留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Salt-assisted in-situ formation of N-doped porous carbons for boosting K+ storage capacity and cycling stability

ZHANG Wen-zhe WANG Huan-lei LIAO Ran-xia WEI Wen-rui LI Xue-chun LIU Shuai HUANG Ming-hua SHI Zhi-cheng SHI Jing

张文哲, 王焕磊, 廖冉霞, 魏文瑞, 李雪纯, 刘帅, 黄明华, 史志成, 时婧. 盐辅助原位制备氮掺杂多孔炭提高储钾容量和循环稳定性. 新型炭材料, 2021, 36(1): 167-178. doi: 10.1016/S1872-5805(21)60011-2
引用本文: 张文哲, 王焕磊, 廖冉霞, 魏文瑞, 李雪纯, 刘帅, 黄明华, 史志成, 时婧. 盐辅助原位制备氮掺杂多孔炭提高储钾容量和循环稳定性. 新型炭材料, 2021, 36(1): 167-178. doi: 10.1016/S1872-5805(21)60011-2
ZHANG Wen-zhe, WANG Huan-lei, LIAO Ran-xia, WEI Wen-rui, LI Xue-chun, LIU Shuai, HUANG Ming-hua, SHI Zhi-cheng, SHI Jing. Salt-assisted in-situ formation of N-doped porous carbons for boosting K+ storage capacity and cycling stability. New Carbon Mater., 2021, 36(1): 167-178. doi: 10.1016/S1872-5805(21)60011-2
Citation: ZHANG Wen-zhe, WANG Huan-lei, LIAO Ran-xia, WEI Wen-rui, LI Xue-chun, LIU Shuai, HUANG Ming-hua, SHI Zhi-cheng, SHI Jing. Salt-assisted in-situ formation of N-doped porous carbons for boosting K+ storage capacity and cycling stability. New Carbon Mater., 2021, 36(1): 167-178. doi: 10.1016/S1872-5805(21)60011-2

盐辅助原位制备氮掺杂多孔炭提高储钾容量和循环稳定性

doi: 10.1016/S1872-5805(21)60011-2
详细信息
  • 中图分类号: TQ127.1+1

Salt-assisted in-situ formation of N-doped porous carbons for boosting K+ storage capacity and cycling stability

Funds: The authors would like to offer special thanks to Qingdao City Programs for Science and Technology Plan Projects (19-6-2-77-cg); Shandong Provincial Key R&D Plan and the Public Welfare Special Program, China (2019GGX102038); Fundamental Research Funds for the Central Universities (No. 201822008 and 201941010); the Shandong Provincial Natural Science Foundation, China (ZR2020ME038); National Natural Science Foundation of China (21471139, 21775142)
More Information
  • 摘要: 钾离子电池因其较高的能量密度和丰富的钾资源,具有成为大规模储能设备的潜力。但钾离子的半径较大引起的可逆容量低和循环稳定性等问题限制了钾离子电池的实际应用。在本项工作中,我们将前驱体细菌纤维素浸泡在作为造孔剂和掺杂剂的Mg(NO3)2溶液中,经炭化和酸洗处理后,制备出氮掺杂细菌纤维素基炭材料(NBCC)。该材料有相互连接的多孔网络结构、均匀的N元素分布(原子占比3.38%)以及高表面积等特点 (1355 m2 g−1)。同时,探究了Mg(NO3)2溶液浓度对材料形貌、孔隙率、N掺杂量和电化学性能的影响。经过性能优化,NBCC作为钾离子电池负极在5 A g−1的大电流密度下,可逆容量可达134 mAh g−1;在2 A g−1的电流密度下,循环2 500圈后,比容量仍保持为307 mAh g−1。以NBCC作为负极组装的钾离子混合电容器,在能量密度为166 Wh kg−1时,具有493 W kg−1的功率密度,循环2 000圈后仍具有95%的容量保持率,证明了该材料具有很强的实际应用潜力。本工作通过简便的合成方法制备的炭负极材料表现出良好的电化学性能,有望促进绿色、大规模储能设备的发展。
  • Figure  1.  (a) Schematic illustration of the synthetic process for NBCC carbon, (b) SEM image of BCC, (c) SEM image of NBCC, (d) TEM image of NBCC, (e) and (f) HRTEM images of NBCC and (g) STEM image and the corresponding EDS mappings.

