留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A three-dimensional polyoxometalate/graphene aerogel as a highly efficient and recyclable absorbent for oil/water separation

WANG Sen WANG Xiao SHI Xiao-yu MENG Cai-xia SUN Cheng-lin WU Zhong-Shuai

王森, 王潇, 师晓宇, 孟彩霞, 孙承林, 吴忠帅. 三维多金属氧酸盐/石墨烯气凝胶作为高效可回收的油水分离吸收剂. 新型炭材料, 2021, 36(1): 189-197. doi: 10.1016/S1872-5805(21)60013-6
引用本文: 王森, 王潇, 师晓宇, 孟彩霞, 孙承林, 吴忠帅. 三维多金属氧酸盐/石墨烯气凝胶作为高效可回收的油水分离吸收剂. 新型炭材料, 2021, 36(1): 189-197. doi: 10.1016/S1872-5805(21)60013-6
WANG Sen, WANG Xiao, SHI Xiao-yu, MENG Cai-xia, SUN Cheng-lin, WU Zhong-Shuai. A three-dimensional polyoxometalate/graphene aerogel as a highly efficient and recyclable absorbent for oil/water separation. New Carbon Mater., 2021, 36(1): 189-197. doi: 10.1016/S1872-5805(21)60013-6
Citation: WANG Sen, WANG Xiao, SHI Xiao-yu, MENG Cai-xia, SUN Cheng-lin, WU Zhong-Shuai. A three-dimensional polyoxometalate/graphene aerogel as a highly efficient and recyclable absorbent for oil/water separation. New Carbon Mater., 2021, 36(1): 189-197. doi: 10.1016/S1872-5805(21)60013-6

三维多金属氧酸盐/石墨烯气凝胶作为高效可回收的油水分离吸收剂

doi: 10.1016/S1872-5805(21)60013-6
详细信息
  • 中图分类号: TB33

A three-dimensional polyoxometalate/graphene aerogel as a highly efficient and recyclable absorbent for oil/water separation

Funds: This work was financially supported by the National Key R@D Program of China (Nos. 2016YFB0100100, 2016YFA0200200), the National Natural Science Foundation of China (Nos. 51872283, 22075279, 21805273, 22005297, 22005298), the Liao Ning Revitalization Talents Program (No. XLYC1807153), the Natural Science Foundation of Liaoning Province, Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (No. 20180510038), Dalian Innovation Support Plan for High Level Talents (No. 2019RT09), Dalian National Laboratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS (Nos. DNL180310, DNL180308, DNL201912, and DNL201915), DICP (Nos. DICP ZZBS201708, DICP ZZBS201802, DICP I2020032), and China Postdoctoral Science Foundation (Nos. 2019M661141, 2020M680995)
More Information
  • 摘要: 三维石墨烯气凝胶具有可调控的孔结构、大的比表面积、优异的压缩性、弹性和润湿性,是一种高效的油水分离吸附剂。然而,三维石墨烯气凝胶的制备方法通常包括高温过程,导致高成本、能耗高和耗时长。本文以磷钼酸为交联剂和促进剂,水合肼为还原剂,在室温条件下同时将氧化石墨烯还原与自组装,制备出三维多孔的多金属氧酸盐复合石墨烯气凝胶(POM-GA),并证明其是一种高效、可回收的油水分离吸收剂。研究表明,POM-GA具有三维连通的多孔结构、大的比表面积、优异的压缩性、弹性和润湿性,对不同的有机溶剂具有良好的吸附能力(100~210 g g−1),可快速去除水中的各种有机污染物,优于先前报道的大多数高温合成的石墨烯基宏观组装体。经10次吸附-挤压和吸附-挤压-燃烧循环后,POM-GA的吸油量保持率分别达到96%和90%。因此,三维POM-GA具有广泛的适用性和优异的耐用性,在高效油水分离方面具有良好的应用前景。
  • Figure  1.  Schematic illustration of the room-temperature assembly of 3D POM-GA.

    Figure  2.  Morphological and structural characterization of 3D POM-GA: (a,b) Photographs of POM-GAs (a) held by a tweezer and (b) supported on a flower, (c) SEM image, (d) nitrogen adsorption and desorption isotherms and the pore size distribution (inset), (e) TGA curve of POM-GA, (f) XRD patterns and (g) Raman spectra of POM-GA and GO.

    Figure  3.  The wettability and mechanical compressibility of 3D POM-GA: (a) photograph of 3D POM-GA under the water, (b) photograph of water and methylbenzene droplets on the surface of 3D POM-GA, (c,d) contact angles of 3D POM-GA with (c) water, and (d) methylbenzene and (e) reversible mechanical compressibility and elasticity of 3D POM-GA.

    Figure  4.  Absorption performance of 3D POM-GA: (a,b) removal of (a) methylbenzene on the water surface and (b) dichloromethane from the water bottom by 3D POM-GA, (c) adsorption capacities for various organic liquids and (d) a comparison of 3D POM-GA with various 3D porous absorbents for absorption of organic solvents.

