留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧官能团对活性炭超级电容器电容性能的影响

李夕冉 姜杨慧 王培智 莫岩 赖文德 李正炯 虞如基 杜玉婷 张馨壬 陈永

李夕冉, 姜杨慧, 王培智, 莫岩, 赖文德, 李正炯, 虞如基, 杜玉婷, 张馨壬, 陈永. 氧官能团对活性炭超级电容器电容性能的影响. 新型炭材料, 2020, 35(3): 232-243. doi: 10.1016/S1872-5805(20)60487-5
引用本文: 李夕冉, 姜杨慧, 王培智, 莫岩, 赖文德, 李正炯, 虞如基, 杜玉婷, 张馨壬, 陈永. 氧官能团对活性炭超级电容器电容性能的影响. 新型炭材料, 2020, 35(3): 232-243. doi: 10.1016/S1872-5805(20)60487-5
LI Xi-ran, JIANG Yang-hui, WANG Pei-zhi, MO Yan, LAI Wen-de, LI Zheng-jiong, YU Ru-ji, DU Yu-ting, ZHANG Xin-ren, CHEN Yong. Effect of the oxygen functional groups of activated carbon on its electrochemical performance for supercapacitors. New Carbon Mater., 2020, 35(3): 232-243. doi: 10.1016/S1872-5805(20)60487-5
Citation: LI Xi-ran, JIANG Yang-hui, WANG Pei-zhi, MO Yan, LAI Wen-de, LI Zheng-jiong, YU Ru-ji, DU Yu-ting, ZHANG Xin-ren, CHEN Yong. Effect of the oxygen functional groups of activated carbon on its electrochemical performance for supercapacitors. New Carbon Mater., 2020, 35(3): 232-243. doi: 10.1016/S1872-5805(20)60487-5

氧官能团对活性炭超级电容器电容性能的影响

doi: 10.1016/S1872-5805(20)60487-5
基金项目: 海南省自然科学基金(2018CXTD332,HD-SYSZX-201802);科技发展专项基金(ZY2018HN09-3,ZY2019HN09);国家自然科学基金(51362009,21603048).
详细信息
    作者简介:

    李夕冉,硕士研究生.E-mail:1529342914@qq.com

    通讯作者:

    陈永,博士,教授.E-mail:ychen2002@163.com

  • 中图分类号: TQ127.1+1

Effect of the oxygen functional groups of activated carbon on its electrochemical performance for supercapacitors

