留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近性能炭纤维力学性能与微观结构的关联性

王美玲 边文凤

王美玲, 边文凤. 近性能炭纤维力学性能与微观结构的关联性. 新型炭材料, 2020, 35(1): 42-49. doi: 10.1016/S1872-5805(20)60474-7
引用本文: 王美玲, 边文凤. 近性能炭纤维力学性能与微观结构的关联性. 新型炭材料, 2020, 35(1): 42-49. doi: 10.1016/S1872-5805(20)60474-7
WANG Mei-ling, BIAN Wen-feng. The relationship between the mechanical properties and microstructures of carbon fibers. New Carbon Mater., 2020, 35(1): 42-49. doi: 10.1016/S1872-5805(20)60474-7
Citation: WANG Mei-ling, BIAN Wen-feng. The relationship between the mechanical properties and microstructures of carbon fibers. New Carbon Mater., 2020, 35(1): 42-49. doi: 10.1016/S1872-5805(20)60474-7

近性能炭纤维力学性能与微观结构的关联性

doi: 10.1016/S1872-5805(20)60474-7
基金项目: 山东省自然科学基金面上项目(ZR2018MA029).
详细信息
    作者简介:

    王美玲.E-mail:2424532626@qq.com

    通讯作者:

    边文凤,教授.E-mail:bianwf@163.com

  • 中图分类号: TQ342+.74

The relationship between the mechanical properties and microstructures of carbon fibers

Funds: Natural Science Foundation of Shandong Province(ZR2018MA029).
  • 摘要: 炭纤维具有复杂的微观结构,使得不同炭纤维的微观结构和力学性能之间存在差异,特别是相近性能炭纤维之间的差异甚是微妙。本文采用万能材料试验机、X射线衍射、小角散射和拉曼光谱对炭纤维单丝样品进行了力学性能和微观结构的表征。结果表明,除SY300外,相近性能炭纤维的拉伸强度随d002R的减小而增大,随Lc的增大而增大;对于同种原丝生产工艺的炭纤维,拉伸强度随微孔半径和密度的减小而增大。拉伸强度的离散可用Weibull模数进行表征,随微孔半径的减小而降低。根据实验数据采用Griffith(Irwin)公式估算得到的炭纤维拉伸强度比实测强度大,采用Mathematics和MATLAB软件对拉伸强度和微观结构数据进行了数值模拟,得到拉伸强度的估算公式,经采用其它研究者给出的T300炭纤维微观结构数据验证对比,得到的拉伸强度数据与测试数据相符。
  • Tsai S W, Wu E W. A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5:58-80.
    Harlow D G, Phoenix S L. Bounds on the probability of failure of composites[J]. International Journal of Fracture, 1979, 15(4):321-336.
    Jamal E, Franclois T, Raymond G. Review of failure criteria of fibrous composite materials[J]. Polymer Composites, 1996, 56(6):183-196.
    Griffith A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London, 1920, 211:163-198.
    Peirce F T. Tensile tests for cotton yarns, "The weakest link" Theorems on the strength of long and of composite specimens[J]. Journal of the Textile Institute, 1926, 17(7):355-368.
    Weibull W. A statistical theory of the strength of materials[J]. The Royal Swedish Institute for Engineering Research Preceeding, 1939, 151:1-45.
    Fu H. Carbon Fiber and Graphite Fiber[M]. Chemical Industry Press, 2010:369.
    Fujie L, Haojing W, Linbing X, et al. Effect of microstructure on the mechanical properties of PAN-based carbon fihers during high-temperature graphitization[J]. Journal of Materials Science, 2008, (43):4316-4322.
    Cédric S, Jacques L, René P. The tensile behavior of carbon fibers at high temperatures up to 2400℃[J]. Carbon, 2004, 42(4):715-725.
    Ogalev A A, Lin C, Anderson D P, et al. Orientation and dimensional changes in mesophase pitch-based carbon fibers[J]. Carbon, 2002, 40(8):1309-1319.
    Guinier A, Foumet G. Small-angle scattering of X-rays[C]. New York:Wiely, 1955:17-65.
    Bale H D, Schmidt P W. Small-angle X-ray-scattering investigation of submicroscopic porosity with fractal properties[J]. Physical Review letters, 1984, 53(53):596-599.
    Tuinstra F, Koening J L. Raman spectrum of graphite[J]. Journal of Chemical Physics, 1970, 53(3):1126-1130.
    Weidong Y. Jiangwei Y. Tensile strength and its variation of PAN-based carbon fibers. I. Statistical distribution and volume dependence[J]. Journal of Applied Polymer Science, 2007, 101(5):3175-3182.
    Natio K. Tensile properties and Weibull modulus of some high-performance polymeric fibers[J]. Journal of Applied Polymer Science, 2013, 128(2):1185-1192.
    Natio K, Yang J, Tanaka Y, et al. The effect of gauge length on tensile strength and weibull modulus of polyacrylonitrile (PAN)-and pitch-based carbon fibers[J]. Journal of Material Science, 2012, 47:632-642.
    Johnson D J, Tyson C N. Low-angle X-ray diffraction and physical properties of carbon fibres[J]. Journal of Physics d-applied Physics, 1970, 3:526.
    Kobayashi T, Sumiya K, Fukuba Y, et al. Structure heterogeneity and stress distribution in carbon fiber monifilament as revealed by synchrotron microbeam X-ray scattering and micro-Raman spectral measurements[J]. Carbon, 2011, 49:1646-1652.
    Johnson D J. Structure-property relationships in carbon fibers[J]. Journal of Physics applied Physics, 1987, 20:287.
    Moreton R, Watt W, Johnson W. Carbon fibres of high strength and high breaking strain[J]. Nature, 1967, 213:690-691.
    Cooper G A, Mayer R M. The strength of carbon fibres[J]. Journal of Material Science, 1971, 6:60-67.
    Honjo K. Fracture toughness of PAN-based carbon fibers estimates from strength-mirror size relation[J]. Carbon, 41(5):979-984.
    Bansal G K. Effect of flaw shape on strength of ceramics[J]. Journal of the American Ceramic Society,1976,59(1/2):87-88.
    Wenfeng B, Shuxiang L, Qingtian L. Micro compound method of elasticity coefficient of carbon fiber[J]. Acta Material Composite Sinica, 2012, 29(1):212-215.
    Chen W, Mengfan W, Daxin L, et al. Relationship between the density and graphite structure of carbon fiber during high temperature treatment process[J]. Journal of Materials Science and Engineering, 2013, 31(6):803-806.
    Kuniaki H. Fracture toughness of PAN-based carbon fibers estimated from strength-mirror size relation[J]. Carbon, 2003, 41(5):979-984.
    Zetian C. Studies on the structure and micro-mechnical properties of carbon fiber by Raman spectrum[D]. Shanghai:Dong Hua University, 2011.
    Dongfeng L, Haojing W, Fu H. Structure and properties of T300 and T700 carbon fibers[J]. New Carbon Matericals, 2007, 22(1):59-64.
    Yi S, Caihong Z, Yao X, et al. Investigation of PAN-based carbon fiber microstructure by 2D-SAXS[J]. New Carbon Matericals, 2009, 24(3):270-276.
  • 加载中
图(1)
计量
  • 文章访问数:  351
  • HTML全文浏览量:  124
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-31
  • 录用日期:  2020-04-02
  • 修回日期:  2020-01-23
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回