    Figure  5.  Recyclability of 3D POM-GA: (a) recycling organic solvents from POM-GA by squeezing, and (b) recovery of 3D POM-GA via combustion, and (c,d) absorption capacity of POM-GA versus (c) absorbing-squeezing cycles, and (d) absorbing-squeezing-burning cycles.

  • [1] Yousefi N, Lu X, Elimelech M, et al. Environmental performance of graphene-based 3D macrostructures[J]. Nature Nanotechnology,2019,14(2):107-119. doi: 10.1038/s41565-018-0325-6
    [2] Meng L, Sun Y, Gong H, et al. Research progress of the application of graphene-based materials in the treatment of water pollutants[J]. New Carbon Materials,2019,34(3):220-237.
    [3] Zhou L, Xu Z. Ultralight, highly compressible, hydrophobic and anisotropic lamellar carbon aerogels from graphene/polyvinyl alcohol/cellulose nanofiber aerogel as oil removing absorbents[J]. Journal of Hazardous Materials,2020,388:121804. doi: 10.1016/j.jhazmat.2019.121804
    [4] Bi H, Yin Z, Cao X, et al. Carbon fiber aerogel made from raw cotton: A novel, efficient and recyclable sorbent for oils and organic solvents[J]. Advanced Materials,2013,25(41):5916-5921. doi: 10.1002/adma.201302435
    [5] Qin L, Liu W, Liu X, et al. A review of nano-carbon based molecularly imprinted polymer adsorbents and their adsorption mechanism[J]. New Carbon Materials,2020,35(5):459-482. doi: 10.1016/S1872-5805(20)60503-0
    [6] Yi L, Yang J, Fang X, et al. Facile fabrication of wood-inspired aerogel from chitosan for efficient removal of oil from water[J]. Journal of Hazardous Materials,2020,385:121507. doi: 10.1016/j.jhazmat.2019.121507
    [7] Chen F, Gong AS, Zhu M, et al. Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment[J]. ACS Nano,2017,11(4):4275-4282. doi: 10.1021/acsnano.7b01350
    [8] Zhu Q, Chu Y, Wang Z, et al. Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material[J]. Journal of Materials Chemistry A,2013,1(17):5386-5393. doi: 10.1039/c3ta00125c
    [9] Zhang Z, Sebe G, Rentsch D, et al. Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water[J]. Chemistry of Materials,2014,26(8):2659-2668. doi: 10.1021/cm5004164
    [10] Wang B, Wang Q, Di J, et al. Zeolite-coated anti-biofouling mesh film for efficient oil-water separation[J]. Acta Physico-Chimica Sinica,2020,36(1):1906044. doi: 10.3866/PKU.WHXB201906044
    [11] Wang X, Peng G, Chen M, et al. Reduced graphene oxide composites and its real-life application potential for in-situ crude oil removal[J]. Chemosphere,2020,249:126141. doi: 10.1016/j.chemosphere.2020.126141
    [12] Chen X, Lai D, Yuan B, et al. Tuning oxygen clusters on graphene oxide to synthesize graphene aerogels with crumpled nanosheets for effective removal of organic pollutants[J]. Carbon,2019,143:897-907. doi: 10.1016/j.carbon.2018.12.006
    [13] Zheng B, Gao C. Preparation of graphene nanoscroll/polyaniline composites and their use in high performance supercapacitors[J]. New Carbon Materials,2016,31(3):315-320. doi: 10.1016/S1872-5805(16)60015-X
    [14] Ding Y, Tian Z, Li H, et al. Efficient removal of organic dyes using a three-dimensional graphene aerogel with excellent recycling stability[J]. New Carbon Materials,2019,34(4):315-324. doi: 10.1016/S1872-5805(19)30020-4
    [15] Jiang Z, Yu F, Ma J. Design of graphene-based adsorbents and its removal of antibiotics in aqueous solution[J]. Acta Physico-Chimica Sinica,2019,35(7):709-724. doi: 10.3866/PKU.WHXB201807051
    [16] Huang H, Shi H, Das P, et al. The chemistry and promising applications of graphene and porous graphene materials[J]. Advanced Functional Materials,2020,30(41):1909035.
    [17] Hu K, Szkopek T, Cerruti M. Tuning the aggregation of graphene oxide dispersions to synthesize elastic, low density graphene aerogels[J]. Journal of Materials Chemistry A,2017,5(44):23123-23130. doi: 10.1039/C7TA07006C
    [18] Liu T, Huang M, Li X, et al. Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids[J]. Carbon,2016,100:456-464. doi: 10.1016/j.carbon.2016.01.038
    [19] Li L, Li B, Zhang J. Dopamine-mediated fabrication of ultralight graphene aerogels with low volume shrinkage[J]. Journal of Materials Chemistry A,2016,4(2):512-518. doi: 10.1039/C5TA08829A
