留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of 3D graphene-carbon nanotube-magnetic hybrid aerogels for dye adsorption

Zu Rong Ang Ing Kong Rachel Shin Yie Lee Cin Kong Akesh Babu Kakarla Ai Bao Chai Wei Kong

Zu Rong Ang, Ing Kong, Rachel Shin Yie Lee, Cin Kong, Akesh Babu Kakarla, Ai Bao Chai, Wei Kong. 三维石墨烯-碳纳米管磁性气凝胶的制备及其染料吸附性能. 新型炭材料(中英文), 2022, 37(2): 424-434. doi: 10.1016/S1872-5805(21)60029-X
引用本文: Zu Rong Ang, Ing Kong, Rachel Shin Yie Lee, Cin Kong, Akesh Babu Kakarla, Ai Bao Chai, Wei Kong. 三维石墨烯-碳纳米管磁性气凝胶的制备及其染料吸附性能. 新型炭材料(中英文), 2022, 37(2): 424-434. doi: 10.1016/S1872-5805(21)60029-X
Zu Rong Ang, Ing Kong, Rachel Shin Yie Lee, Cin Kong, Akesh Babu Kakarla, Ai Bao Chai, Wei Kong. Preparation of 3D graphene-carbon nanotube-magnetic hybrid aerogels for dye adsorption. New Carbon Mater., 2022, 37(2): 424-434. doi: 10.1016/S1872-5805(21)60029-X
Citation: Zu Rong Ang, Ing Kong, Rachel Shin Yie Lee, Cin Kong, Akesh Babu Kakarla, Ai Bao Chai, Wei Kong. Preparation of 3D graphene-carbon nanotube-magnetic hybrid aerogels for dye adsorption. New Carbon Mater., 2022, 37(2): 424-434. doi: 10.1016/S1872-5805(21)60029-X

三维石墨烯-碳纳米管磁性气凝胶的制备及其染料吸附性能

doi: 10.1016/S1872-5805(21)60029-X
详细信息
    通讯作者:

    Ing Kong, 副教授. E-mail:I.Kong@latrobe.edu.au

  • 中图分类号: TB33

Preparation of 3D graphene-carbon nanotube-magnetic hybrid aerogels for dye adsorption

Funds: The authors gratefully acknowledge the facilities, the scientific and technical assistance of Engineering Research Department, University of Nottingham Malaysia and School of Applied Physics, National University of Malaysia
  • 摘要:

    将ZnCl2、NiCl2·6H2O、FeCl2·4H2O和FeCl3·6H2O分别加入氧化石墨烯和碳纳米管的悬浮液中,在碱性条件下共沉淀和水中与聚乙烯醇交联后,冷冻干燥制备气凝胶。制备的气凝胶由磁性Ni0.5Zn0.5Fe2O4纳米粒子、氧化石墨烯、碳纳米管和聚乙烯醇组成,不仅具有吸附染料分子的活性位点,而且可通过外加磁场从水中分离。在最佳质量比下,制备的气凝胶对亚甲基蓝具有高的吸附容量(qe=71.03 mg g−1)和中等磁性强度(MS=3.519 emu g−1)。在染料浓度为0.025 mg mL−1的条件下,气凝胶对亚甲基蓝、甲基橙、结晶紫及其相等质量的混合物的去除效率分别为70.1%、4.2%、8.9%和11.1%。该气凝胶重复使用3次后,再生效率仍超过82%。此外,它对生物体无毒,有望用作处理工业废水的吸附剂。

  • FIG. 1406.  FIG. 1406.

    FIG. 1406.. 

    Figure  1.  Schematic of 3DmGT-PVA aerogel fabrication.

    Figure  2.  (a) Optical photographs of 3DmGT-PVA aerogels. FESEM images of aerogels: (b) F1 aerogel with pores, (c) F3 aerogel with 1500× and (d) 60000× magnification and (e) F6 aerogel.

