留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Biomass-derived porous carbons as supercapacitor electrodes - A review

Majid Shaker Ali Asghar Sadeghi Ghazvini CAO Wei-qi Reza Riahifar GE Qi

Majid Shaker, Ali Asghar Sadeghi Ghazvini, 曹蔚琦, Reza Riahifar, 葛奇. 超级电容器用生物质基多孔炭的研究进展. 新型炭材料, 2021, 36(3): 546-572. doi: 10.1016/S1872-5805(21)60038-0
引用本文: Majid Shaker, Ali Asghar Sadeghi Ghazvini, 曹蔚琦, Reza Riahifar, 葛奇. 超级电容器用生物质基多孔炭的研究进展. 新型炭材料, 2021, 36(3): 546-572. doi: 10.1016/S1872-5805(21)60038-0
Majid Shaker, Ali Asghar Sadeghi Ghazvini, CAO Wei-qi, Reza Riahifar, GE Qi. Biomass-derived porous carbons as supercapacitor electrodes - A review. New Carbon Mater., 2021, 36(3): 546-572. doi: 10.1016/S1872-5805(21)60038-0
Citation: Majid Shaker, Ali Asghar Sadeghi Ghazvini, CAO Wei-qi, Reza Riahifar, GE Qi. Biomass-derived porous carbons as supercapacitor electrodes - A review. New Carbon Mater., 2021, 36(3): 546-572. doi: 10.1016/S1872-5805(21)60038-0

超级电容器用生物质基多孔炭的研究进展

doi: 10.1016/S1872-5805(21)60038-0
详细信息
    通讯作者:

    Majid Shaker, Engineer. E-mail: majidshacker@outlook.com

  • 中图分类号: TQ127.1+1

Biomass-derived porous carbons as supercapacitor electrodes - A review

More Information
  • 摘要: 在最近的几十年中,超级电容器(SC)已在电化学能量存储设备中获得了更为重要的地位。SC为使用寿命长的能量存储设备提供了可观的功率密度和令人满意的能量密度,适用于多种应用。因此,这些装置的进一步发展依赖于提供合适,低成本,环境友好和丰富的材料作为SC的电极活性材料。在用于SC的电极材料中,活性炭表现出优异的性能。它们具有优异的电化学效率,高比表面积,高吸附性,可调节的表面化学性质,快速的离子/电子传输,低成本和丰富的特性,使其成为SC电极的最佳材料。如果从生物质前驱体制备活性炭,则可以协同增强这些优势。由于生物质为可再生来源,低成本,便捷的加工过程以及对环境的友好性,研究者们将注意力集中在生物质上。在本文中,试图全面了解作为电化学储能装置的SC的基本原理。然后,对各种来源的生物质进行分类和分析。最后,讨论了这些生物质前驱体作为SCs电极材料的应用和活化技术。
  • FIG. 673.  FIG. 673.

    FIG. 673.. 

    Figure  1.  Specific power and energy capabilities of electrochemical energy storage devices.

    Figure  2.  Schematic illustration of asymmetric SCs.

    Figure  3.  Schematic illustrations of different hybridization approaches of supercapacitor and battery electrodes and materials.

    Figure  4.  (a) Schematic illustration of scalable synthesis of porous carbon materials, (b) and (c) SEM images of SBC-600, (d) and (e) TEM images of SBC-600[85]. Reproduced with permission.

    Figure  5.  Photographic and schematic illustration of some biomass sources and their conversion to biomass carbons and biofuel.

    Figure  6.  (a) Schematic of activated carbon production process from tea-waste, (b) XRD patterns of the derived activated carbons, (c) the C 1s XPS spectra of an activated carbon, (d) GCD curves of the pyrolyzed and KOH activated carbon at a constant current density of 1 A g−1, in a 2 mol L−1 KOH aqueous electrolyte[146]. Reproduced with permission.

    Figure  7.  (a) XRD patterns of activated carbons prepared from newspaper recycled waste (1) RF gel and (2) WP carbon, (b) Nyquist plot of activated carbons, (c) CV profiles of activated carbons obtained at 10 mV s−1 and (d) long cycle-life of the activated carbons[162]. Reproduced with permission.

    Figure  8.  (a) Schematic illustration of the synthesis process of functional carbons from seaweed, (b) Raman spectrum of TC-900, (c) CV profiles of TC-700 at 10–50 mV s−1 and (d) Ragone plots of the assembled SCs in 1 mol L−1 H2SO4 aqueous electrolyte[182]. Reproduced with permission.

    Figure  9.  (a) N2 isothermal adsorption/desorption isotherms on the ACs, (b) DFT pore size distribution curves of the ACs and (c) cumulative pore volumes of the ACs[191]. Reproduced with permission.

    Figure  10.  Electrochemical behavior of the SPAC electrodes in a three-electrode system: (a) CV tests were done at a scan rate of 50 mV s−1, (b) GCD profiles at a current density of 1 A g−1, (c) specific capacitances retention at varied current densities, (d) Nyquist plots[201]. Reproduced with permission.

    Figure  11.  Schematic illustration of temperature gradient and direction of heat transfer (Left) microwave heating and (Right) conventional heating (red-high temperature, blue-low temperature).

    Table  1.   Commercial SCs and their specifications produced by multiple manufacturers.