    Figure  2.  (a) XRD patterns, (b) Raman spectra, (c) Nitrogen adsorption-desorption isotherms curves with the inset of showing mesopore size distributions of BCC and NBCC and (d-f) High-resolution XPS spectra of C 1s, N 1s, O 1s for BCC and NBCC.

    Figure  3.  Electrochemical performance of BCC and NBCC as PIBs anodes in half cells. (a) CV curves at a scan rate of 0.1 mV s−1, (b) Galvanostatic discharge-charge profiles of NBCC at 0.05 A g−1, (c) Rate capability, (d) Comparison of the rate performance between our NBCC electrode and other carbonaceous electrodes, (e) Long cycling performance at 2.0 A g−1, (f) Nyquist plots before and after different cycles, (g) CV curves at different scan rates and fitted lines betweentins log(i) and log(v) of NBCC, (h) Contribution ratio of the capacitive- and diffusion-controlled processes at various scan rates of NBCC and (i) Diffusion coefficients calculated from the GITT profiles during the second potassiation/depotassiation cycle.

    Figure  4.  (a) Schematic diagram of a NBCC//NPC PIHC device, (b) CV curves of the NBCC//NPC PIHC tested from 5 to 100 mV s−1 and (c) Ragone plots of the NBCC//NPC PIHC compared with other reported PIHCs.

    Table  1.   Textural properties and surface chemistry of BCC, NBCC, NBCC-L and NBCC-H.

