留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铋基金属有机骨架合成多孔炭负载Bi2O3/Bi三元可见光催化剂用于高效去除水中有机污染物

宋驰 王林洁 孙思邈 吴颖 徐立杰 甘露

宋驰, 王林洁, 孙思邈, 吴颖, 徐立杰, 甘露. 铋基金属有机骨架合成多孔炭负载Bi2O3/Bi三元可见光催化剂用于高效去除水中有机污染物. 新型炭材料, 2020, 35(5): 609-618. doi: 10.1016/S1872-5805(20)60513-3
引用本文: 宋驰, 王林洁, 孙思邈, 吴颖, 徐立杰, 甘露. 铋基金属有机骨架合成多孔炭负载Bi2O3/Bi三元可见光催化剂用于高效去除水中有机污染物. 新型炭材料, 2020, 35(5): 609-618. doi: 10.1016/S1872-5805(20)60513-3
SONG Chi, WANG Lin-jie, SUN Si-miao, WU Ying, XU Li-jie, GAN Lu. Preparation of visible-light photocatalysts of Bi2O3/Bi embedded in porous carbon from Bi-based metal organic frameworks for highly efficient Rhodamine B removal from water. New Carbon Mater., 2020, 35(5): 609-618. doi: 10.1016/S1872-5805(20)60513-3
Citation: SONG Chi, WANG Lin-jie, SUN Si-miao, WU Ying, XU Li-jie, GAN Lu. Preparation of visible-light photocatalysts of Bi2O3/Bi embedded in porous carbon from Bi-based metal organic frameworks for highly efficient Rhodamine B removal from water. New Carbon Mater., 2020, 35(5): 609-618. doi: 10.1016/S1872-5805(20)60513-3

铋基金属有机骨架合成多孔炭负载Bi2O3/Bi三元可见光催化剂用于高效去除水中有机污染物

doi: 10.1016/S1872-5805(20)60513-3
基金项目: 国家自然科学基金(51708297);中国博士后基金(2019M661856);江苏省青蓝工程(2020).
详细信息
    通讯作者:

    甘露,副教授.E-mail:ganlu@njfu.edu.cn

  • 中图分类号: O643

Preparation of visible-light photocatalysts of Bi2O3/Bi embedded in porous carbon from Bi-based metal organic frameworks for highly efficient Rhodamine B removal from water