    ManufacturerVC (F)ESR (mΩ)W h kg−1W kg−1Refs.
    Maxwell2.728000.484.458000[31]
    Apowercap2.75900.9523275[31]
    CSRCAP2.795000.27.156780[32]
    Nesscap2.718000.553.68674[31]
    Nesscap2.750850.244.38532[31]
    EVerCAP2.560002.20.62200[33]
    EVerCAP2.526001.331300[34]
    Asahi Glass (PC)2.713752.54.93471[31]
    Skeleton2.8532000.096.842000[35]
    Panasonic (PC)2.5120012.34596[31]
    Samwha2.7300017.024200[36]
    LS Cable2.832000.253.712400[31]
    BatScap2.716800.24.218225[31]
    Vishay360173.78000[37]
    Power Sys (PC)2.713501.54.95785[31]
    下载: 导出CSV

    Table  2.   Carbon, oxygen, hydrogen, nitrogen and sulfur contents in biomass obtained from different sources.

    Biomass groupsBiomass nameBasisCOHNSRefs.
    Woody biomassWood residue-51.441.96.10.50.08[97]
    Willow-49.843.46.10.60.06[98]
    Olive tree woodDry48.244.25.30.70.03[99]
    Citrus tree woodDry47.043.26.01.00.08
    Spruce bark-52.341.26.10.30.1
    Birch white-57.033.86.70.30.0[100]
    Elm bark-46.939.15.30.60.0
    Oak woodDry59.541.35.70.2-[101]
    Spruce woodDry51.940.96.10.3-
    Wood chipsDry48.145.75.90.08-
    Canyon live oakDry47.845.75.80.070.01
    Poplar bark-53.639.36.70.30.1[100]
    Saw dust-32.128.23.90.30.01[102]
    Maple bark-52.041.36.20.40.11[100]
    Agricultural biomassAlfalfa straw-49.940.86.32.80.21[97]
    Arundo grass-45.742.66.1-0.27[103]
    Red canary grass-44.939.65.7-0.2
    Lucerne-46.735.65.9-0.25
    Rice strawDry49.442.16.91.40.26[104]
    Wheat strawDry47.041.410.80.60.24
    Oat straw-48.844.66.00.50.08[105]
    Coconut shellDry51.243.15.6-0.10[106]
    Walnut shellDry53.635.56.61.5-[107]
    Cotton huskDry44.639.45.50.20.14[108]
    Rice straw-50.143.05.71.00.16[109]
    Sunflower huskDry52.935.96.61.40.15[110]
    Mustard huskDry46.144.79.20.40.20[106]
    Switch grass-39.731.25.00.70.16[102]
    Animal and human waste biomassTea wasteDry48.044.05.50.50.06[111]
    Meat bone meal-57.320.88.012.21.69[112]
    Chicken litter-60.525.36.86.21.20
    Poultry manure and feather-38.731.05.79.60.70[113]
    Food waste-56.723.68.84.00.19[114]
    Industrial waste biomassMunicipal solid waste-36.410.15.01.40.83[114]
    Sewage sludgeDry52.032.16.36.33.10[106]
    Furniture waste-51.841.86.10.30.04[97]
    Poultry sludge-48.227.07.68.00.40[113]
    Demolition wood-51.740.76.41.10.09[102]
    Paper waste-31.034.04.70.40.03[115]
    Marine macroalgae-43.245.86.22.22.6[116]
    Nannochloropsis oceanica-50.034.57.57.50.47[117]
    下载: 导出CSV

    Table  3.   Biomass precursors from forest crops and residues chosen for the preparation of electrode materials in capacitors.

    Biomass materialsActivating agentsElectrolytesBET surface area (m2 g−1)Specific capacitance (F g−1)Refs.
    Rubber woodH3PO4 or NaOH1 M H2SO4693129[123]
    BambooSteam1 M Et4NBF4445–10255-60[119]
    KOH30 wt.% H2SO4141315-65[120]
    Fire WoodSteam1 M NaNO3101689[124]
    1 M HNO3120
    0.5 M H2SO496
    Wood tarBiological template + KOH6 M KOH2489.62338.5[125]
    Fire WoodKOH1 M NaNO32821165[121, 126]
    KOH + CO21 M H2SO4197
    Willow WoodKOH6 M KOH2800394[127]
    Metaplexis japonicaKOH6 M KOH1394256.5[128]
    Note: M- mol L−1
    下载: 导出CSV

    Table  4.   The proportions of hemicellulose, cellulose and lignin (Lignocellulosic constituents) of some agricultural wastes and residuals.

    Lignocellulosic materialsHemicellulose
    (%)
    Cellulose
    (%)
    Lignin
    (%)
    Refs.
    Wheat straw20-3030-458-15[131, 132]
    Banana waste14.813.214[130]
    Sugarcane bagasse27-3232-4419-24
    Corn straw21.342.68.2[131]
    Cocoa pod husks3735.414.7[133]
    Bagasse21.749.220.1[134]
    Cotton stalks17.448.823.3[134]
    Palm kernel shell22.720.850.7[135]
    Oil palm fibre22-7042-5014-25[136]
    Rice straw19-2732-475-24[137, 138]
    Cassava peels23.937.97.5[133]
    Pnewood23.638.820.4[139]
    Kola nut pods40.41±0.1138.72±0.1721.29±0.27[140]
    Sweet sorghum274521[141]
    Bamboo15-2626-4321-31[130]
    下载: 导出CSV

    Table  5.   Specific capacitances of agriculture-derived porous carbons reported in literature.