    SampleTextural PropertiesSurface ChemistryID/IG
    SBETVtotalPore volume (%)CNO
    m2·g−1cm3·g−1V<2 nmV>2 nmat%at%at%
    BCC8900.744.056.096.35-3.651.84
    NBCC-L10251.143.956.194.212.053.741.90
    NBCC13552.123.876.291.453.884.672.24
    NBCC-H9901.516.283.890.153.016.842.73
    下载: 导出CSV
  • [1] Tarascon J M. Is lithium the new gold?[J]. Nature Chemistry,2010,2(6):510. doi: 10.1038/nchem.680
    [2] Pan X, Liu Y, Wang X, et al. Sulfidation of iron confined in nitrogen-doped carbon nanotubes to prepare novel anode materials for lithium-ion batteries[J]. New Carbon Materials, 2018, 33(6): 544-553.
    [3] Tian M, Wang W, Liu Y, et al. A three-dimensional carbon nano-network for high performance lithium-ion batteries[J]. Nano Energy,2015,11:500-509. doi: 10.1016/j.nanoen.2014.11.006
    [4] Jian Z, Luo W, Ji X. Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society,2015,137(36):11566-11569. doi: 10.1021/jacs.5b06809
    [5] Lei Y, Han D, Qin L, et al. Research progress on carbon anode materials in potassium-ion batteries[J]. New Carbon Materials, 2019, 34(6): 499-511.
    [6] Liu Y, Tai Z, Zhang J, et al. Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation[J]. Nature Communications,2018,9(1):36-45. doi: 10.1038/s41467-017-02440-0
    [7] Xie Y, Chen Y, Liu L, et al. Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications[J]. Advanced Materials,2017,29(35):1702268. doi: 10.1002/adma.201702268
    [8] Komaba S, Hasegawa T, Dahbi M, et al. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors[J]. Electrochemistry Communications,2015,60:172-175. doi: 10.1016/j.elecom.2015.09.002
    [9] Pramudita J C, Sehrawat D, Goonetilleke D, et al. An initial review of the status of electrode materials for potassium-ion batteries[J]. Advanced Energy Materials,2017,7(24):21.
    [10] Wu X, Chen Y, Xing Z, et al. Advanced carbon-based anodes for potassium-ion batteries[J]. Advanced Energy Materials,2019,9(21):1900343. doi: 10.1002/aenm.201900343
    [11] Wu M, Li L, Liu J, et al. Template-free preparation of mesoporous carbon from rice husks for use in supercapacitors[J]. New Carbon Materials, 2015, 30(5): 471-475.
    [12] Zhao Y, Ren X, Xing Z, et al. In situ formation of hierarchical bismuth nanodots/graphene nanoarchitectures for ultrahigh-rate and durable potassium-ion storage[J]. Small,2020,16(2):1905789. doi: 10.1002/smll.201905789
    [13] An Y, Fei H, Zeng G, et al. Commercial expanded graphite as a low–cost, long-cycling life anode for potassium–ion batteries with conventional carbonate electrolyte[J]. Journal of Power Sources,2018,378:66-72. doi: 10.1016/j.jpowsour.2017.12.033
    [14] Qian Y, Jiang S, Li Y, et al. Understanding mesopore volume-enhanced extra-capacity: Optimizing mesoporous carbon for high-rate and long-life potassium-storage[J]. Energy Storage Materials,2020,29:341-349. doi: 10.1016/j.ensm.2020.04.026
    [15] Li J, Li Y, Ma X, et al. A honeycomb-like nitrogen-doped carbon as high-performance anode for potassium-ion batteries[J]. Chemical Engineering Journal,2020,29:341-349.
    [16] Wang K, Li N, Sun L, et al. Free-standing N-doped carbon nanotube films with tunable defects as a high capacity anode for potassium-ion batteries[J]. ACS Applied Materials & Interfaces,2020,12(33):37506-37514.
    [17] Tao L, Yang Y, Wang H, et al. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms[J]. Energy Storage Materials,2020,27:212-225. doi: 10.1016/j.ensm.2020.02.004
    [18] Zhang W, Ming J, Zhao W, et al. Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes[J]. Advanced Functional Materials,2019,29(35):1903641. doi: 10.1002/adfm.201903641
    [19] Zhu Y, Wang Y, Gao C, et al. CoMoO4-N-doped carbon hybrid nanoparticles loaded on a petroleum asphalt-based porous carbon for lithium storage[J]. New Carbon Materials, 2020, 35(4): 358-370.
    [20] Su F, Poh C K, Chen J S, et al. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties[J]. Energy & Environmental Science,2011,4(3):717-724.
    [21] Ferrero G A, Preuss K, Marinovic A, et al. Fe-N-doped carbon capsules with outstanding electrochemical performance and stability for the oxygen reduction reaction in both acid and alkaline conditions[J]. ACS Nano,2016,10(6):5922-5932. doi: 10.1021/acsnano.6b01247
