留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化镍/四氧化三钴@镍钴与活性炭的非对称超级电容器的制备

李婧 邹培超 姚文涛 刘鹏 康飞宇 杨诚

李婧, 邹培超, 姚文涛, 刘鹏, 康飞宇, 杨诚. 氧化镍/四氧化三钴@镍钴与活性炭的非对称超级电容器的制备. 新型炭材料, 2020, 35(2): 112-120. doi: 10.1016/S1872-5805(20)60478-4
引用本文: 李婧, 邹培超, 姚文涛, 刘鹏, 康飞宇, 杨诚. 氧化镍/四氧化三钴@镍钴与活性炭的非对称超级电容器的制备. 新型炭材料, 2020, 35(2): 112-120. doi: 10.1016/S1872-5805(20)60478-4
LI Jing, ZOU Pei-chao, YAO Wen-tao, LIU Peng, KANG Fei-yu, YANG Cheng. An asymmetric supercapacitor based on a NiO/Co3O4@NiCo cathode and an activated carbon anode. New Carbon Mater., 2020, 35(2): 112-120. doi: 10.1016/S1872-5805(20)60478-4
Citation: LI Jing, ZOU Pei-chao, YAO Wen-tao, LIU Peng, KANG Fei-yu, YANG Cheng. An asymmetric supercapacitor based on a NiO/Co3O4@NiCo cathode and an activated carbon anode. New Carbon Mater., 2020, 35(2): 112-120. doi: 10.1016/S1872-5805(20)60478-4

氧化镍/四氧化三钴@镍钴与活性炭的非对称超级电容器的制备

doi: 10.1016/S1872-5805(20)60478-4
基金项目: 珠江人才本土创新团队(2017BT01N111);广东省创新团队(51578310);广东省科技厅(2015A030306010);深圳市科创委(JCYJ20170412171720306).
详细信息
    作者简介:

    李婧,硕士研究生.E-mail:j-l16@mails.tsinghua.edu.cn

    通讯作者:

    杨诚,副研究员.E-mail:yang.cheng@sz.tsinghua.edu.cn

  • 中图分类号: TB33

An asymmetric supercapacitor based on a NiO/Co3O4@NiCo cathode and an activated carbon anode