    MaterialActivating methodSBET(m2 g−1)Specific capacitance (F g−1)ElectrolyteCell configurationRef.
    OnionKOH1914.9205.76 M KOH2E[127]
    Sugarcane bagasseMW-ZnCl214161381 M EMImBF42E[151]
    Potato waste residueZnCl210522552 M KOH3E[152]
    Peanut shellMW-ZnCl215521991 M Et4NBF4/PC2E[145]
    CornstalkAir15884071 M H2SO43E[153]
    JujubeKOH8294991 M H2SO43E[154]
    Oil palm EFBKOH+CO217041491 M H2SO42E[95]
    Waste coffee beansZnCl210193681 M H2SO43E[155]
    Peanut mealZnCl2 and Mg(NO3)2·6H2O20905251 M H2SO42E[156]
    ZnCl21021100TEABF4/AN3E[157]
    Coffee endocarpCO210381671 M H2SO43E[144]
    Soybean6 M KOH1749243.26 M KOH3E[70]
    KOH361691 M H2SO43E
    DDGSKOH29592606 M KOH2E[158]
    Sunflower seed shellKOH116224430 wt% KOH2E[143]
    CO2+KOH250931130 wt% KOH2E
    Rice strawKOH10073321 M H2SO43E[159]
    Camellia oleifera shellZnCl219353741 M H2SO43E[94]
    19352666 M KOH3E
    Corn grainsKOH31992576 M KOH2E[160]
    Argan seed shellsKOH20623551 M H2SO43E[161]
    Apricot shellNaOH23353396 M NaOH2E[93]
    Note: M- mol L−1
    下载: 导出CSV

    Table  6.   Different biomass from industrial wastes used as precursors of carbons in SCs and their maximum specific capacitances.

    Biomass materialActivating agentElectrolyteBET Surface area (m2 g−1)Specific capacitance (F g−1)Refs.
    Human hairKOH6 M KOH1306340[163]
    Sugar cane bagasseZnCl21 M H2SO41788300[164]
    Waste newspaperPyrolysis (unactivated)0.1 M H2SO4459300[165]
    Shrimp shellsSonication6 M KOH1946322[166]
    Recycled waste paperKOH6 M KOH416180[162]
    Waste paperHNO32 M KOH463232[167]
    Rubberwood sawdustCO21 M H2SO468333[168]
    Cow dungKOH1 M Et4NBF42000124[169]
    Sugarcane bagasseZnCl21 M H2SO41788300[164]
    Waste tea leavesKOH2 M KOH2841330[146]
    Tobacco rodsKOH6 M KOH1994286.6[170]
    Apple pulpsteam2 M H2SO41200109-187[171]
    Note: M- mol L−1
    下载: 导出CSV

    Table  7.   Different biomass from domestic wastes used as precursors of electrode materials in capacitors.

