留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PAN基炭纤维径向结构高温演变机制及其与力学性能的关系

阮如玉 叶联葳 冯海 徐樑华 王宇

阮如玉, 叶联葳, 冯海, 徐樑华, 王宇. PAN基炭纤维径向结构高温演变机制及其与力学性能的关系. 新型炭材料, 2020, 35(3): 295-306. doi: 10.1016/S1872-5805(20)60491-7
引用本文: 阮如玉, 叶联葳, 冯海, 徐樑华, 王宇. PAN基炭纤维径向结构高温演变机制及其与力学性能的关系. 新型炭材料, 2020, 35(3): 295-306. doi: 10.1016/S1872-5805(20)60491-7
RUAN Ru-yu, YE Lian-wei, FENG Hai, XU Liang-hua, WANG Yu. High temperature evolution of the microstructure in the radial direction of PAN-based carbon fibers and its relationship to mechanical properties. New Carbon Mater., 2020, 35(3): 295-306. doi: 10.1016/S1872-5805(20)60491-7
Citation: RUAN Ru-yu, YE Lian-wei, FENG Hai, XU Liang-hua, WANG Yu. High temperature evolution of the microstructure in the radial direction of PAN-based carbon fibers and its relationship to mechanical properties. New Carbon Mater., 2020, 35(3): 295-306. doi: 10.1016/S1872-5805(20)60491-7

PAN基炭纤维径向结构高温演变机制及其与力学性能的关系

doi: 10.1016/S1872-5805(20)60491-7
基金项目: 装备预研教育部联合基金(6141A02033231,6141A02033223);国防基础科研计划(JCKY2018110C139);中央高校基本科研业务费基地项目(JD1907).
详细信息
    作者简介:

    阮如玉,博士生.E-mail:sdfcrry@163.com

    通讯作者:

    王宇,博士.E-mail:wangy@mail.buct.edu.cn;徐樑华,教授.E-mail:xulh@mail.buct.edu.cn

  • 中图分类号: TQ342.+74

High temperature evolution of the microstructure in the radial direction of PAN-based carbon fibers and its relationship to mechanical properties