    Figure  3.  XRD patterns of (a) PVA, (b) GT, (c) Ni0.5Zn0.5Fe2O4 nanoparticles and (d) F3 aerogel.

    Figure  4.  TGA curves of aerogels.

    Figure  5.  VSM magnetization curves for aerogels.

    Figure  6.  (a) MB solutions before and after the treatment by F3 aerogel and GT for 48 h, (b) UV-Vis spectra of MB solutions treated by aerogels and GT and (c) bar chart of qe and η for aerogels and GT.

    Figure  7.  The dye removal efficiency (η) and adsorption capacity (qe ) per mass of F3 aerogel against its mass loading.

    Figure  8.  η and qe against the pH value of MB solutions.

    Figure  9.  (a) qt against t, (b) the pseudo-first-order kinetic model and (c) the pseudo-second-order kinetic model.

    Figure  10.  Adsorption-desorption cycles.

    Figure  11.  Bar chart of η for dyes involved.

    Figure  12.  The effect of F3 on the overall lifespan of C. elegans. F3 does not significantly shorten the basal lifespan of the worm population (p>0.05), (n=90). Data are presented as mean ± standard deviation of one representative replicate.

    Table  1.   Saturation magnetization (MS), coercivity (HC) and retentivity (MR) at room temperature for the aerogels.

    SampleMS (emu g−1)HC (G)MR (emu g−1)
    F12.5352.1810.000937
    F22.8084.7760.00203
    F33.5198.6510.00338
    F44.5841.4980.00211
    F56.0291.1690.00237
    F610.2931.0770.00278
    Ni0.5Zn0.5Fe2O410.6960.6250.00252
    下载: 导出CSV

    Table  2.   Kinetic parameters for F3 aerogel.