    Biomass materialActivating agentElectrolyteBET Surface area
    (m2 g−1)
    Specific capacitance
    (F g−1)
    Refs.
    Palm kernel shell and egg shellCaO1 M Na2SO4776.4222[172]
    Coconut shellsSelf-activation1 M H2SO41194.4258[173]
    Waste coffee groundZnCl21 M MeEt3NBF4/AN940-1021100[155, 157]
    1 M H2SO4368
    Coconut Shell/melamine PrecursorsKOH7 M KOH3000368[174]
    Cassava peelKOH + CO2, followed by surface modification with0.5 M H2SO41352153[91]
    H2SO41336210
    HNO31186264
    H2O21276240
    EggshellPyrolysis (unactivated)1 M H2SO4221284[175]
    1 M KOH297
    Used tea dust wasteH3BO33 M KOH93489[176]
    Note: M- mol L−1
    下载: 导出CSV
  • [1] Shaker M, Riahifar R, Li Y. A review on the superb contribution of carbon and graphene quantum dots to electrochemical capacitors’ performance: Synthesis and application[J]. FlatChem,2020,22:100171. doi: 10.1016/j.flatc.2020.100171
    [2] Sadeghi Ghazvini A A, Taheri-Nassaj E, Raissi B, et al. Co-electrophoretic deposition of Co3O4 and graphene nanoplates for supercapacitor electrode[J]. Materials Letters,2021,285:129195. doi: 10.1016/j.matlet.2020.129195
    [3] Fathi A R, Riahifar R, Raissi B, et al. Optimization of cathode material components by means of experimental design for Li-ion batteries[J]. Journal of Electronic Materials,2020,49(11):6547-6558. doi: 10.1007/s11664-020-08413-2
    [4] Allahyari E, Ghorbanzadeh M, Riahifar R, et al. Electrochemical performance of NCM/LFP/Al composite cathode materials for lithium-ion batteries[J]. Materials Research Express,2018,5(5):055503. doi: 10.1088/2053-1591/aac0c7
    [5] Zhang W, Cheng R R, Bi H H, et al. A review of porous carbons produced by template methods for supercapacitor applications[J]. New Carbon Materials,2021,36(1):69-81. doi: 10.1016/S1872-5805(21)60005-7
    [6] Sheng L Z, Zhao Y Y, Hou B Q, et al. N-doped layered porous carbon electrodes with high mass loadings for high-performance supercapacitors[J]. New Carbon Materials,2021,36(1):179-188. doi: 10.1016/S1872-5805(21)60012-4
    [7] Luo X Y, Chen Y, Mo Y. A review of charge storage in porous carbon-based supercapacitors[J]. New Carbon Materials,2021,36(1):49-68. doi: 10.1016/S1872-5805(21)60004-5
    [8] Yoo E, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano letters,2008,8(8):2277-2282. doi: 10.1021/nl800957b
    [9] Ghorbanzadeh M, Allahyari E, Riahifar R, et al. Effect of Al and Zr co-doping on electrochemical performance of cathode Li[Li0.2Ni0.13Co0.13Mn0.54]O2 for Li-ion battery[J]. Journal of Solid State Electrochemistry,2018,22(4):1155-1163. doi: 10.1007/s10008-017-3824-8
    [10] Li J, Zou P C, Yao W T, et al. An asymmetric supercapacitor based on a NiO/Co3O4@NiCo cathode and an activated carbon anode[J]. New Carbon Materials,2020,35(2):112-120. doi: 10.1016/S1872-5805(20)60478-4
    [11] Azwar E, Wan Mahari W A, Chuah J H, et al. Transformation of biomass into carbon nanofiber for supercapacitor application – A review[J]. International Journal of Hydrogen Energy,2018,43(45):20811-20821. doi: 10.1016/j.ijhydene.2018.09.111
    [12] González-García P. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications[J]. Renewable and Sustainable Energy Reviews,2018,82:1393-1414. doi: 10.1016/j.rser.2017.04.117
    [13] Abdullah M O, Tan I a W, Lim L S. Automobile adsorption air-conditioning system using oil palm biomass-based activated carbon: A review[J]. Renewable and Sustainable Energy Reviews,2011,15(4):2061-2072. doi: 10.1016/j.rser.2011.01.012
    [14] Danish M, Ahmad T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application[J]. Renewable and Sustainable Energy Reviews,2018,87:1-21. doi: 10.1016/j.rser.2018.02.003
    [15] Wang J, Zhang X, Li Z, et al. Recent progress of biomass-derived carbon materials for supercapacitors[J]. Journal of Power Sources,2020,451:227794. doi: 10.1016/j.jpowsour.2020.227794
    [16] Abioye A M, Ani F N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review[J]. Renewable and Sustainable Energy Reviews,2015,52:1282-1293. doi: 10.1016/j.rser.2015.07.129
    [17] Bilal M, Shah J A, Ashfaq T, et al. Waste biomass adsorbents for copper removal from industrial wastewater – A review[J]. Journal of Hazardous Materials,2013,263:322-333. doi: 10.1016/j.jhazmat.2013.07.071
    [18] Ani J, Akpomie K, Okoro U, et al. Potentials of activated carbon produced from biomass materials for sequestration of dyes, heavy metals, and crude oil components from aqueous environment[J]. Applied Water Science,2020,10(2):1-11.
    [19] Dubey P, Shrivastav V, Maheshwari P H, et al. Recent advances in biomass derived activated carbon electrodes for hybrid electrochemical capacitor applications: Challenges and Opportunities[J]. Carbon, 2020, 1-29.
    [20] Benedetti V, Patuzzi F, Baratieri M. Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications[J]. Applied Energy,2018,227:92-99. doi: 10.1016/j.apenergy.2017.08.076