Funds: Joint Fund of the Ministry of Education for Pre-research (6141A02033231, 6141A02033223), Basic Research Plan (JCKY2018110C139), Fundamental Research Funds for the Central Universities (JD1907).
  • 摘要: 为了研究高温处理条件下炭纤维径向结构的演变规律及其对力学性能的影响,采用Raman光谱仪、元素分析仪、X射线衍射仪、高分辨透射电子显微镜、原子力显微镜和力学性能测试仪等表征方法,系统地对不同温度处理后的炭纤维进行结构解析。结果表明,由于纤维在高温处理过程中热解与重组同时发生,炭纤维径向结构的变化可分为两个阶段。第一阶段为处理温度低于1 700℃时的径向结构差异随处理温度升高而减小的阶段,此阶段热裂解对径向结构差异的影响起主导作用。第二阶段为处理温度高于1 700℃的径向结构差异随处理温度升高而增大的阶段,此阶段结构重组对径向结构差异的影响起主导作用。受径向结构差异的影响,炭纤维拉伸强度随处理温度的升高,呈现先增大后减小的趋势,经1 700℃处理后的炭纤维径向结构趋于均质,拉伸强度达到最大。依据炭纤维石墨化程度与炭微晶大小的关系,炭纤维皮层炭微晶为纤维径向上最规整、最完整的碳结构,因此炭纤维拉伸模量主要取决于皮层大尺寸且高取向的炭微晶。
  • El-hofy M H, El-hofy H. Laser beam machining of carbon fiber reinforced composites:A review[J]. Int J Adv Manuf Tech, 2019, 101(9/12):2965-2975.
    Forintos N, Czigany T. Multifunctional application of carbon fiber reinforced polymer composites:Electrical properties of the reinforcing carbon fibers-A short review[J]. Compos Part B-Eng, 2019,162:331-343.
    S Chand. Review Carbon fibers for composites[J]. J Mater Sci, 2000, 35(6):1303-1313.
    Wang H J, Wang H F, Li D H, et al. The effect of graphitization temperature on the microstructure and mechanical properties of carbon fibers[J]. New Carbon Mater, 2005, 20(2):157-163.
    Lu Y G, Zha Q F, Liu L, et al. Skin-core structure in mesophase pitch-based carbon fibers:Causes and prevention[J]. Carbon,1998, 36(12):1719-1724.
    Liu J, Zhang W X. Structural changes during the thermal stabilization of modified and original polyacrylonitrile precursors[J]. J Appl Polym Sci, 2005, 97(5):2047-2053.
    Srinivas N, Claudia C, Nishar H,et al. Radial structure and property relationship in the thermal stabilization of PAN precursor fibres[J]. Polym Test, 2017, 59(1):203-211.
    Srinivas N, Minoo N, Nishar H, et al. Investigation of progress of reactions and evolution of radial heterogeneity in the initial stage of thermal stabilization of PAN precursor fibres[J]. Polym Degrad Stabil, 2016,125(1):105-114.
    Liu X F, Zhu C Z, Guo J, et al. Nanoscale dynamic mechanical imaging of the skin-core difference:From PAN precursors to carbon fibers[J]. Mater Lett, 2014, 128:417-420.
    He D, Wang C, Bai Y, et al. Microstructural evolution during thermal stabilization of PAN fibers[J]. J Mater Sci, 2007, 42:7402-7407.
    Yu M, Bai Y, Wang C, et al. A new method for the evaluation of stabilization index of polyacrylonitrile fibers[J]. Mater Lett, 2007, 61:2292-2294.
    Takayuki K, Kazunori S, Yoshinori F, et al. Structural heterogeneity and stress distribution in carbon fiber monofilament as revealed by synchrotron micro-beam X-ray scattering and micro-Raman spectral measurements[J]. Carbon, 2011, 49:1646-1652.
    Li D H, Lu C X, Wu G P, et al. Structural heterogeneity and its influence on the tensile fracture of PAN-based carbon fibers[J]. RSC Adv, 2014, 4:60648-60651.
    Wang H T, Wang Y, Li T, et al. Gradient distribution of radial structure of PAN-based carbon fiber treated by high temperature[J]. Prog Nat l Sci-Mater, 2014, 24:31-34.
    Su C J, Gao A J, Luo S,et al. Evolution of the skin-core structure of PAN-based carbon fibers with high temperature treatment[J]. Carbon, 2013, 51:436-437.
    Chang W P, Shen Z M, et al. Manufacture of high modulus graphitized carbon fibers[J]. New Carbon Mater, 1998, 13(1):28-32.
    Melantis S N, Galiotis C. Compressional behaviour of carbon fibres Part 1 A Raman spectroscopic study[J]. J Mater Sci, 1990, 25:5081-5090.
    Afanasyeva N I, Jawhari T, Klimenko I V, et al. Micro-Raman spectroscopic measurements on carbon fibers[J]. Vib Spectrosc, 1996, 11:79-83.
    Zhou Y R, Han, X, Hu, X Y, et al. Evolution of the structural orientation in polyacrylonitrile precursors during stabilization revealed by in-situ synchrotron wide-angle X-ray diffraction and polarized infrared spectroscopy[J].High Perform Polym, 2017, 29, (10):1158-1164.
    Huang Y, Young R J. Effect of fiber microstructure upon the modulus of PAN-and Pitch-based carbon fibers[J]. Carbon, 1995, 33(2):97-107.
    Mildred S D, Ado J, Mario H, et al. Perspectives on carbon nanotubes and graphene Raman spectroscopy[J]. Nano Letter, 2010, 10:751-758.
    Luo Z Q, Yu T, Ni Z H, et al. Electronic structures and structural evolution of hydrogenated graphene probed by Raman spectroscopy[J]. J Phys Chem, 2011, 115:1422-1427.
    Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information[J]. Carbon, 2005,43:1731-1742.
    Ribeiro-Soares J, Cancado L G, Falcão N P S, et,al. The use of Raman spectroscopy to characterize the carbon materials found in Amazonian anthrosoils[J]. J Raman Spectrosc, 2013, 44:283-289.
    Afanasyeva N I, Jawhari T, Klimenko I V, et al. Micro-Raman spectroscopic measurements on carbon fibers[J]. Vibrational Spectroscopy,1996, 11(1):79-83.
    Kinight D S, White W B. Characterization of diamond films by Raman spectroscopy[J]. J Mater Res, 1989, 4:385-389.
    Gao A J, Su C J, Luo S, et al. Densification mechanism of polyacrylonitrile-based carbon fiber during heat treatment[J]. J Phys Chem Solids, 2011, 72:1159-1164.
    Johnson D J. Structure-property relationships in carbon fibres[J]. J Phys D:Appl Phys, 1987, 20(3):286-291.
    Baldan M R, Almeida E C, Azevedo A F, et al. Raman validity for crystallite size La determination on reticulated vitreous carbon with different graphitization index[J]. Appl Surf Sci,2007, 254:600-603.
    Cancado L G, Takai K, Enoki T, et al. Measuring the degree of stacking order in graphite by Raman spectroscopy[J]. Carbon, 2008, 46:272-275.
    Dieter L, Oskar P, Rennhofer H, et al. Skin-core structure and bimodal Weibull distribution of the strength of carbon fibers[J]. Carbon, 2007,45:2801-2805.
    Deurbergue A, Oberlin A. TEM study of some recent high modulus pan-based carbon fibers[J]. Carbon,1992,30(7):981-987.
    Liu F J, Wang H J, Xue L B, et al. Effect of microstructure on the mechanical properties of PAN-based carbon fibers during high-temperature graphitization[J].J Mater Sci, 2008, 43:4316-4322.
  • 加载中
图(1)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  116
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-27
  • 修回日期:  2020-04-29
  • 刊出日期:  2020-06-28

目录

    /

    返回文章
    返回