    [22] Yang W, Zhou J, Wang S, et al. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage[J]. Energy & Environmental Science,2019,12(5):1605-1612.
    [23] Wu Z Y, Liang H W, Chen L F, et al. Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials[J]. Accounts of Chemical Research,2016,49(1):96-105. doi: 10.1021/acs.accounts.5b00380
    [24] Cao J, Zhu C, Aoki Y, et al. Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2018,6(6):7292-7303.
    [25] Qi Y, Lu Y, Liu L, et al. Retarding graphitization of soft carbon precursor: From fusion-state to solid-state carbonization[J]. Energy Storage Materials,2020,26:577-584. doi: 10.1016/j.ensm.2019.11.031
    [26] Xu S, Wang G, Biswal B P, et al. A nitrogen-rich 2D sp2 -carbon-linked conjugated polymer framework as a high-performance cathode for lithium-ion batteries[J]. Angewandte Chemie International Edition,2019,58(3):849-853. doi: 10.1002/anie.201812685
    [27] Sun N, Guan Z, Liu Y, et al. Extended “adsorption–insertion” model: a new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials,2019,9(32):1901351. doi: 10.1002/aenm.201901351
    [28] Wu T, Ding Z, Jing M, et al. Chem-bonding and phys-trapping Se electrode for long-life rechargeable batteries[J]. Advanced Functional Materials,2019,29(9):1809014. doi: 10.1002/adfm.201809014
    [29] Chen M, Wang W, Liang X, et al. Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries[J]. Advanced Energy Materials,2018,8(19):1800171. doi: 10.1002/aenm.201800171
    [30] Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology,2013,8(4):235-246. doi: 10.1038/nnano.2013.46
    [31] Li Z, Dong Y, Feng J, et al. Controllably enriched oxygen vacancies through polymer assistance in titanium pyrophosphate as a super anode for Na/K-ion batteries[J]. ACS Nano,2019,13(8):9227-9236. doi: 10.1021/acsnano.9b03686
    [32] Duan B, Gao X, Yao X, et al. Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors[J]. Nano Energy,2016,27:482-491. doi: 10.1016/j.nanoen.2016.07.034
    [33] Cui R C, Xu B, Dong H J, et al. N/O dual-doped environment-friendly hard carbon as advanced anode for potassium-ion batteries[J]. Advanced Science,2020,7(5):1902547. doi: 10.1002/advs.201902547
    [34] Li Y, Hu Y S, Titirici M M, et al. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries[J]. Advanced Energy Materials,2016,6(18):1600659. doi: 10.1002/aenm.201600659
    [35] Hong W, Zhang Y, Yang L, et al. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage[J]. Nano Energy,2019,65:104038. doi: 10.1016/j.nanoen.2019.104038
    [36] Zhang H, He H, Luan J, et al. Adjusting the yolk–shell structure of carbon spheres to boost the capacitive K+ storage ability[J]. Journal of Materials Chemistry A,2018,6(46):23318-23325. doi: 10.1039/C8TA07438K
    [37] Zhang S, Xu Z, Duan H, et al. N-doped carbon nanofibers with internal cross-linked multiple pores for both ultra-long cycling life and high capacity in highly durable K-ion battery anodes[J]. Electrochimica Acta,2020,337:135767. doi: 10.1016/j.electacta.2020.135767
    [38] Liu P, Mitlin D. Emerging potassium metal anodes: Perspectives on control of the electrochemical interfaces[J]. Accounts of Chemical Research,2020,53(6):1161-1175. doi: 10.1021/acs.accounts.0c00099
    [39] Qian Y, Jiang S, Li Y, et al. Water-induced growth of a highly oriented mesoporous graphitic carbon nanospring for fast potassium-ion adsorption/intercalation storage[J]. Angewandte Chemie International Edition,2019,58(50):18108-18115. doi: 10.1002/anie.201912287
    [40] Alvin S, Cahyadi H S, Hwang J, et al. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon[J]. Advanced Energy Materials,2020,10:2000283. doi: 10.1002/aenm.202000283
    [41] Sun Y, Wang H, Wei W, et al. Sulfur-rich graphene nanoboxes with ultra-high potassiation capacity at fast charge: storage mechanisms and device performance[J]. ACS Nano, 2020, DOI: 10.1021/acsnano.0c09290.
    [42] Liu Q, Han F, Zhou J, et al. Boosting the potassium-ion storage performance in soft carbon anodes by the synergistic effect of optimized molten salt medium and N/S dual-doping[J]. ACS Applied Materials & Interfaces,2020,12(18):20838-20848.
