留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

球磨法——一种制备氧化石墨烯改性水泥基材料的可替代性分散方法

景国建 叶正茂 李成 崔健 王树贤 程新

景国建, 叶正茂, 李成, 崔健, 王树贤, 程新. 球磨法——一种制备氧化石墨烯改性水泥基材料的可替代性分散方法. 新型炭材料, 2019, 34(6): 569-577. doi: 10.1016/S1872-5805(19)60032-6
引用本文: 景国建, 叶正茂, 李成, 崔健, 王树贤, 程新. 球磨法——一种制备氧化石墨烯改性水泥基材料的可替代性分散方法. 新型炭材料, 2019, 34(6): 569-577. doi: 10.1016/S1872-5805(19)60032-6
JING Guo-jian, YE Zheng-mao, LI Cheng, CUI Jian, WANG Shu-xian, CHENG Xin. A ball milling strategy to disperse graphene oxide in cement composites. New Carbon Mater., 2019, 34(6): 569-577. doi: 10.1016/S1872-5805(19)60032-6
Citation: JING Guo-jian, YE Zheng-mao, LI Cheng, CUI Jian, WANG Shu-xian, CHENG Xin. A ball milling strategy to disperse graphene oxide in cement composites. New Carbon Mater., 2019, 34(6): 569-577. doi: 10.1016/S1872-5805(19)60032-6

球磨法——一种制备氧化石墨烯改性水泥基材料的可替代性分散方法

doi: 10.1016/S1872-5805(19)60032-6
基金项目: 国家自然科学基金(51772129,51702118,U1806222);高层次人才启动基金(济南大学,511-1008395);山东省高等学校科技计划项目(J18KA016);国家重点研发计划(2016YFB0303505);111国际合作项目-先进水泥基材料(D17001).
详细信息
    通讯作者:

    叶正茂.E-mail:mse_yezm@ujn.edu.cn;程新.E-mail:ujn_chengxin@ujn.edu.cn

  • 中图分类号: TQ127.1+1

A ball milling strategy to disperse graphene oxide in cement composites

Funds: National Natural Science Foundation of China (51772129, 51702118, U1806222); Start-up Funding for High-Level Talents (University of Jinan, 511-1008395); Shandong Province Higher Educational Science and Technology Program (J18KA016); National Key Research and Development Program (2016YFB0303505); 111 Project of International Corporation on Advanced Cement based Materials (D17001).
  • 摘要: 氧化石墨烯的分散性对水泥基材料的性能有着重要的影响。目前,最普遍的分散方法是利用超声和分散剂先将氧化石墨烯分散在水中,进而与水泥颗粒搅拌成型。本文介绍了一种球磨的策略来改进氧化石墨烯在水泥基体中的分散性。分散的过程是将氧化石墨烯、水泥熟料和二水石膏在行星磨中进行研磨混合。结果表明:氧化石墨烯改性的水泥浆体抗压强度提高。球磨过程对氧化石墨烯的形貌影响不大,但引入了很多的缺陷。氧化石墨烯可以加速水泥水化,细化水泥石的孔结构。球磨法可以作为一种制备氧化石墨烯改性水泥基材料的新方法。
  • Yan Z, Shanthi M, Wei C, et al. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Materials, 2010, 22:3906-3924.
    Park C G, Lee J W. Effect of nanosilica and silica fume content on the bond properties of macro-synthetic fiber in cement-based composites[J]. Magazine of Concrete Research, 2013, 3(65):148-157.
    Yang H, Cui H, Tang W, et al. A critical review on research progress of graphene/cement based composites[J]. Composites Part A:Applied Science and Manufacturing, 2017, 102:273-296.
    Chuah S, Pan Z, Sanjayan J G, et al. Nano reinforced cement and concrete composites and new perspective from graphene oxide[J]. Construction & Building Materials, 2014, 73:113-124.
    Peyvandi A, Soroushian P, Balachandra A M, et al. Enhancement of the durability characteristics of concrete nanocomposite pipes with modified graphite nanoplatelets[J]. Construction & Building Materials, 2013, 47:111-117.
    Gong K, Pan Z, Korayem A H, et al. Reinforcing effects of graphene oxide on Portland cement paste[J]. Journal of Materials in Civil Engineering, 2015, 27:A4014010.
    Li W, Li X, Chen S J, et al. Effects of graphene oxide on early-age hydration and electrical resistivity of Portland cement paste[J]. Construction & Building Materials, 2017, 136:506-514.
    Li X Y, Liu Y M, Li W G, et al. Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste[J]. Construction & Building Materials, 2017, 145:402-410.
    Li X, Korayem A H, Li C, et al. Incorporation of graphene oxide and silica fume into cement paste:A study of dispersion and compressive strength[J]. Construction & Building Materials, 2016, 123:327-335.
    Bai S, Jiang L, Xu N, et al. Enhancement of mechanical and electrical properties of graphene/cement composite due to improved dispersion of graphene by addition of silica fume[J]. Construction & Building Materials, 2018, 164:433-441.
    Shang Y, Zhang D, Yang C, et al. Effect of graphene oxide on the rheological properties of cement pastes[J]. Construction & Building Materials, 2015, 96:20-28.
    Zhao L, Guo X, Liu Y, et al. Investigation of dispersion behavior of GO modified by different water reducing agents in cement pore solution[J]. Carbon, 2018, 127:255-269.
    Chuah S, Li W, Chen S J, et al. Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments[J]. Construction & Building Materials, 2018, 161:519-527.
    Lv S H, Sun T, Liu J J, et al. Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness[J]. Cryst Eng Comm, 2014, 16:8508-8516.
    Lv S H, Hu H Y, Zhang J, et al. Fabrication of GO/cement composites by incorporation of few-layered GO nanosheets and characterization of their crystal/chemical structure and properties[J]. Nanomaterials, 2017, 7:457.
    Wang M, Yao H, Wang R, et al. Chemically functionalized graphene oxide as the additive for cement-matrix composite with enhanced fluidity and toughness[J]. Construction & Building Materials, 2017, 150:150-156.
    Mangane M B C, Argane R, Trauchessec R, et al. Influence of superplasticizers on mechanical properties and workability of cemented paste backfill[J]. Minerals Engineering, 2017, 116:3-14.
    Burgos-Montes O, Palacios M, Rivilla P, et al. Compatibility between superplasticizer admixtures and cements with mineral additions[J]. Construction & Building Materials, 2012, 31:300-309.
    Taylor, F W H. Cement Chemistry[M], 2nd ed, Thomas Telford, 1997.
    Long W J, Li H D, Fang C L, et al. Uniformly dispersed and re-agglomerated graphene oxide-based cement pastes:a comparison of rheological properties, mechanical properties and microstructure[J]. Nanomaterials, 2018, 8:31.
    Mokhtar M M, Abo-El-Enein S A, Hassaan M Y, et al. Mechanical performance, pore structure and micro-structural characteristics of graphene oxide nano platelets reinforced cement[J]. Construction & Building Materials, 2017, 138:333-339.
    Kang D, Kang S S, Lee H Y, et al. Experimental study on mechanical strength of GO-cement composites[J]. Construction & Building Materials, 2017, 131:303-308.
    Lu L L, Ou Y D. Properties of cement mortar and ultra-high strength concrete incorporating graphene oxide nanosheets[J]. Nanomaterials, 2017, 7:187.
    Lu C, Lu Z, Li Z, et al. Effect of graphene oxide on the mechanical behavior of strain hardening cementitious composites[J]. Construction & Building Materials, 2016, 120:457-464.
    Pan Z, He L, Qiu L, et al. Mechanical properties and microstructure of a graphene oxide-cement composite[J]. Cement & Concrete Composites, 2015, 58:140-147.
    Kudin K N, Ozbas B, Schniepp H C, et al. Raman spectra of graphite oxide and functionalized graphene sheets[J]. Nano Letters, 2007, 8:36-41.
    Cançado L G, Jorio A, Ferreira E H, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies[J]. Nano Letters, 2011, 11:3190.
    Beams R, Novotny L. Raman characterization of defects and dopants in graphene[J]. Journal of Physics:Condensed Matter, 2015, 27:083002.
    Banhart F, Kotakoski J, Krasheninnikov A V. Structural defects in graphene[J]. Acs Nano, 2011, 5:26-41.
    Jing G J, Ye Z M, Lu X L, et al. Effect of graphene nanoplatelets on hydration behaviour of Portland cement by thermal analysis[J]. Advances in Cement Research, 2016, 29(2):63-70.
    Lu Z, Li X, Hanif A, et al. Early-age interaction mechanism between the graphene oxide and cement hydrates[J]. Construction & Building Materials, 2017, 152:232-239.
    Zhao L, Guo X L, Ge C, et al. Mechanical behavior and toughening mechanism of polycarboxylate superplasticizer modified graphene oxide reinforced cement composites[J]. Composites Part B:Engineering, 2017, 113:308-316.
    Han B G, Zhang L Q, Zeng S Z, et al. Nano-core effect in nano-engineered cementitious composites[J]. Composites Part A:Applied Science and Manufacturing, 2017, 95:100-109.
    Wang Q, Wang J, Lu C, et al. Influence of graphene oxide additions on the microstructure and mechanical strength of cement[J]. New Carbon Materials, 2015, 30:349-356.
    Ghazizadeh S P, Duffour N T, Skipper M, et al. An investigation into the colloidal stability of graphene oxide nano-layers in alite paste[J]. Cement & Concrete Research, 2017, 99:116-128.
    Li W, Li X, Chen S J, et al. Effects of nanoalumina and graphene oxide on early-age hydration and mechanical properties of cement paste[J]. Journal of Materials in Civil Engineering, 2017, 29:04017087.
  • 加载中
计量
  • 文章访问数:  630
  • HTML全文浏览量:  210
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-02
  • 录用日期:  2020-01-03
  • 修回日期:  2019-11-29
  • 刊出日期:  2019-12-28

目录

    /

    返回文章
    返回