Funds: Hainan Provincial Natural Science Foundation of China (2018CXTD332, HD-SYSZX-201802), Science and Technology Development Special Fund Project (ZY2018HN09-3, ZY2019HN09), National Natural Science Foundation of China (51362009, 21603048).
  • 摘要: 活性炭作为一种电极材料广泛应用于商业超级电容器中。炭材料表面的氧官能团是影响超级电容器电容性能的重要因素之一。通过(NH42S2O8温和的氧化过程在活性炭上引入氧官能团,并在不同温度下热处理样品来进一步除去氧官能团,同时又保留了活性炭原始的孔结构。结果表明,在水系电解液中,含氧官能团,特别是羧基和羰基,不仅加强了电解液在电极中的扩散,而且通过引入赝电容来提高电容。在300℃惰性气氛热处理后可以增加电极材料的电容和倍率性能。然而,不适量的氧官能团会堵塞活性炭的孔,导致其电化学性能差。在有机电解液中,含氧官能团会降低电极材料的电容,但在700℃惰性气氛热处理后可以有效提升材料的电容。研究结果揭示了氧官能团与电化学性能之间的关系,对于设计实际应用中的高性能超级电容器至关重要。
  • Wang Y G, Song Y F, Xia Y Y. Electrochemical capacitors:mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21):5925-5950.
    Xiao C, Zhang W, Lin H, et al. Modification of a rice husk-based activated carbon by thermal treatment and its effect on its electrochemical performance as a supercapacitor electrode[J]. New Carbon Materials, 2019, 34(4):341-348.
    Liu C, Li F, Ma L P, et al. Advanced materials for energy storage[J]. Advanced Energy Materials, 2010, 22(8):28-62.
    Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2):797-828.
    Conway B E, Birss V, Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitors[J]. Journal of Power Sources, 1997, 66:1-14.
    Forse A C, Merlet C l, Griffin J M, et al. New perspectives on the charging mechanisms of supercapacitors[J]. Journal of the American Chemical Society, 2016, 138(18):5731-5744.
    Fan L Z, Hu Y S, Maier J, et al. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support[J]. Advanced Functional Materials, 2007, 17(16):3083-3087.
    Yang Z, Yang Y, Lu C, et al. A high energy density fiber-shaped supercapacitor based on zinc-cobalt bimetallic oxide nanowire forests on carbon nanotube fibers[J]. New Carbon Materials, 2019, 34(6):559-568.
    Lee J S M, Briggs M E, Hu C, et al. Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers[J]. Nano Energy, 2018, 46:277-289.
    Qu D Y. Studies of the activated carbons used in double-layer supercapacitors[J]. Journal of Power Sources, 2002, 109403-411.
    Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources, 2006, 157(1):11-27.
    Hulicova Jurcakova D, Seredych M, Lu G, et al. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors[J]. Advanced Functional Materials, 2009, 19(3):438-447.
    Tong Y X, Li X M, Xie L J, et al. Nitrogen-doped hierarchical porous carbon derived from block copolymer for supercapacitor[J]. Energy Storage Materials, 2016, 3:140-148.
    Liu Y Z, Li Y F, Su F Y, et al. Easy one-step synthesis of N-doped graphene for supercapacitors[J]. Energy Storage Materials, 2016, 2:69-75.
    Zhang Y X, Liu L, Zhang L L, et al. Template-free method for fabricating carbon nanotube combined with thin N-doped porous carbon composite for supercapacitor[J]. Journal of Materials Science, 2019, 54(8):6451-6460.
    Chen Y M, Zhang Z P, Huang Z D, et al. Effects of oxygen-containing functional groups on the supercapacitor performance of incompletely reduced graphene oxides[J]. International Journal of Hydrogen Energy, 2017, 42(10):7186-7194.
    Liu H Y, Song H H, Chen X H, et al. Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors[J]. Journal of Power Sources, 2015, 285:303-309.
    Oh Y J, Yoo J J, Kim Y I, et al. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor[J]. Electrochimica Acta, 2014, 116:118-128.
    Zhang T Y, Lang J W, Liu L, et al. Effect of carboxylic acid groups on the supercapacitive performance of functional carbon frameworks derived from bacterial cellulose[J]. Chinese Chemical Letters, 2017, 28(12):2212-2218.
    Li Z N, Gadipelli S, Yang Y C, et al. Exceptional supercapacitor performance from optimized oxidation of graphene-oxide[J]. Energy Storage Materials, 2019, 17:12-21.
    Sahoo G, Polaki S R, Ghosh S, et al. Plasma-tuneable oxygen functionalization of vertical graphenes enhance electrochemical capacitor performance[J]. Energy Storage Materials, 2018, 14:297-305.
    Fan L Z, Qiao S Y, Song W L, et al. Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors[J]. Electrochimica Acta, 2013, 105:299-304.
    Zhang D D, Wang J L, He C, et al. Rational surface tailoring oxygen functional groups on carbon spheres for capacitive mechanistic study[J]. ACS Applied Materials & Interfaces, 2019, 11(14):13214-13224.
    Miao Z Y, Huang Y, Xin J P, et al. High-performance symmetric supercapacitor constructed using carbon cloth boosted by engineering oxygen-containing functional groups[J]. ACS Applied Materials & Interfaces, 2019, 11(19):18044-18050.
