Xia Y. Electrochemical capacitors:Mechanism, materials, systems, characterization and applications[J]. Chem Soc Rev, 2016, 45:5925-5950.
    Qiu K, Lu M, Luo Y, et al. Engineering hierarchical nanotrees with CuCo2O4 trunks and NiO branches for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5:5820-5828.
    Wang T, Le Q, Zhang G, et al. Facile preparation and sulfidation analysis for activated multiporous carbon@NiCo2S4 nanostructure with enhanced supercapacitive properties[J]. Electrochimica Acta, 2016, 211:627-635.
    Ma FX, Yu L, Xu C Y, et al. Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties[J]. Energy & Environmental Science, 2016, 9:862-866.
    Gao G, Wu H B, Ding S, et al. Hierarchical NiCo2O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors[J]. Small, 2015, 11:804-808.
    Kong D, Ren W, Cheng C, et al. Three-dimensional NiCo2O4@polypyrrole coaxial nanowire arrays on carbon textiles for high-performance flexible asymmetric solid-state supercapacitor[J]. ACS Appl Mater Interfaces, 2015, 7:21334-21346.
    Hossain M M, Shima H, Islam M A, et al. Simple synthesis process for ZnO sphere-decorated CNT fiber and its electrical, optical, thermal, and mechanical properties[J]. Rsc Adv, 2016, 6:4683-4694.
    Wang X, Zhang Q, Sun J, et al. Facile synthesis of hierarchical porous manganese nickel cobalt sulfide nanotube arrays with enhanced electrochemical performance for ultrahigh energy density fiber-shaped asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6:8030-8038.
    Liang X, Wang Q, Ma Y, et al. A high performance asymmetric supercapacitor based on in situ prepared CuCo2O4 nanowires and PPy nanoparticles on a two-ply carbon nanotube yarn[J]. Dalton Transactions, 2018, 47:17146-17152.
    Su F, Lv X, Miao M. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3O4 and NiO nanoparticles[J]. Small, 2015, 11:854-861.
    Ji Y, Xie J, Wu J, et al. Hierarchical nanothorns MnCo2O4 grown on porous/dense Ni bi-layers coated Cu wire current collectors for high performance flexible solid-state fiber supercapacitors[J]. Journal of Power Sources, 2018, 393:54-61.
    Kou L, Huang T, Zheng B, et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics[J]. Nat Commun, 2014, 5:3754.
  • 加载中
计量
  • 文章访问数:  438
  • HTML全文浏览量:  87
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-02
  • 录用日期:  2020-01-03
  • 修回日期:  2019-11-30
  • 刊出日期:  2019-12-28

目录

    /

    返回文章
    返回