    [20] Wang S, Wu Z S, Zheng S, et al. Scalable fabrication of photochemically reduced graphene-based monolithic micro-supercapacitors with superior energy and power densities[J]. ACS Nano,2017,11(4):4283-4291. doi: 10.1021/acsnano.7b01390
    [21] Wang S, Wang X, Sun C, et al. Room-temperature fast assembly of 3D macroscopically porous graphene frameworks for binder-free compact supercapacitors with high gravimetric and volumetric capacitances [J]. Journal of Energy Chemistry, 2021, doi: 10.1016/j.jechem.2021.01.019.
    [22] Guan H, Cheng Z, Wang X. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents[J]. ACS Nano,2018,12(10):10365-10373. doi: 10.1021/acsnano.8b05763
    [23] Ge J, Shi LA, Wang YC, et al. Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill[J]. Nature Nanotechnology,2017,12(5):434-440. doi: 10.1038/nnano.2017.33
    [24] Ji Y, Huang L, Hu J, et al. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems[J]. Energy & Environmental Science,2015,8(3):776-789.
    [25] Guillén-López A, Espinosa-Torres N D, Cuentas-Gallegos A K, et al. Understanding bond formation and its impact on the capacitive properties of SiW12 polyoxometalates adsorbed on functionalized carbon nanotubes[J]. Carbon,2018,130:623-635. doi: 10.1016/j.carbon.2018.01.043
    [26] Zhou D, Han B H. Graphene-based nanoporous materials assembled by mediation of polyoxometalate nanoparticles[J]. Advanced Functional Materials,2010,20(16):2717-2722. doi: 10.1002/adfm.200902323
    [27] Shehzad K, Xu Y, Gao C, et al. Three-dimensional macro-structures of two-dimensional nanomaterials[J]. Chemical Society Reviews,2016,45(20):5541-5588. doi: 10.1039/C6CS00218H
    [28] Keita B, Liu T, Nadjo L. Synthesis of remarkably stabilized metal nanostructures using polyoxometalates[J]. Journal of Materials Chemistry,2009,19(1):19-33. doi: 10.1039/B813303D
    [29] Hiskia A, Mylonas A, Papaconstantinou E. Comparison of the photoredox properties of polyoxometallates and semiconducting particles[J]. Chemical Society Reviews,2001,30(1):62-69. doi: 10.1039/a905675k
    [30] Liu R, Yu X, Zhang G, et al. Polyoxometalate-mediated green synthesis of a 2D silver nanonet/graphene nanohybrid as a synergistic catalyst for the oxygen reduction reaction[J]. Journal of Materials Chemistry A,2013,1(38):11961. doi: 10.1039/c3ta12941a
    [31] Xu C, Yuan R S, Wang X. Selective reduction of graphene oxide[J]. New Carbon Materials,2014,29(1):61-66. doi: 10.1016/S1872-5805(14)60126-8
    [32] Sheng K X, Xu Y X, Li C, et al. High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide[J]. New Carbon Mater,2011,26(1):9-15. doi: 10.1016/S1872-5805(11)60062-0
    [33] Shi X, Tian L, Wang S, et al. Scalable and fast fabrication of graphene integrated micro-supercapacitors with remarkable volumetric capacitance and flexibility through continuous centrifugal coating[J]. Journal of Energy Chemistry,2021,52:284-290. doi: 10.1016/j.jechem.2020.04.064
    [34] Song P, Cui J, Di J, et al. Carbon microtube aerogel derived from kapok fiber: An efficient and recyclable sorbent for oils and organic solvents[J]. ACS Nano,2020,14(1):595-602. doi: 10.1021/acsnano.9b07063
    [35] Cong H P, Ren X C, Wang P, et al. Macroscopic multifunctional graphene-based hydrogels and aerogels by ametal ion induced self-assembly process[J]. ACS Nano,2012,6(3):2693-2703. doi: 10.1021/nn300082k
    [36] Xu L, Xiao G, Chen C, et al. Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction[J]. Journal of Materials Chemistry A,2015,3(14):7498-7504. doi: 10.1039/C5TA00383K
    [37] Li Z, Xu Z, Liu Y, et al. Multifunctional non-woven fabrics of interfused graphene fibres[J]. Nature Communications,2016,7:13684. doi: 10.1038/ncomms13684
    [38] Niu Z, Chen J, Hng H H, et al. A leavening strategy to prepare reduced graphene oxide foams[J]. Advanced Materials,2012,24(30):4144-4150. doi: 10.1002/adma.201200197
  • Video S3 removal dichloromethane from water bottom.mp4
    支撑材料.pdf
    Video S4 Recycle oil from the POM-GFs by squeezing_Trim.mp4
    Video S5 recovery POM-GFs via combustion_Trim_Trim.mp4
    Video S2 removal methylbenzene on the water surface_Trim.mp4
    Video S1 reversible compressibility_Trim.mp4
  • 加载中
图(6)
计量
  • 文章访问数:  1200
  • HTML全文浏览量:  554
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 修回日期:  2021-01-20
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回