    Kinetic modelsParametersValue
    Pseudo first- orderqe (mg g−1)66.87
    qe error (%)5.85
    k1 (L min−1)0.0109
    R20.9453
    Pseudo second-orderqe (mg g−1)84.75
    qe error (%)19.3
    k2 (g mg−1 min−1)0.00016
    R20.9528
    V0 (mg g−1 min−1)1.15
    下载: 导出CSV
  • [1] Chen D, Zeng Z, Zeng Y, et al. Removal of methylene blue and mechanism on magnetic γ-Fe2O3/SiO2 nanocomposite from aqueous solution[J]. Water Resources and Industry,2016,15:1-13. doi: 10.1016/j.wri.2016.05.003
    [2] Liu C, Liu H, Xu A, et al. In situ reduced and assembled three-dimensional graphene aerogel for efficient dye removal[J]. Journal of Alloys and Compounds,2017,714:522-529. doi: 10.1016/j.jallcom.2017.04.245
    [3] Nagelkerke NJD. A note on a general definition of the coefficient of determination[J]. Biometrika,1991,78(3):691-692. doi: 10.1093/biomet/78.3.691
    [4] Xu Z, Li X, Teng K, et al. High flux and rejection of hierarchical composite membranes based on carbon nanotube network and ultrathin electrospun nanofibrous layer for dye removal[J]. Journal of Membrane Science,2017,535:94-102. doi: 10.1016/j.memsci.2017.04.029
    [5] Ding Y, Tian Z, Li H, et al. Efficient removal of organic dyes using a three-dimensional graphene aerogel with excellent recycling stability[J]. New Carbon Materials,2019,34(4):315-324. doi: 10.1016/S1872-5805(19)30020-4
    [6] El-Moselhy MM, Kamal SM. Selective removal and preconcentration of methylene blue from polluted water using cation exchange polymeric material[J]. Groundwater for Sustainable Development,2018,6:6-13. doi: 10.1016/j.gsd.2017.10.001
    [7] Tolba GMK, Bastaweesy AM, Ashour EA, et al. Effective and highly recyclable ceramic membrane based on amorphous nanosilica for dye removal from the aqueous solutions[J]. Arabian Journal of Chemistry,2016,9(2):287-296. doi: 10.1016/j.arabjc.2015.05.009
    [8] García JR, Sedran U, Zaini MAA, et al. Preparation, characterization, and dye removal study of activated carbon prepared from palm kernel shell[J]. Environmental Science and Pollution Research,2018,25(6):5076-5085. doi: 10.1007/s11356-017-8975-8
    [9] Zheng W, Qi T, Zhang Y, et al. Fabrication and characterization of a multi-walled carbon nanotube-based counter electrode for dye-sensitized solar cells[J]. New Carbon Materials,2015,30(5):391-396. doi: 10.1016/S1872-5805(15)60198-6
    [10] Shen Y, Zhu X, Zhu L, et al. Synergistic effects of 2D graphene oxide nanosheets and 1D carbon nanotubes in the constructed 3D carbon aerogel for high performance pollutant removal[J]. Chemical Engineering Journal,2017,314:336-346. doi: 10.1016/j.cej.2016.11.132
    [11] GAO Feng, QIN Shi-hui, ZANG Yun-hao, et al. Highly efficient formation of Mn3O4-graphene oxide hybrid aerogels for use as the cathode material of high performance lithium ion batteries[J]. New Carbon Materials,2020,35(2):121-130. doi: 10.1016/S1872-5805(20)60479-6
    [12] Tran H V, Bui LT, Dinh TT, et al. Graphene oxide/Fe3O4/chitosan nanocomposite: A recoverable and recyclable adsorbent for organic dyes removal. Application to methylene blue[J]. Materials Research Express,2017,4(3):35701. doi: 10.1088/2053-1591/aa6096
    [13] Lee B, Lee S, Lee M, et al. Carbon nanotube-bonded graphene hybrid aerogels and their application to water purification[J]. Nanoscale,2015,7(15):6782-6789. doi: 10.1039/C5NR01018G
    [14] Areerob Y, Cho JY, Jang WK, et al. Enhanced sonocatalytic degradation of organic dyes from aqueous solutions by novel synthesis of mesoporous Fe3O4-graphene/ZnO@SiO2 nanocomposites[J]. Ultrasonics Sonochemistry,2018,41:267-278. doi: 10.1016/j.ultsonch.2017.09.034
    [15] Meidanchi A, Akhavan O. Superparamagnetic zinc ferrite spinel–graphene nanostructures for fast wastewater purification[J]. Carbon,2014,69:230-238. doi: 10.1016/j.carbon.2013.12.019
    [16] Dai J, Huang T, Tian S, et al. High structure stability and outstanding adsorption performance of graphene oxide aerogel supported by polyvinyl alcohol for waste water treatment[J]. Materials & Design,2016,107:187-197.
    [17] Zhang L, Wang Z, Xu C, et al. High strength graphene oxide/polyvinyl alcohol composite hydrogels[J]. J Mater Chem,2011,21(28):10399-10406. doi: 10.1039/c0jm04043f