    [21] Jain A, Balasubramanian R, Srinivasan M P. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review[J]. Chemical Engineering Journal,2016,283:789-805. doi: 10.1016/j.cej.2015.08.014
    [22] Ao W, Fu J, Mao X, et al. Microwave assisted preparation of activated carbon from biomass: A review[J]. Renewable and Sustainable Energy Reviews,2018,92:958-979. doi: 10.1016/j.rser.2018.04.051
    [23] Ukanwa K S, Patchigolla K, Sakrabani R, et al. A review of chemicals to produce activated carbon from agricultural waste biomass[J]. Sustainability,2019,11(22):6204. doi: 10.3390/su11226204
    [24] Kilpimaa S, Runtti H, Kangas T, et al. Physical activation of carbon residue from biomass gasification: Novel sorbent for the removal of phosphates and nitrates from aqueous solution[J]. Journal of Industrial and Engineering Chemistry,2015,21:1354-1364. doi: 10.1016/j.jiec.2014.06.006
    [25] Helmholtz H V. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit anwendung auf die thierisch-elektrischen versuche[J]. Annalen der Physik,1853,165(6):211-233. doi: 10.1002/andp.18531650603
    [26] Becker H I. Low voltage electrolytic capacitor [P]. Google Patents. 1957.
    [27] Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources,2006,157(1):11-27. doi: 10.1016/j.jpowsour.2006.02.065
    [28] Wang Z, Liu J, Hao X, et al. Enhanced power density of a supercapacitor by introducing 3D-interfacial graphene[J]. New Journal of Chemistry,2020,44(31):13377-13381. doi: 10.1039/D0NJ02105A
    [29] Sharma P, Bhatti T S. A review on electrochemical double-layer capacitors[J]. Energy Conversion and Management,2010,51(12):2901-2912. doi: 10.1016/j.enconman.2010.06.031
    [30] Kshetri T, Tran D T, Nguyen D C, et al. Ternary graphene-carbon nanofibers-carbon nanotubes structure for hybrid supercapacitor[J]. Chemical Engineering Journal,2020,380:122543. doi: 10.1016/j.cej.2019.122543
    [31] Simon P, Burke A. Nanostructured carbons: double-layer capacitance and more[J]. The electrochemical society interface,2008,17(1):38. doi: 10.1149/2.F05081IF
    [32] Wang Y, Song Y, Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews,2016,45(21):5925-5950. doi: 10.1039/C5CS00580A
    [33] Electric double layer capacitors EVerCAP JD series[Z]. 2018. http://www.nichicon.co.jp/english/products
    [34] Electric double layer capacitors EVerCAP JL series[Z]. 2018. http://www.nichicon.co.jp/english/products
    [35] SkelCap Ultracapacitors[Z]. 2018. https://www.skeletontech.com/skelcap-sca-ultracapacitor-cells
    [36] Green-Cap. Electric double layer capacitors[Z]. 2018. https://masters.com.pl/en/capacitors/
    [37] EDLC-HV ENYCAP[Z]. 2018. https://www.vishay.com/capacitors/double-layer/
    [38] Zhang Y, Feng H, Wu X, et al. Progress of electrochemical capacitor electrode materials: A review[J]. International journal of hydrogen energy,2009,34(11):4889-4899. doi: 10.1016/j.ijhydene.2009.04.005
    [39] Gupta S P, Gosavi S W, Late D J, et al. Temperature driven high-performance pseudocapacitor of carbon nano-onions supported urchin like structures of α-MnO2 nanorods[J]. Electrochimica Acta,2020,354:136626. doi: 10.1016/j.electacta.2020.136626
    [40] Lu X, Yu M, Zhai T, et al. High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode[J]. Nano Letters,2013,13(6):2628-2633. doi: 10.1021/nl400760a
    [41] Du W, Wei S, Zhou K, et al. One-step synthesis and graphene-modification to achieve nickel phosphide nanoparticles with electrochemical properties suitable for supercapacitors[J]. Materials Research Bulletin,2015,61:333-339. doi: 10.1016/j.materresbull.2014.10.038
    [42] Ray R S, Sarma B, Jurovitzki A L, et al. Fabrication and characterization of titania nanotube/cobalt sulfide supercapacitor electrode in various electrolytes[J]. Chemical Engineering Journal,2015,260:671-683. doi: 10.1016/j.cej.2014.07.031
    [43] Miller J R, Burke A F. Electrochemical capacitors: challenges and opportunities for real-world applications[J]. The electrochemical society interface,2008,17(1):53. doi: 10.1149/2.F08081IF
    [44] Ji J, Zhang L L, Ji H, et al. Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor[J]. ACS nano,2013,7(7):6237-6243. doi: 10.1021/nn4021955
    [45] Liu C, Yu Z, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters,2010,10(12):4863-4868. doi: 10.1021/nl102661q
    [46] Vangari M, Pryor T, Jiang L. Supercapacitors: review of materials and fabrication methods[J]. Journal of Energy Engineering,2012,139(2):72-79.
    [47] Jiang H, Li C, Sun T, et al. A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes[J]. Nanoscale,2012,4(3):807-812. doi: 10.1039/C1NR11542A
    [48] Ghosh M, Vijayakumar V, Soni R, et al. Rationally designed self-standing V2O5 electrode for high voltage non-aqueous all-solid-state symmetric (2.0 V) and asymmetric (2.8 V) supercapacitors[J]. Nanoscale,2018,10:8741-8751.
    [49] Salah A A, Mauger A, Zaghib K, et al. Reduction Fe3+ of impurities in LiFePO4 from pyrolysis of organic precursor used for carbon deposition[J]. Journal of the Electrochemical Society,2006,153(9):A1692-A1701. doi: 10.1149/1.2213527
