留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚色氨酸功能化石墨烯电化学催化多巴胺

弓巧娟 韩海霞 王永东 姚陈忠 杨海英 乔锦丽

弓巧娟, 韩海霞, 王永东, 姚陈忠, 杨海英, 乔锦丽. 聚色氨酸功能化石墨烯电化学催化多巴胺. 新型炭材料, 2020, 35(1): 34-41. doi: 10.1016/S1872-5805(20)60473-5
引用本文: 弓巧娟, 韩海霞, 王永东, 姚陈忠, 杨海英, 乔锦丽. 聚色氨酸功能化石墨烯电化学催化多巴胺. 新型炭材料, 2020, 35(1): 34-41. doi: 10.1016/S1872-5805(20)60473-5
GONG Qiao-juan, HAN Hai-xia, WANG Yong-dong, YAO Chen-zhong, YANG Hai-ying, QIAO Jin-li. An electrochemical sensor for dopamine detection using poly-tryptophan composited graphene on glassy carbon as the electrode. New Carbon Mater., 2020, 35(1): 34-41. doi: 10.1016/S1872-5805(20)60473-5
Citation: GONG Qiao-juan, HAN Hai-xia, WANG Yong-dong, YAO Chen-zhong, YANG Hai-ying, QIAO Jin-li. An electrochemical sensor for dopamine detection using poly-tryptophan composited graphene on glassy carbon as the electrode. New Carbon Mater., 2020, 35(1): 34-41. doi: 10.1016/S1872-5805(20)60473-5

聚色氨酸功能化石墨烯电化学催化多巴胺

doi: 10.1016/S1872-5805(20)60473-5
基金项目: 2018山西省重点研发计划(高新领域)(201803D121030);盐湖教科局研发项目.
详细信息
    通讯作者:

    弓巧娟,博士,教授.E-mail:gqjuan@163.com;杨海英,博士,副教授.E-mail:haiyingyang79@hotmail.com

  • 中图分类号: TQ127.1+1

An electrochemical sensor for dopamine detection using poly-tryptophan composited graphene on glassy carbon as the electrode