    [18] Yao W, Geng C, Han D, et al. Strong and conductive double-network graphene/PVA gel[J]. RSC Adv,2014,4(74):39588-39595. doi: 10.1039/C4RA02674H
    [19] Bai H, Li C, Wang X, et al. A pH-sensitive graphene oxide composite hydrogel[J]. Chem Commun,2000,46(14):2376-2378.
    [20] K N, Ramana G V, D S, et al. Synthesis of graphene oxide by modified hummers method and hydrothermal synthesis of graphene-NiO nano composite for supercapacitor application[J]. Journal of Material Science & Engineering,2016,05(06):284.
    [21] Pawelec KM, Husmann A, Best SM, et al. Altering crystal growth and annealing in ice-templated scaffolds[J]. Journal of Materials Science,2015,50(23):7537-7543. doi: 10.1007/s10853-015-9343-z
    [22] Kong C, Yehye WA, Abd Rahman N, et al. Discovery of potential anti-infectives against Staphylococcus aureus using a Caenorhabditis elegans infection model[J]. BMC Complementary and Alternative Medicine,2014,14(1):4. doi: 10.1186/1472-6882-14-4
    [23] Chen L, Li Y, Du Q, et al. High performance agar/graphene oxide composite aerogel for methylene blue removal[J]. Carbohydrate Polymers,2017,155:345-353. doi: 10.1016/j.carbpol.2016.08.047
    [24] Liu D, Li J, Sun F, et al. Liquid crystal microphase separation of cellulose nanocrystals in wet-spun PVA composite fibers[J]. RSC Adv,2014,4(58):30784-30789. doi: 10.1039/C4RA04063E
    [25] Shahriary L, Athawale AA. Graphene oxide synthesized by using modified hummers approach[J]. Int J Renew Energy Environ Eng,2014,2(1):58-63.
    [26] Chiang Y-C, Lin W-H, Chang Y-C. The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation[J]. Applied Surface Science,2011,257(6):2401-2410. doi: 10.1016/j.apsusc.2010.09.110
    [27] El-Sheikh SM, Rashad MM, Harraz FA. Morphological investigation and magnetic properties of nickel zinc ferrite 1D nanostructures synthesized via thermal decomposition method[J]. Journal of Nanoparticle Research,2013,15(10):1967. doi: 10.1007/s11051-013-1967-9
    [28] Wang X, Liu X, Yuan H, et al. Non-covalently functionalized graphene strengthened poly(vinyl alcohol)[J]. Materials & Design,2018,139:372-379.
    [29] Shahane GS, Kumar A, Arora M, et al. Synthesis and characterization of Ni–Zn ferrite nanoparticles[J]. Journal of Magnetism and Magnetic Materials,2010,322(8):1015-1019. doi: 10.1016/j.jmmm.2009.12.006
    [30] Afkhami A, Sayari S, Moosavi R, et al. Magnetic nickel zinc ferrite nanocomposite as an efficient adsorbent for the removal of organic dyes from aqueous solutions[J]. Journal of Industrial and Engineering Chemistry,2015,21:920-924. doi: 10.1016/j.jiec.2014.04.033
    [31] Ho Y-S. Review of second-order models for adsorption systems[J]. Journal of Hazardous Materials,2006,136(3):681-689. doi: 10.1016/j.jhazmat.2005.12.043
    [32] Sun H, Cao L, Lu L. Magnetite/reduced graphene oxide nanocomposites: One step solvothermal synthesis and use as a novel platform for removal of dye pollutants[J]. Nano Research,2011,4(6):550-562. doi: 10.1007/s12274-011-0111-3
    [33] Plazinski W, Dziuba J, Rudzinski W. Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity[J]. Adsorption,2013,19(5):1055-1064. doi: 10.1007/s10450-013-9529-0
    [34] Ai L, Zhang C, Chen Z. Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite[J]. Journal of Hazardous Materials,2011,192(3):1515-1524. doi: 10.1016/j.jhazmat.2011.06.068
    [35] Robati D, Mirza B, Rajabi M, et al. Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase[J]. Chemical Engineering Journal,2016,284:687-697. doi: 10.1016/j.cej.2015.08.131
    [36] Pei Y, Wang M, Tian D, et al. Synthesis of core–shell SiO2@MgO with flower like morphology for removal of crystal violet in water[J]. Journal of Colloid and Interface Science,2015,453:194-201. doi: 10.1016/j.jcis.2015.05.003
    [37] Geng Z, Lin Y, Yu X, et al. Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide–Fe3O4 nanoparticles as an easily regenerative adsorbent[J]. Journal of Materials Chemistry,2012,22(8):3527-3535. doi: 10.1039/c2jm15544c
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  1699
  • HTML全文浏览量:  903
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-29
  • 修回日期:  2020-07-30
  • 网络出版日期:  2021-03-17
  • 刊出日期:  2022-03-30

目录

    /

    返回文章
    返回