    [50] Gómez-Romero P, Ayyad O, Suárez-Guevara J, et al. Hybrid organic-inorganic materials: from child’s play to energy applications[J]. Journal of Solid State Electrochemistry,2010,14(11):1939-1945. doi: 10.1007/s10008-010-1076-y
    [51] Li B, Dai F, Xiao Q, et al. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor[J]. Energy & Environmental Science,2016,9(1):102-106.
    [52] Zhang F, Zhang T, Yang X, et al. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density[J]. Energy & Environmental Science,2013,6(5):1623-1632.
    [53] Brousse T, Bélanger D, Long J W. To be or not to be pseudocapacitive?[J]. Journal of the Electrochemical Society,2015,162(5):A5185-A5189. doi: 10.1149/2.0201505jes
    [54] Brousse T, Toupin M, Dugas R, et al. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors[J]. Journal of the Electrochemical Society,2006,153(12):A2171-A2180. doi: 10.1149/1.2352197
    [55] Lee H Y, Goodenough J B. Supercapacitor behavior with KCl electrolyte[J]. Journal of Solid State Chemistry,1999,144(1):220-223. doi: 10.1006/jssc.1998.8128
    [56] Conway B. Electrochemical supercapacitors: scientific fundamentals and technological applications[Z]. Springer US, 1999 ISBN: 0306457369
    [57] Wang H, Yi H, Chen X, et al. Facile synthesis of a nano-structured nickel oxide electrode with outstanding pseudocapacitive properties[J]. Electrochimica Acta,2013,105:353-361. doi: 10.1016/j.electacta.2013.05.031
    [58] Hu G, Tang C, Li C, et al. The sol-gel-derived nickel-cobalt oxides with high supercapacitor performances[J]. Journal of the Electrochemical Society,2011,158(6):A695-A699. doi: 10.1149/1.3574021
    [59] Senthilkumar B, Selvan R K, Vasylechko L, et al. Synthesis, crystal structure and pseudocapacitor electrode properties of γ-Bi2MoO6 nanoplates[J]. Solid State Sciences,2014,35:18-27. doi: 10.1016/j.solidstatesciences.2014.06.004
    [60] Kandalkar S G, Gunjakar J, Lokhande C. Preparation of cobalt oxide thin films and its use in supercapacitor application[J]. Applied Surface Science,2008,254(17):5540-5544. doi: 10.1016/j.apsusc.2008.02.163
    [61] Rochefort D, Dabo P, Guay D, et al. XPS investigations of thermally prepared RuO2 electrodes in reductive conditions[J]. Electrochimica Acta,2003,48(28):4245-4252. doi: 10.1016/S0013-4686(03)00611-X
    [62] Shaker M, Ghazvini A a S, Qureshi F R, et al. A criterion combined of bulk and surface lithium storage to predict the capacity of porous carbon lithium-ion battery anodes: Lithium-ion battery anode capacity prediction[J]. Carbon Letters,2021
    [63] Ghorbanzadeh M, Allahyari E, Riahifar R, et al. Solution-combustion synthesized Al-Mo co-substituted cathode Li[Li0.2Ni0.13Co0.13Mn0.54]O2 for improving electrochemical performance of lithium ion batteries[J]. Journal of Applied Electrochemistry,2018,48(1):75-84. doi: 10.1007/s10800-017-1135-5
    [64] Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials,2017,2(2):16098. doi: 10.1038/natrevmats.2016.98
    [65] Deblase C R, Silberstein K E, Truong T T, et al. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage[J]. Journal of the American Chemical Society,2013,135(45):16821-16824. doi: 10.1021/ja409421d
    [66] Simon P, Brousse T. Supercapacitors based on carbon or pseudocapacitive materials[J]. John Wiley & Sons 2017, DOI: 10.1002/9781119007333.
    [67] Borenstein A, Hanna O, Attias R, et al. Carbon-based composite materials for supercapacitor electrodes: A review[J]. Journal of Materials Chemistry A,2017,5(25):12653-12672. doi: 10.1039/C7TA00863E
    [68] Sheberla D, Bachman J C, Elias J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nature materials,2017,16(2):220. doi: 10.1038/nmat4766
    [69] Bi S, Banda H, Chen M, et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes[J]. Nature Materials,2020,19(5):552-558. doi: 10.1038/s41563-019-0598-7
    [70] Cossutta M, Vretenar V, Centeno T A, et al. A comparative life cycle assessment of graphene and activated carbon in a supercapacitor application[J]. Journal of Cleaner Production,2020,242:118468. doi: 10.1016/j.jclepro.2019.118468
    [71] Leng X, Chen S, Yang K, et al. Introduction to two-dimensional materials[J]. Surface Review and Letters, https://doi.org/10.1142/S0218625X21400059.
    [72] Askari M B, Salarizadeh P. Binary nickel ferrite oxide (NiFe2O4) nanoparticles coated on reduced graphene oxide as stable and high-performance asymmetric supercapacitor electrode material[J]. International Journal of Hydrogen Energy,2020,45(51):27482-27491. doi: 10.1016/j.ijhydene.2020.07.063
    [73] Leng X, Chen S, Yang K, et al. Technology and applications of graphene oxide membranes[J]. Surface Review and Letters, https://doi.org/10.1142/S0218625X21400047.
    [74] Rajesh M, Manikandan R, Kim B C, et al. Electrochemical polymerization of chloride doped PEDOT hierarchical porous nanostructure on graphite as a potential electrode for high performance supercapacitor[J]. Electrochimica Acta,2020,354:136669. doi: 10.1016/j.electacta.2020.136669