Funds: Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01N111); Shenzhen Geim Graphene Center, the National Nature Science Foundation of China (51578310); Guangdong Province Science and Technology Department (2015A030306010); Shenzhen Government (JCYJ20170412171720306).
  • 摘要: 金属氧化物是一种颇具前景的超级电容器活性材料,然而较差的导电性阻碍了其实际应用。本文通过在高导电性镍钴纳米线上原位生长氧化镍和四氧化三钴活性物质,制备自支撑柔性氧化镍/四氧化三钴@镍钴一体化电极。纳米线表面原位生长活性物质可以提升活性物质与集流体间电子的传输效率。网络状纳米线结构利于离子传输并能释放充放电过程中形成的应力。基于这种独特的结构特点,氧化镍/四氧化三钴@镍钴电极在电流密度为5 mA cm-2时,具有1.36 F cm-2的比容量,循环10 000圈后仍然具有96.95%的容量保持率。氧化镍/四氧化三钴@镍钴与活性炭组装成的非对称超级电容器在能量密度为0.32 mWh cm-2时,具有8 mW cm-2的功率密度,证明此种材料在高性能超级电容器中的广阔应用前景。
  • Ortaboy S, Alper J P, Rossi F, et al. MnOx-decorated carbonized porous silicon nanowire electrodes for high performance supercapacitors[J]. Energy & Environmental Science, 2017, 10(6):1505-1516.
    Xu C, Li Z, Yang C, et al. An ultralong, highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors[J]. Advanced Materials, 2016, 28(21):4105-10.
    Zang X, Zhang R, Zhen Z, et al. Flexible, temperature-tolerant supercapacitor based on hybrid carbon film electrodes[J]. Nano Energy, 2017, 40:224-232.
    Xie B, Wang Y, Lai W, et al. Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components[J]. Nano Energy, 2016, 26:276-285.
    Wang F, Wu X, Yuan X, et al. Latest advances in supercapacitors:from new electrode materials to novel device designs[J]. Chemical Society Reviews, 2017, 46(22):6816-6854.
    Wang Y, Lai W, Wang N, et al. A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life[J]. Energy & Environmental Science, 2017, 10(4):941-949.
    Chandra Sekhar S, Nagaraju G, Yu J S. High-performance pouch-type hybrid supercapacitor based on hierarchical NiO-Co3O4-NiO composite nanoarchitectures as an advanced electrode material[J]. Nano Energy, 2018, 48:81-92.
    Xu C, Liao J, Wang R, et al. MoO3@Ni nanowire array hierarchical anode for high capacity and superior longevity all-metal-oxide asymmetric supercapacitors[J]. RSC Advances, 2016, 6(111):110112-110119.
    Liao J, Wang X, Wang Y, et al. Lavender-like cobalt hydroxide nanoflakes deposited on nickel nanowire arrays for high-performance supercapacitors[J]. RSC Advances, 2018, 8(31):17263-17271.
    Cook J B, Kim H S, Lin T C, et al. Pseudocapacitive charge storage in thick composite MoS2 nanocrystal-based electrodes[J]. Advanced Energy Materials, 2017, 7(2):1601283.
    Wu Q, Xu Y, Yao Z, et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films[J]. ACS nano, 2010, 4(4):1963-1970.
    Zhou C, Zhang Y, Li Y, et al. Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor[J]. Nano Letters, 2013, 13(5):2078-85.
    Pang H, Li X, Zhao Q, et al. One-pot synthesis of heterogeneous Co3O4-nanocube/Co(OH)2-nanosheet hybrids for high-performance flexible asymmetric all-solid-state supercapacitors[J]. Nano Energy, 2017, 35:138-145.
    Zhai T, Wan L, Sun S, et al. Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors[J]. Advanced Materials, 2017, 29(7).
    Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11):845-54.
    Raza W, Ali F, Raza N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy, 2018, 52:441-473.
    Kawamori M, Asai T, Shirai Y, et al. Three-dimensional nanoelectrode by metal nanowire nonwoven clothes[J]. Nano Letters, 2014, 14(4):1932-7.
    Xu C, Liao J, Yang C, et al. An ultrafast, high capacity and superior longevity Ni/Zn battery constructed on nickel nanowire array film[J]. Nano Energy, 2016, 30:900-908.
    Yuan C, Yang L, Hou L, et al. Flexible hybrid paper made of monolayer Co3O4 microsphere arrays on rGO/CNTs and their application in electrochemical capacitors[J]. Advanced Functional Materials, 2012, 22(12):2560-2566.
    Qi J, Mao J, Zhang A, et al. Facile synthesis of mesoporous ZnCo2O4 nanosheet arrays grown on rGO as binder-free electrode for high-performance asymmetric supercapacitor[J]. Journal of Materials Science, 2018, 53(23):16074-16085.
    Sulaiman Y, Azmi M K S, Mohd Abdah M A A, et al. One step electrodeposition of poly-(3,4-ethylenedioxythiophene)/graphene oxide/cobalt oxide ternary nanocomposite for high performance supercapacitor[J]. Electrochimica Acta, 2017, 253:581-588.
    Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2):797-828.
    Liao J, Zou P, Su S, et al. Hierarchical nickel nanowire@NiCo2S4 nanowhisker composite arrays with a test-tube-brush-like structure for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(31):15284-15293.
    Zou P, Li J, Zhang Y, et al. Magnetic-field-induced rapid synthesis of defect-enriched Ni-Co nanowire membrane as highly efficient hydrogen evolution electrocatalyst[J]. Nano Energy, 2018, 51:349-357.
    Zou P, Chiang S W, Li J, et al. Ni@Li2O co-axial nanowire based reticular anode:Tuning electric field distribution for homogeneous lithium deposition[J]. Energy Storage Materials, 2018.
    Xing L, Dong Y, Hu F, et al. Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors[J]. Dalton Transactions, 2018, 47(16):5687-5694.
    Yang Q, Lu Z, Li T, et al. Hierarchical construction of core-shell metal oxide nanoarrays with ultrahigh areal capacitance[J]. Nano Energy, 2014, 7:170-178.
    Noh M, Kwon Y, Lee H, et al. Amorphous carbon-coated tin anode material for lithium secondary battery[J]. Chemistry of Materials, 2005, 17:1926-1929.
    Zuo Y, Ni J, Song J, et al. Synthesis of Co3O4/NiO nanofilms and their enhanced electrochemical performance for supercapacitor application[J]. Applied Surface Science, 2016, 370:528-535.
    Wan C, Jiao Y, Li J. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors[J]. Journal of Power Sources, 2017, 361:122-132.
    Yao H, Zhang F, Zhang G, et al. A new hexacyanoferrate nanosheet array converted from copper oxide as a high-performance binder-free energy storage electrode[J]. Electrochimica Acta, 2019, 294:286-296.
    Bai Y, Liu R, Li E, et al. Graphene/carbon nanotube/bacterial cellulose assisted supporting for polypyrrole towards flexible supercapacitor applications[J]. Journal of Alloys and Compounds, 2019, 777:524-530.
  • 加载中
图(1)
计量
  • 文章访问数:  396
  • HTML全文浏览量:  123
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-25
  • 录用日期:  2020-04-28
  • 修回日期:  2020-03-18
  • 刊出日期:  2020-04-28

目录

    /

    返回文章
    返回