    Jiang L L, Sheng L Z, Long C L, et al. Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors[J]. Advanced Energy Materials, 2015, 5(15):1500771.
    Lee J, Abbas M A, Bang J H. Exploring the capacitive behavior of carbon functionalized with cyclic ethers:A rational strategy to exploit oxygen functional groups for enhanced capacitive performance[J]. ACS Applied Materials & Interfaces, 2019, 11(21):19056-19065.
    Seredych M, Hulicova Jurcakova D, Lu G, et al. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance[J]. Carbon, 2008, 46(11):1475-1488.
    Kerisit S, Schwenzer B, Vijayakumar M. Effects of oxygen-containing functional groups on supercapacitor performance[J]. The Journal of Physical Chemistry Letters, 2014, 5(13):2330-2334.
    Yang S, Zhao F Y, Li X R, et al. Electrode structural changes and their effects on capacitance performance during preparation and charge-discharge processes[J]. Journal of Energy Storage, 2019, 24:100799.
    Zhang R, Jing X X, Chu Y T, et al. Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(36):17730-17739.
    Chen C M, Zhang Q, Yang M G, et al. Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors[J]. Carbon, 2012, 50(10):3572-3584.
    Deb Nath N C, Shah S S, Qasem M A A, et al. Defective carbon nanosheets derived from syzygium cumini leaves for electrochemical energy storage[J]. ChemistrySelect, 2019, 4(31):9079-9083.
    Zhou J H, Sui Z J, Zhu J, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4):785-796.
    Fang Y, Luo B, Jia Y Y, et al. Renewing functionalized graphene as electrodes for high-performance supercapacitors[J]. Advanced Materials, 2012, 24(47):6348-6355.
    Ternero Hidalgo J J, Rosas J M, Palomo J, et al. Functionalization of activated carbons by HNO3 treatment:Influence of phosphorus surface groups[J]. Carbon, 2016, 101:409-419.
    Domingo Garcia M, Lopez Garzon F J, Perez Mendoza M. Effect of Some oxidation treatments on the textural characteristics and surface chemical nature of an activated carbon[J]. Journal of Colloid Interface Science, 2000, 222(2):233-240.
    Hu L F, Zhu Q Z, Wu Q, et al. Natural biomass-derived hierarchical porous carbon synthesized by an in situ hard template coupled with NaOH activation for ultrahigh rate supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):13949-13959.
    Fan L Z, Liu J L, Ud Din R, et al. The effect of reduction time on the surface functional groups and supercapacitive performance of graphene nanosheets[J]. Carbon, 2012, 50(10):3724-3730.
    Radovic L R. Active sites in graphene and the mechanism of CO2 formation in carbon oxidation[J]. Journal of the American Chemical Society, 2009, 131:17166-17175.
    Yan J, Wang Q, Lin C P, et al. Interconnected frameworks with a sandwiched porous carbon layer/graphene hybrids for supercapacitors with high gravimetric and volumetric performances[J]. Advanced Energy Materials, 2014, 4(13):1400500.
    Long C L, Jiang L L, Wu X L, et al. Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors[J]. Carbon, 2015, 93:412-420.
    Lufrano F, Staiti P. Influence of the surface-chemistry of modified mesoporous carbon on the electrochemical behavior of solid-state supercapacitors[J]. Energy & Fuels, 2010, 24(6):3313-3320.
    Wang D W, Li F, Liu M, et al. Improved capacitance of SBA-15 templated mesoporous carbons after modification with nitric acid oxidation[J]. New Carbon Materials, 2007, 22(4):307-314.
    Mao Z X, Zhang W J, Wang M J, et al. Enhancing rate performances of carbon based supercapacitors[J]. ChemistrySelect, 2019, 4(22):6827-6832.
    Zhi M J, Yang F, Meng F K, et al. Effects of pore structure on performance of an activated-carbon supercapacitor electrode recycled from scrap waste tires[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(7):1592-1598.
    Xie Y B, Qiao W M, Zhang W Y, et al. Effect of the surface chemistry of activated carbon on its electrochemical properties in electric double layer capacitors[J]. New Carbon Materials, 2010, 25(4):248-254.
    Liu X M, Wang Y L, Zhan L, et al. Effect of oxygen-containing functional groups on the impedance behavior of activated carbon-based electric double-layer capacitors[J]. Journal of Solid State Electrochemistry, 2010, 15(2):413-419.
    He Y T, Zhang Y H, Li X F, et al. Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors[J]. Electrochimica Acta, 2018, 282:618-625.
  • 加载中
图(1)
计量
  • 文章访问数:  873
  • HTML全文浏览量:  213
  • PDF下载量:  267
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-28
  • 修回日期:  2020-05-15
  • 刊出日期:  2020-06-28

目录

    /

    返回文章
    返回