    [75] Adusei P K, Gbordzoe S, Kanakaraj S N, et al. Fabrication and study of supercapacitor electrodes based on oxygen plasma functionalized carbon nanotube fibers[J]. Journal of Energy Chemistry,2020,40:120-131. doi: 10.1016/j.jechem.2019.03.005
    [76] Ramadan A, Anas M, Ebrahim S, et al. Polyaniline/fullerene derivative nanocomposite for highly efficient supercapacitor electrode[J]. International Journal of Hydrogen Energy, 2020. https://doi.org/10.1016/j.ijhydene.2020.04.093.
    [77] Gopalakrishnan A, Badhulika S. Sulfonated porous carbon nanosheets derived from oak nutshell based high-performance supercapacitor for powering electronic devices[J]. Renewable Energy,2020,161:173-183. doi: 10.1016/j.renene.2020.06.004
    [78] Ghadiri S K, Alidadi H, Tavakkoli Nezhad N, et al. Valorization of biomass into amine-functionalized bio graphene for efficient ciprofloxacin adsorption in water-modeling and optimization study[J]. PloS one,2020,15(4):e0231045. doi: 10.1371/journal.pone.0231045
    [79] Kumar Y R, Deshmukh K, Sadasivuni K K, et al. Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: a review[J]. RSC Advances,2020,10(40):23861-23898. doi: 10.1039/D0RA03938A
    [80] Wu L, Long R, Li T, et al. One-pot fabrication of dual-emission and single-emission biomass carbon dots for Cu2+ and tetracycline sensing and multicolor cellular imaging[J]. Analytical and Bioanalytical Chemistry,2020,412(27):7481-7489. doi: 10.1007/s00216-020-02882-4
    [81] Liu J, Min S, Wang F, et al. High-performance aqueous supercapacitors based on biomass-derived multiheteroatom self-doped porous carbon membranes[J]. Energy Technology,2020,8(9):2000391. doi: 10.1002/ente.202000391
    [82] Vinayagam M, Babu R S, Sivasamy A, et al. Biomass-derived porous activated carbon from syzygium cumini fruit shells and chrysopogon zizanioides roots for high-energy density symmetric supercapacitors[J]. Biomass and Bioenergy,2020,143:105838. doi: 10.1016/j.biombioe.2020.105838
    [83] Yan S, Lin J, Liu P, et al. Preparation of nitrogen-doped porous carbons for high-performance supercapacitor using biomass of waste lotus stems[J]. RSC Advances,2018,8(13):6806-6813. doi: 10.1039/C7RA13013A
    [84] Lee H W, Kim Y M, Kim S, et al. Review of the use of activated biochar for energy and environmental applications[J]. Carbon Letters,2018,26:1-10.
    [85] Long C, Jiang L, Wu X, et al. Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors[J]. Carbon,2015,93:412-420. doi: 10.1016/j.carbon.2015.05.040
    [86] Ye T, Li D, Liu H, et al. Seaweed biomass-derived flame-retardant gel electrolyte membrane for safe solid-state supercapacitors[J]. Macromolecules,2018,51(22):9360-9367. doi: 10.1021/acs.macromol.8b01955
    [87] Zequine C, Ranaweera C, Wang Z, et al. High per formance and flexible supercapacitors based on carbonized bamboo fibers for wide temperature applications[J]. Scientific Reports,2016,6:31704. doi: 10.1038/srep31704
    [88] Xiao Y, Zheng M, Chen X, et al. Hierarchical porous carbons derived from rice husk for supercapacitors with high activity and high capacitance retention capability[J]. ChemistrySelect,2017,2(22):6438-6445. doi: 10.1002/slct.201701275
    [89] Ghouri Z K, Al-Meer S, Barakat N A, et al. ZnO@ C (core@ shell) microspheres derived from spent coffee grounds as applicable non-precious electrode material for DMFCs[J]. Scientific Reports,2017,7(1):1738. doi: 10.1038/s41598-017-01463-3
    [90] Hou J, Cao C, Idrees F, et al. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors[J]. ACS nano,2015,9(3):2556-2564. doi: 10.1021/nn506394r
    [91] Ismanto A E, Wang S, Soetaredjo F E, et al. Preparation of capacitor’s electrode from cassava peel waste[J]. Bioresource Technology,2010,101(10):3534-3540. doi: 10.1016/j.biortech.2009.12.123
    [92] Nabais J V, Teixeira J G, Almeida I. Development of easy made low cost bindless monolithic electrodes from biomass with controlled properties to be used as electrochemical capacitors[J]. Bioresource Technology, 2011, 102(3): 2781-2787.
    [93] Xu B, Chen Y, Wei G, et al. Activated carbon with high capacitance prepared by NaOH activation for supercapacitors[J]. Materials Chemistry and Physics,2010,124(1):504-509. doi: 10.1016/j.matchemphys.2010.07.002
    [94] Zhang J, Gong L, Sun K, et al. Preparation of activated carbon from waste Camellia oleifera shell for supercapacitor application[J]. Journal of Solid State Electrochemistry,2012,16(6):2179-2186. doi: 10.1007/s10008-012-1639-1
    [95] Farma R, Deraman M, Awitdrus A, et al. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors[J]. Bioresource Technology,2013,132:254-261. doi: 10.1016/j.biortech.2013.01.044
    [96] Liu M C, Kong L B, Zhang P, et al. Porous wood carbon monolith for high-performance supercapacitors[J]. Electrochimica Acta,2012,60:443-448. doi: 10.1016/j.electacta.2011.11.100