Funds: Key Research and Development Program of Shanxi Provincial (201803D121030); Research and Development Project of Salt Lake Education Bureau.
  • 摘要: 本文构建了一种基于色氨酸和石墨烯复合材料灵敏检测多巴胺的电化学传感器。传感器的构建是通过在石墨烯修饰的玻碳电极表面电化学沉积色氨酸,得到Trp/GN/GCE,研究结果表明构建的Trp/GN/GCE界面对多巴胺氧化反应具有很好的电化学催化作用。以差分脉冲法记录催化电流,峰电流与多巴胺浓度呈线性相关,线性范围为0.2~100 μmol,检出限为0.06 μmol。建立的方法在大量抗坏血酸存在下可以成功检测多巴胺,该方法还用于检测多巴胺注射剂中多巴胺含量。
  • Li J, Deng H, Shi Q, et al. Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite, and its application to amperometric sensing of dopamine[J]. Microchimica Acta, 2012, 177(3-4):325-331.
    Cai W, Guo W, Pan Y, et al. Polydopamine-bridged synthesis of ternary h-BN@PDA@SnO2, as nanoenhancers for flame retardant and smoke suppression of epoxy composites[J]. Composites Part A Applied Science & Manufacturing, 2018, 111(28):94-105.
    Cai W, Wang L, Pan Y, et al. Mussel-inspired functionalization of electrochemically exfoliated graphene:Based on self-polymerization of dopamine and its suppression effect on the fire hazards and smoke toxicity of thermoplastic polyurethane[J]. Journal of Hazardous Materials, 2018, 352:57-69.
    Ding N, Zheng L, Wan N, et al. Graphene/clay composite electrode formed by exfoliating graphite with Laponite for simultaneous determination of ascorbic acid, dopamine, and uric acid[J]. Monatshefte für Chemie-Chemical Monthly, 2014, 145:1389-1394.
    Park H. Zhang X, Rubakhin S, Sweedler V. Independent optimization of capillary electrophoresis separation and native fluorescence detection conditions for indolamine and catecholamine measurements[J]. Analytical Chemistry, 1999, 71:4997-5002.
    Carrera V, Sabater E, Vilanova E, Sogorb A. A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine:Application to the secretion of bovine chromaffin cell cultures[J]. Journal of Chromatography B, 2007, 847:88-94.
    Kong B, Zhu A, Luo Y, et al. Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition[J]. Angewandte Chemie, 2011, 123:1877-1880.
    Zhang L, Teshima N, Hasebe T, et a. Flow-injection determination of trace amounts of dopamine by chemiluminescence detection[J]. Talanta, 1999, 50:677-683.
    Shou M, Ferrario R, Schultz N, et al. Monitoring dopamine in vivo by microdialysis sampling and on-line CE-laser-induced fluorescence[J]. Analytical Chemistry, 2006, 78:6717-6725.
    Liu J, Xiao J, Wang S, et al. Synthesis of polystyrene-grafted-graphene hybrid and its application in electrochemical sensor of dopamine[J]. Materials Letters, 2013, 100:70-73.
    Ping F, Wu J, Wang X, et al. Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode[J]. Biosensors and Bioelectronics, 2012, 34:70-76.
    Hu R, Huang T, Lin Y, et al. Reduced graphene oxide-carbon dots composite as an enhanced material for electrochemical determination of dopamine[J]. Electrochimica Acta, 2014, 130:805-809.
    Yilmaz V, Çalik E, Uzun D, et al. Selective and sensitive determination of tannic acid using a 1-benzoyl-3-(pyrrolidine) thiourea film modified glassy carbon electrode[J]. Journal of Electroanalytical Chemistry, 2016, 776:1-8.
    Mohan K B E, Kumara S M H, Mohammed A, et al. Preparation of alanine and tyrosine functionalized graphene oxide nanoflakes and their modified carbon paste electrodes for the determination of dopamine[J]. Applied Surface Science, 2017, 399:411-419.
    Kwak M, Lee S, Kim D, et al. Facile synthesis of Au-graphene nanocomposite for the selective determination of dopamine[J]. Journal of Electroanalytical Chemistry, 2016, 776:66-73.
    Cai. W, Feng M, Feng M, et al. A novel strategy to simultaneously electrochemically prepare and functionalize graphene with a multifunctional flame retardant[J]. Chemical Engineering Journal, 2018, 316:514-524.
    Akhavan O, Ghaderi E, Rahighi R. Toward Single-DNA Electrochemical Biosensing by Graphene Nanowalls[J]. ACS Nano, 2012, 6:2904-2916.
    Li J, Du M, Chen J, Mao N. Electrodeposition of cobalt oxide nanoparticles on reduced graphene oxide:a two-dimensional hybrid for enzyme-free glucose sensing[J]. Journal of Solid State Electrochemistry, 2014, 18:1049-1056.
    Kazerooni H, Nasernejad B. A novel electrochemical DNA-sensing nanoplatform based on supramolecular ionic liquids grafted on nitrogen-doped graphene aerogels[J]. Journal of Applied Electrochemistry, 2015, 45:1289-1298.
    Yoo J, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Letters, 2008, 8:2277-2282.
    Wang L, Zhang Q, Zhang J, et al. Highly dispersed carbon nanotube in new ionic liquid-graphene oxides aqueous dispersions for ultrasensitive dopamine detection[J]. Electrochimica Acta, 2015, 155:236-271.
    Li H, Jiang Y, Mo T, et al. Highly selective dopamine sensor based on graphene quantum dots self-assembled monolayers modified electrode[J]. Journal of Electroanalytical Chemistry, 2016, 767:84-90.
    Yang J. One step electrosynthesis of polyacrylamide crosslinked by reduced graphene oxide and its application in the simultaneous determination of dopamine and uric acid[J]. Electrochimica Acta, 2014, 146:23-29.
    Huang H, Xu X, Yang H, et al. Electrochemically-driven and dynamic Enhancement of drug metabolism via cytochrome P450 microsomes on colloidal gold/graphene nanocomposites[J]. RSC Advances, 2012, 2:12844-12850.
    Zhao S, Lu L, Ding P, et al. An amperometric l-tryptophan sensor platform based on electrospun tricobalt tetroxide nanoparticles decorated carbon nanofibers[J]. Sensors and Actuators B. 2017, 241:601-606.
    Lian W, He F, He Q, et al. Simultaneous determination of ascorbic acid, dopamine and uric acid based on tryptophan functionalized graphene[J]. Analytica Chimica Acta, 2014, 823:32-39.
    Hummers Jr S, Offeman E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80:1339-1339.
    Kovtyukhova I, Ollivier J, Martin R, et al. Layer-by-layer assembly of iltrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Chemistry of Materials, 1999, 11:103-109.
    Zhang W, Wang S, Li M, et al. Graphene-supported poly[iron (II) tetraphenylporphyrin]hybrid fabricated by a solvothermally assisted p-p assembly method and its application for the detection of dopamine[J]. Journal of Electroanalytical Chemistry, 2015, 743:10-17.
    Zhang Y, Li J, Gu E, et al. One-pot solvothermal synthesis of a Cu2O/Graphene nanocomposite and its pplication in an electrochemical sensor for dopamine[J]. Microchimica Acta, 2011, 173:103-109.
    Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. Journal of Electroanalytical Chemistry, 1979, 101(1):19-28.
    Qin Q, Bai X, Hua L. Electropolymerization of a conductive β-cyclodextrin polymer on reduced graphene oxide modified screen-printed electrode for simultaneous determination of ascorbic acid, dopamine and uric acid[J]. Journal of Electroanalytical Chemistry, 2016, 782:50-58.
    Wang D, Xu F, Hu J, et al. Phytic acid/graphene oxide nanocomposites modified electrode for electrochemical sensing of dopamine[J]. Materials Science & Engineering C, 2016, 71:1086-1089.
    Xie Q, Zhang H, Gao F, et al. A highly sensitive dopamine sensor based on a polyaniline/reduced graphene oxide/Nafion nanocomposite[J]. Chinese Chemical Letters, 2016, 28(1):41-48.
    Zou L, Li L, Luo Q, et al. A novel electrochemical biosensor based on hemin functionalized graphene oxide sheets for simultaneous determination of ascorbic acid, dopamine and uric acid[J]. Sensors and Actuators B:Chemical, 2015, 207:535-541.
    Sheng H, Zheng Q, Xu Y, et al. Electrochemical sensor based on nitrogen doped graphene:Simultaneous determination of ascorbic acid, dopamine and uric acid[J]. Biosensors & Bioelectronics, 2012, 34(1):125-131.
    Kumar M, Swamy K, Asif M, et al. Preparation of alanine and tyrosine functionalized graphene oxide nanoflakes and their modified carbon paste electrodes for the determination of dopamine[J]. Applied Surface Science, 2017, 399:411-419.
  • 加载中
图(1)
计量
  • 文章访问数:  500
  • HTML全文浏览量:  175
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-29
  • 录用日期:  2020-04-02
  • 修回日期:  2020-01-20
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回