    [43] Zhang H, Luo C, He H, et al. Nano-size porous carbon spheres as a high-capacity anode with high initial coulombic efficiency for potassium-ion batteries[J]. Nanoscale Horizons,2020,5(5):895-903. doi: 10.1039/D0NH00018C
    [44] Zhang Z, Jia B, Liu L, et al. Hollow multihole carbon bowls: a stress-release structure design for high-stability and high-volumetric-capacity potassium-ion batteries[J]. ACS Nano,2019,13(10):11363-11371. doi: 10.1021/acsnano.9b04728
    [45] Li H, Cheng Z, Zhang Q, et al. Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries[J]. Nano Letters,2018,18(11):7407-7413. doi: 10.1021/acs.nanolett.8b03845
    [46] Liu F, Meng J, Xia F, et al. Origin of the extra capacity in nitrogen-doped porous carbon nanofibers for high-performance potassium ion batteries[J]. Journal of Materials Chemistry A,2020,8(35):18079-18086. doi: 10.1039/D0TA05626J
    [47] Qin J, Hirbod M K S, He C, et al. A hybrid energy storage mechanism of carbonous anodes harvesting superior rate capability and long cycle life for sodium/potassium storage[J]. Journal of Materials Chemistry A,2019,7(8):3673-3681. doi: 10.1039/C8TA12040D
    [48] Le T, Tian H, Cheng J, et al. High performance lithium-ion capacitors based on scalable surface carved multi-hierarchical construction electrospun carbon fibers[J]. Carbon,2018,138:325-336. doi: 10.1016/j.carbon.2018.06.015
    [49] Liu H, Liu X, Wang H, et al. High-performance sodium-ion capacitor constructed by well-matched dual-carbon electrodes from a single biomass[J]. ACS Sustainable Chemistry & Engineering,2019,7:12188-12199.
    [50] Wang Y, Wang Z, Chen Y, et al. Hyperporous sponge interconnected by hierarchical carbon nanotubes as a high-performance potassium-ion battery anode[J]. Advanced Materials,2018,30(32):1802074. doi: 10.1002/adma.201802074
    [51] Shan B, Cui Y, Liu W, et al. Fibrous bio-carbon foams: a new material for lithium-ion hybrid supercapacitors with ultrahigh integrated energy/power density and ultralong cycle life[J]. ACS Sustainable Chemistry & Engineering,2018,6(11):14989-15000.
    [52] Cao B, Zhang Q, Liu H, et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries[J]. Advanced Energy Materials,2018,8(25):1801149. doi: 10.1002/aenm.201801149
    [53] Xu Y, Zhu Y, Liu Y, et al. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and -lithium-ion batteries[J]. Advanced Energy Materials,2013,3(1):128-133. doi: 10.1002/aenm.201200346
    [54] Cui Y, Liu W, Lyu Y, et al. All-carbon lithium capacitor based on salt crystal-templated, N-doped porous carbon electrodes with superior energy storage[J]. Journal of Materials Chemistry A,2018,6(37):18276-18285. doi: 10.1039/C8TA06184J
    [55] Wang Y, Zhang Z, Wang G, et al. Ultrafine Co2P nanorods wrapped by graphene enable a long cycle life performance for a hybrid potassium-ion capacitor[J]. Nanoscale Horizons,2019,4(6):1394-1401. doi: 10.1039/C9NH00211A
    [56] Comte L A, Reynier Y, Vincens C, et al. First prototypes of hybrid potassium-ion capacitor (KIC): An innovative, cost-effective energy storage technology for transportation applications[J]. Journal of Power Sources,2017,363:34-43. doi: 10.1016/j.jpowsour.2017.07.005
    [57] Chen J, Yang B, Li H, et al. Candle soot: onion-like carbon, an advanced anode material for a potassium-ion hybrid capacitor[J]. Journal of Materials Chemistry A,2019,7(15):9247-9252. doi: 10.1039/C9TA01653H
    [58] Zhang Z, Li M, Gao Y, et al. Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors[J]. Advanced Functional Materials,2018,28(36):1802684. doi: 10.1002/adfm.201802684
    [59] Qiu D, Guan J, Li M, et al. Kinetics enhanced nitrogen‐doped hierarchical porous hollow carbon spheres boosting advanced potassium‐ion hybrid capacitors[J]. Advanced Functional Materials,2019,29(32):1903496. doi: 10.1002/adfm.201903496
    [60] Luo Y, Liu L, Lei K, et al. A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate[J]. Chemical Science,2019,10(7):2048-2052. doi: 10.1039/C8SC04489A
  • 支撑材料20200256.pdf
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  709
  • HTML全文浏览量:  361
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-23
  • 修回日期:  2021-01-04
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回