Funds: Natural Science Foundation of China (51708297), China Postdoctoral Science Foundation (2019M661856), Qing Lan Project of Jiangsu (2020).
  • 摘要: 利用高温碳化铋基金属有机骨架CAU-17(Bi)得到一系列不同炭化温度的多孔炭负载Bi2O3/Bi三元可见光催化材料(Bi2O3/Bi/PC),并对材料进行了详细的鉴定和表征。随后,通过在可见光下降解水中罗丹明B染料研究材料的光催化性能。结果表明,通过改变炭化温度可以调节三元光催化材料中的Bi2O3与Bi的比例。在炭化温度为800℃时,Bi2O3/Bi/PC表现出最高的光催化活性。同时,在降解罗丹明B的过程中,材料的3个组分表现出良好的协同效应,并且光催化材料在较宽的pH范围内均表现出良好的光催化活性。在光催化过程中,空穴和超氧自由基作为主要的活性物种主导污染物的降解。本研究通过高温炭化将金属有机骨架直接转化为三元光催化材料,为可用于高效降解水中有机污染物的可见光催化材料的设计与合成提供了新思路。
  • Chen M J, Chu W, Beiyuan J Z, et al. Enhancement of UV-assisted TiO2 degradation of ibuprofen using Fenton hybrid process at circumneutral pH[J]. Chinese Journal of Catalysis, 2018, 39:701-709.
    孟亮, 孙阳, 公晗, 等. 石墨烯基材料应用于水污染物治理领域的研究进展[J]. 新型炭材料, 2019, 34:220-237. (Meng L, Sun Y, Gong H, et al. Research progress of the application of graphene-based materials in the treatment of water pollutants[J]. New Carbon Materials, 2019, 34:220-237.)
    Zheng P, Zhou W, Wang Y B, et al. N-doped graphene-wrapped TiO2 nanotubes with stable surface Ti3+ for visible-light photocatalysis[J]. Applied Surface Science, 2020, 512:144549.
    钟永科, 周斌, 张成江, 等. 活性炭表面含氧官能团对TiO2/AC的吸附和光催化活性的影响[J]. 新型炭材料, 2017, 32:460-466. (Zhong Y K, Zhou B, Zhang C J, et al. Effects of surface oxygen functional groups on activated carbon on the adsorption and photocatalytic degradation activities of a TiO2-AC hybrid for methylene blue and methylene orange[J]. New Carbon Materials, 2017, 32:460-466.)
    甘露, 徐立杰, 钱堃, 等. 水热法原位合成磁性BiFeO3-石墨烯杂化材料及其光催化性能[J]. 新型炭材料, 2018, 33:221-228. (Gan L, Xu L J, Qian K, et al. Hydrothermal synthesis of magnetic graphene-BiFeO3 hybrids and their photocatalytic properties[J]. New Carbon Materials, 2018, 33:221-228.)
    Geng A B, Meng L, Han J Q, et al. Highly efficient visible-light photocatalyst based on cellulose derived carbon nanofiber/BiOBr composites[J]. Cellulose, 2018, 25:4133-4144..
    Zhang L P, Ghimire P, Phuriragpitikhon J, et al. Facile formation of metallic bismuth/bismuth oxide heterojunction on porous carbon with enhanced photocatalytic activity[J]. Journal of Colloid and Interface Science, 2018, 513:82-91.
    Chen M J, Yao J, Huang Y, et al. Enhanced photocatalytic degradation of ciprofloxacin over Bi2O3/(BiO)2CO3 heterojunctions:Efficiency, kinetics, pathways, mechanisms and toxicity evaluation[J]. Chemical Engineering Journal, 2018, 334:453-461.
    Liu H, Luo M, Hu J C, et al. β-Bi2O3 and Er3+ doped β-Bi2O3 single crystalline nanosheets with exposed reactive {001} facets and enhanced photocatalytic performance[J]. Applied Catalysis B:Environmental, 2013, 140-141:141-150.
    Xiao X, Hu R P, Liu C, et al. Facile large-scale synthesis of β-Bi2O3 nanospheres as a highly efficient photocatalyst for the degradation of acetaminophen under visible light irradiation[J]. Applied Catalysis B:Environmental, 2013, 140-141:433-443.
    Gan L, Geng A B, Xu L J, et al. The fabrication of bio-renewable and recyclable cellulose based carbon microspheres incorporated by CoFe2O4 and the photocatalytic properties[J]. Journal of Cleaner Production, 2018, 196:594-603.
    Qiu J H, Zhang X G, Feng Y, et al. Modified metal-organic frameworks as photocatalysts[J]. Applied Catalysis B:Environmental, 2018, 231:317-342.
    Wang L J, Tang P H, Liu J, et al. Multifunctional ZnO-porous carbon composites derived from MOF-74(Zn) with ultrafast pollutant adsorption capacity and supercapacitance properties[J]. Journal of Colloid and Interface Science, 2019, 554:260-268.
    Zhang L M, Yan B, Zhang J H, et al. Design and self-assembly of metal-organic framework-derived porous Co3O4 hierarchical structures for lithium-ion batteries[J]. Ceramics International, 2016, 42:5160-5170.
    Wang G Z, Liu Y Y, Huang B B, et al. A novel metal-organic framework based on bismuth and trimesic acid:synthesis, structure and properties[J]. Dalton Transactions, 2015, 44:16238-16241.
    Xu B T, Ahmed M B, Zhou J L, et al. Graphitic carbon nitride based nanocomposites for the photocatalysis of organic contaminants under visible irradiation:Progress, limitations and future directions[J]. Science of the Total Environment, 2018, 633:546-559.
    Jiang H Y, Li P, Liu G, et al. Synthesis and photocatalytic properties of metastable β-Bi2O3 stabilized by surface-coordination effects[J]. Journal of Materials Chemistry A, 2015, 3:5119-5125.
    Li M, Xu G H, Guan Z H, et al. Synthesis of Ag/BiVO4/rGO composite with enhanced photocatalytic degradation of triclosan[J]. Science of the Total Environment, 2019, 664:230-239.
    Li M R, Song C, Wu Y, et al. Novel Z-scheme visible-light photocatalyst based on CoFe2O4/BiOBr/Graphene composites for organic dye degradation and Cr(VI) reduction[J]. Applied Surface Science, 2019, 478:744-753.
    Xu L J, Wang Y, D Liu J, et al. High-efficient visible-light photocatalyst based on graphene incorporated Ag3PO4 nanocomposite applicable for the degradation of a wide variety of dyes[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 340:70-79.
    Xu C, Yuan R S, Wang X. Selective reduction of graphene oxide[J]. New Carbon Materials, 2014, 29:61-66..
    Tran-Phu T, Daiyan R, Fusco Z, et al. Nanostructured β-Bi2O3 fractals on carbon fibers for highly selective CO2 electroreduction to formate[J]. Advanced Functional Materials, 2020, 30:1906478.
    Ganesan A, Shaijumon M M. Activated graphene-derived porous carbon with exceptional gas adsorption properties[J]. Microporous and Mesoporous Materials, 2016, 220:21-27.
    Wang J, Wang M, Xiong J R, et al. Enhanced photocatalytic activity of a TiO2/graphene composite by improving the reduction degree of graphene. New Carbon Materials, 2015, 30:357-363.
    Hao Q, Wang R T, Lu H J, et al. One-pot synthesis of C/Bi/Bi2O3 composite with enhanced photocatalytic activity[J]. Applied Catalysis B:Environmental, 2017, 219:63-72.
    Wu C H, Lin J T, Lin K Y A. Magnetic cobaltic nanoparticle-anchored carbon nanocomposite derived from cobalt-dipicolinic acid coordination polymer:An enhanced catalyst for environmental oxidative and reductive reactions[J]. Journal of Colloid and Interface Science, 2018, 517:124-133.
    Zhao Z Y, Sun S J, Wu D, et al. Synthesis and characterization of sucrose and ammonium dihydrogen phosphate (SADP) adhesive for plywood[J]. Polymers, 2019, 11:1909.
    Shafawi A N, Mahmud R A, Ahmed Ali K, et al. Bi2O3 particles decorated on porous g-C3N4 sheets:Enhanced photocatalytic activity through a direct Z-scheme mechanism for degradation of Reactive Black 5 under UV-vis light[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2020, 389:112289.
    Xu L J, Meng L, Zhang X M, et al. Promoting Fe3+/Fe2+ cycling under visible light by synergistic interactions between P25 and small amount of Fenton reagents[J]. Journal of Hazardous Materrials, 2019, 379:120795.
  • 加载中
图(1)
计量
  • 文章访问数:  784
  • HTML全文浏览量:  326
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-13
  • 修回日期:  2020-04-02
  • 刊出日期:  2020-10-28

目录

    /

    返回文章
    返回