留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高比表面积聚丙烯腈基炭微球的制备与正交实验分析

刘沅明 秦显营 张少琼 张哲旭 康飞宇 李宝华

刘沅明, 秦显营, 张少琼, 张哲旭, 康飞宇, 李宝华. 高比表面积聚丙烯腈基炭微球的制备与正交实验分析. 新型炭材料, 2020, 35(2): 131-139. doi: 10.1016/S1872-5805(20)60480-2
引用本文: 刘沅明, 秦显营, 张少琼, 张哲旭, 康飞宇, 李宝华. 高比表面积聚丙烯腈基炭微球的制备与正交实验分析. 新型炭材料, 2020, 35(2): 131-139. doi: 10.1016/S1872-5805(20)60480-2
LIU Yuan-ming, QIN Xian-ying, ZHANG Shao-qiong, ZHANG Zhe-xu, KANG Fei-yu, LI Bao-hua. Optimization of the preparation conditions of KOH-activated, PAN-based carbon ellipsoids by orthogonal experimental analysis. New Carbon Mater., 2020, 35(2): 131-139. doi: 10.1016/S1872-5805(20)60480-2
Citation: LIU Yuan-ming, QIN Xian-ying, ZHANG Shao-qiong, ZHANG Zhe-xu, KANG Fei-yu, LI Bao-hua. Optimization of the preparation conditions of KOH-activated, PAN-based carbon ellipsoids by orthogonal experimental analysis. New Carbon Mater., 2020, 35(2): 131-139. doi: 10.1016/S1872-5805(20)60480-2

高比表面积聚丙烯腈基炭微球的制备与正交实验分析

doi: 10.1016/S1872-5805(20)60480-2
基金项目: 国家重点基础研究发展计划(2014CB932400);国家自然基金联合基金(U1401243);国家自然科学基金(51232005);深圳科技计划(JCYJ20150529164918735,KQJSCX20160226191136,JCYJ20170412170911187);广东省科技计划(2015TX01N011).
详细信息
    作者简介:

    刘沅明,硕士研究生.E-mail:liu-ym16@mails.tsinghua.edu.cn

    通讯作者:

    李宝华,教授.E-mail:libh@mail.sz.tsinghua.edu.cn

  • 中图分类号: TQ127.1+1

Optimization of the preparation conditions of KOH-activated, PAN-based carbon ellipsoids by orthogonal experimental analysis

Funds: National Key Basic Research Program of China (2014CB932400); Joint Fund of the National Natural Science Foundation of China (U1401243); National Natural Science Foundation of China (51232005); Shenzhen Technical Plan Project (JCYJ20150529164918735, KQJSCX20160226191136, JCYJ20170412170911187); Guangdong Technical Plan Project (2015TX01N011).
  • 摘要: 本研究优化了制备高比表面积聚丙烯腈基多孔炭微球的KOH化学活化工艺,并系统讨论了活化条件对炭微球的孔体积和平均孔径的影响。活化条件的优化原理基于9个正交实验,主要讨论了活化温度、恒温时间以及碱碳质量比3个因素对比表面积的影响与显著性。极差分析和方差分析表明,3个因素对比表面积均具有高度显著的影响,且三者的影响程度有如下关系:活化温度 > 恒温时间 > 碱碳比。最佳活化工艺为:活化温度800 ℃,恒温时间4 h,碱碳比4:1。由最佳活化工艺制备的聚丙烯腈基多孔炭微球的比表面积可由活化前的463 m2g-1显著提高至2 517 m2g-1
  • Wang J, Kaskel S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45):23710.
    Wu M, Zha Q, Qiu J, et al. Preparation and characterization of porous carbons from PAN-based preoxidized cloth by KOH activation[J]. Carbon, 2004, 42(1):205-210.
    Liu Y, Qin X, Zhang S, et al. Oxygen and nitrogen co-doped porous carbon granules enabling dendrite-free lithium metal anode[J]. Energy Storage Materials, 2019, 18:320-327.
    Liu Y, Qin X, Zhang S, et al. Fe3O4-decorated porous graphene interlayer for high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(31):26264-26273.
    Qie L, Chen W, Xu H, et al. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors[J]. Energy & Environmental Science, 2013, 6(8):2497.
    Ahmadpour A, Do D D. The preparation of active carbons from coal by chemical and physical activation[J]. Carbon, 1996, 34(4):471-479.
    Marsh H, Yan D S, O'Grady T M, et al. Formation of active carbons from cokes using potassium hydroxide[J]. Carbon, 1984, 22(6):603-611.
    Yang S, Hu H, Chen G. Preparation of carbon adsorbents with high surface area and a model for calculating surface area[J]. Carbon, 2002, 40(3):277-284.
    Laine J, Calafat A. Factors affecting the preparation of activated carbons from coconut shell catalized by potassium[J]. Carbon, 1991, 29(7):949-953.
    Zhou M, Pu F, Wang Z, et al. Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors[J]. Carbon, 2014, 68:185-194.
    Yoon S H, Lim S, Song Y, et al. KOH activation of carbon nanofibers[J]. Carbon, 2004, 42(8-9):1723-1729.
    Sevilla M, Fuertes A B, Mokaya R. High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials[J]. Energy & Environmental Science, 2011, 4(4):1400.
    Ye H, Yin Y X, Xin S, et al. Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li-S batteries[J]. Journal of Materials Chemistry A, 2013, 1(22):6602.
    Fu L, Tang K, Song K, et al. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance[J]. Nanoscale, 2014, 6(3):1384-1389.
    Zhu Y, Hu H, Li W, et al. Resorcinol-formaldehyde based porous carbon as an electrode material for supercapacitors[J]. Carbon, 2007, 45(1):160-165.
    Wu X, Leung D Y C. Optimization of biodiesel production from camelina oil using orthogonal experiment[J]. Applied Energy, 2011, 88(11):3615-3624.
    Yu M J, Wang C G, Bai Y J, et al. SEM and OM study on the microstructure of oxidative stabilized polyacrylonitrile fibers[J]. Polymer Bulletin, 2007, 58(5):933-940.
    Qin X, Lu Y, Xiao H, et al. Improving stabilization degree of stabilized fibers by pretreating polyacrylonitrile precursor fibers in nitrogen[J]. Materials Letters, 2012, 76162-76164.
    Qin X, Lu Y, Xiao H, et al. Effect of heating and stretching polyacrylonitrile precursor fibers in steam on the properties of stabilized fibers and carbon fibers[J]. Polymer Engineering & Science, 2012, 53(4):827-832.
    Wen Y, Lu Y, Xiao H, et al. Further investigation on boric acid catalytic graphitization of polyacrylonitrile carbon fibers:Mechanism and mechanical properties[J]. Materials & Design (1980-2015), 2012, 36728-36734.
  • 加载中
图(1)
计量
  • 文章访问数:  413
  • HTML全文浏览量:  150
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-06
  • 录用日期:  2020-04-28
  • 修回日期:  2020-03-26
  • 刊出日期:  2020-04-28

目录

    /

    返回文章
    返回