留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MoS2/石墨烯/泡沫炭复合材料的析氢性能

李文 陈俊伟 肖宗梁 邢静波 杨晨 漆小鹏

李文, 陈俊伟, 肖宗梁, 邢静波, 杨晨, 漆小鹏. MoS2/石墨烯/泡沫炭复合材料的析氢性能. 新型炭材料, 2020, 35(5): 540-546. doi: 10.1016/S1872-5805(20)60507-8
引用本文: 李文, 陈俊伟, 肖宗梁, 邢静波, 杨晨, 漆小鹏. MoS2/石墨烯/泡沫炭复合材料的析氢性能. 新型炭材料, 2020, 35(5): 540-546. doi: 10.1016/S1872-5805(20)60507-8
LI Wen, CHEN Jun-wei, XIAO Zong-liang, XING Jing-bo, YANG Chen, QI Xiao-peng. MoS2/graphene/carbonized melamine foam composite catalysts for the hydrogen evolution reaction. New Carbon Mater., 2020, 35(5): 540-546. doi: 10.1016/S1872-5805(20)60507-8
Citation: LI Wen, CHEN Jun-wei, XIAO Zong-liang, XING Jing-bo, YANG Chen, QI Xiao-peng. MoS2/graphene/carbonized melamine foam composite catalysts for the hydrogen evolution reaction. New Carbon Mater., 2020, 35(5): 540-546. doi: 10.1016/S1872-5805(20)60507-8

MoS2/石墨烯/泡沫炭复合材料的析氢性能

doi: 10.1016/S1872-5805(20)60507-8
基金项目: 江西省教育厅重点基金资助项目(GJJ180425).
详细信息
    作者简介:

    李文,硕士生.E-mail:liwen199321@Outlook.com

    通讯作者:

    漆小鹏,副教授.E-mail:qxpai@163.com

  • 中图分类号: O643.3

MoS2/graphene/carbonized melamine foam composite catalysts for the hydrogen evolution reaction

Funds: Educational Commission of Jiangxi Province of China (GJJ180425).
  • 摘要: 以包覆石墨烯的炭化三聚氰胺泡沫作为支撑,通过水热法在三维泡沫炭上原位生长二硫化钼(MoS2)纳米片,合成出一系列的MoS2/石墨烯/泡沫炭复合材料。经XRD和TEM表征,拥有三维网络结构的炭基骨架被厚度为15~20 nm的MoS2纳米片均匀包裹。石墨烯包覆量对析氢性能影响很大,包覆浓度25 mg L-1的R-&CMMS-25析氢性能最佳,在10 mA cm-2电流密度下过电位为163 mV,相应的塔菲尔斜率为76 mV dec-1,相比之前未包覆石墨烯的复合材料,析氢性能得到了很大提升。通过阻抗谱间接表征材料的电子迁移效率,可以看出R&CMMS-25的阻抗值最低,这表明包覆适量还原氧化石墨烯能够加速电子迁移效率并进一步提升析氢性能。
  • Wang J, Xu F, Jin H, et al. Non-noble metal-based carbon composites in hydrogen evolution reaction:Fundamentals to applications[J]. Advanced Materials, 2017, 29(14):459-468.
    Wang F M, Chen J W, Qi X P, et al. Increased nucleation sites in nickel foam for the synthesis of MoP@Ni3P/NF nanosheets for bifunctional water splitting[J]. Applied Surface Science, 2019, 481:1403-1411.
    Anjum M R, Jeong H Y, Lee M H, et al. Efficient hydrogen evolution reaction catalysis in alkaline media by all-in-one MoS2 with multifunctional active sites[J]. Advanced Materials, 2018, 30(20):1-9.
    Zhang Z X, Lv R T, Huang Z H, et al. Application of carbon based materials in electrocatalytic hydrogen evolution[J]. New Carbon Materials, 2019, 34(02):9-25.
    Zuo P, Jiang L, Li X, et al. Metal (Ag, Pt)-MoS2 hybrids greenly prepared through photochemical reduction of femtosecond laser pulses for SERS and HER[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6):7704-7714.
    Zhu H, Gao G, Du M, et al. Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis[J]. Advanced Materials, 2018, 30(26):e1707301.
    Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3):147-150.
    Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7):497-501.
    Li W, Qi X P, Yang H, et al. MoS2 in-situ growth on melamine foam for hydrogen evolution[J]. Functional Materials Letters, 2019:1950044.
    Lukowski M A, Daniel A S, Meng F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. Journal of the American Chemical Society, 2013, 135(28):10274-7.
    Gopalakrishnan D, Damien D, Shaijumon M M. MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets[J]. ACS Nano, 2014, 8(5):5297-5303.
    Zheng P, Zhou W, Wang Y B, et al. N-doped graphene-wrapped TiO2 nanotubes with stable surface Ti3+ for visible-light photocatalysis[J]. Applied Surface Science, 2020, 512:144549.
    Lee J E, Jung J, Ko T Y, et al. Catalytic synergy effect of MoS2/reduced graphene oxide hybrids for a highly efficient hydrogen evolution reaction[J]. RSC Advances, 2017, 7(9):5480-5487.
    Yin X, Yan Y, Miao M, et al. Quasi-emulsion confined synthesis of edge-rich ultrathin MoS2 nanosheets/graphene hybrid for enhanced hydrogen evolution[J]. Chemistry, 2018, 24(3):556-560.
    Wang G, Zhang J, Yang S, et al. Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage[J]. Advanced Energy Materials, 2018, 8(8):345-355.
    Liu G, Robertson A W, Li M M, et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction[J]. Nature Chemistry, 2017, 9(8):810-816.
    Tan H, Wang C, Hu W, et al. Reversible tuning of the ferromagnetic behavior in Mn-doped MoS2 nanosheets via interface charge transfer[J]. ACS Appllied Materials & Interfaces, 2018, 10(37):31648-31654.
    Zhu Z, Yin H, He C T, et al. Ultrathin transition metal dichalcogenide/3d metal hydroxide hybridized nanosheets to enhance hydrogen evolution activity[J]. Advanced Materials, 2018, 30(28):e1801171.
    Chen J W, Wang F M, Qi X P, et al. A simple strategy to construct cobalt oxide-based high-efficiency electrocatalysts with oxygen vacancies and heterojunctions[J]. Electrochimica Acta, 2019, 326:134979.
    Zhang S, Hu R, Dai P, et al. Synthesis of rambutan-like MoS2/mesoporous carbon spheres nanocomposites with excellent performance for supercapacitors[J]. Applied Surface Science, 2017, 396:994-999.
    Conley H J, Wang B, Ziegler J I, et al. Bandgap engineering of strained monolayer and bilayer MoS2[J]. Nano Letter, 2013, 13(8):3626-3630.
  • 加载中
图(1)
计量
  • 文章访问数:  535
  • HTML全文浏览量:  201
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-25
  • 修回日期:  2020-05-12
  • 刊出日期:  2020-10-28

目录

    /

    返回文章
    返回