    [97] Miles T, Miles Jr T, Baxter L, et al. Alkali deposits found in biomass power plants: A preliminary investigation of their extent and nature[Z]. Volume 1. Summary report for National Renewable Energy Lab., Golden, CO (United States), 1996.
    [98] Zevenhoven-Onderwater M, Blomquist J P, Skrifvars B J, et al. The prediction of behaviour of ashes from five different solid fuels in fluidised bed combustion[J]. Fuel,2000,79(11):1353-1361. doi: 10.1016/S0016-2361(99)00280-X
    [99] Vamvuka D, Zografos D. Predicting the behaviour of ash from agricultural wastes during combustion[J]. Fuel,2004,83(14):2051-2057.
    [100] Bryers R W. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels[J]. Progress in Energy and Combustion Science,1996,22(1):29-120. doi: 10.1016/0360-1285(95)00012-7
    [101] Parikh J, Channiwala S A, Ghosal G K. A correlation for calculating HHV from proximate analysis of solid fuels[J]. Fuel,2005,84(5):487-494. doi: 10.1016/j.fuel.2004.10.010
    [102] Tillman D A. Biomass cofiring: The technology, the experience, the combustion consequences[J]. Biomass and Bioenergy,2000,19(6):365-384. doi: 10.1016/S0961-9534(00)00049-0
    [103] Zevenhoven-Onderwater M, Backman R, Skrifvars B J, et al. The ash chemistry in fluidised bed gasification of biomass fuels. Part I: predicting the chemistry of melting ashes and ash–bed material interaction[J]. Fuel,2001,80(10):1489-1502. doi: 10.1016/S0016-2361(01)00026-6
    [104] Wu Y, Wu S, Li Y, et al. Physico-chemical characteristics and mineral transformation behavior of ashes from crop straw[J]. Energy & Fuels,2009,23(10):5144-5150.
    [105] Theis M, Skrifvars B J, Zevenhoven M, et al. Fouling tendency of ash resulting from burning mixtures of biofuels. Part 2: Deposit chemistry[J]. Fuel,2006,85(14-15):1992-2001. doi: 10.1016/j.fuel.2006.03.015
    [106] Werther J, Saenger M, Hartge E U, et al. Combustion of agricultural residues[J]. Progress in Energy and Combustion Science,2000,26(1):1-27. doi: 10.1016/S0360-1285(99)00005-2
    [107] Demirbas A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues[J]. Progress in Energy and Combustion Science,2005,31(2):171-192. doi: 10.1016/j.pecs.2005.02.002
    [108] Sun Z, Jin B, Zhang M, et al. Experimental studies on cotton stalk combustion in a fluidized bed[J]. Energy,2008,33(8):1224-1232. doi: 10.1016/j.energy.2008.04.002
    [109] Thy P, Jenkins B, Grundvig S, et al. High temperature elemental losses and mineralogical changes in common biomass ashes[J]. Fuel,2006,85(5-6):783-795. doi: 10.1016/j.fuel.2005.08.020
    [110] Skoulou V, Zabaniotou A. Investigation of agricultural and animal wastes in Greece and their allocation to potential application for energy production[J]. Renewable and Sustainable Energy Reviews,2007,11(8):1698-1719. doi: 10.1016/j.rser.2005.12.011
    [111] Demirbas A. Combustion characteristics of different biomass fuels[J]. Progress in Energy and Combustion Science,2004,30(2):219-230. doi: 10.1016/j.pecs.2003.10.004
    [112] Vassilev S V, Baxter D, Andersen L K, et al. An overview of the chemical composition of biomass[J]. Fuel,2010,89(5):913-933. doi: 10.1016/j.fuel.2009.10.022
    [113] Yoon Y M, Kim S H, Oh S Y, et al. Potential of anaerobic digestion for material recovery and energy production in waste biomass from a poultry slaughterhouse[J]. Waste Management,2014,34(1):204-209. doi: 10.1016/j.wasman.2013.09.020
    [114] Ramzan N, Ashraf A, Naveed S, et al. Simulation of hybrid biomass gasification using Aspen plus: A comparative performance analysis for food, municipal solid and poultry waste[J]. Biomass and Bioenergy,2011,35(9):3962-3969. doi: 10.1016/j.biombioe.2011.06.005
    [115] Arena U, Di Gregorio F. A waste management planning based on substance flow analysis[J]. Resources, Conservation and Recycling,2014,85:54-66. doi: 10.1016/j.resconrec.2013.05.008
    [116] Ross A, Jones J, Kubacki M, et al. Classification of macroalgae as fuel and its thermochemical behaviour[J]. Bioresource Technology,2008,99(14):6494-6504. doi: 10.1016/j.biortech.2007.11.036
    [117] Cheng J, Huang R, Yu T, et al. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction[J]. Bioresource Technology,2014,151:415-418. doi: 10.1016/j.biortech.2013.10.033
    [118] Obernberger I, Thek G. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour[J]. Biomass and Bioenergy,2004,27(6):653-669. doi: 10.1016/j.biombioe.2003.07.006
    [119] Kim C, Lee J W, Kim J H, et al. Feasibility of bamboo-based activated carbons for an electrochemical supercapacitor electrode[J]. Korean Journal of Chemical Engineering,2006,23(4):592-594. doi: 10.1007/BF02706799
    [120] Kim Y J, Lee B J, Suezaki H, et al. Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors[J]. Carbon,2006,44(8):1592-1594. doi: 10.1016/j.carbon.2006.02.011
    [121] Wu F C, Tseng R L, Hu C C, et al. The capacitive characteristics of activated carbons—comparisons of the activation methods on the pore structure and effects of the pore structure and electrolyte on the capacitive performance[J]. Journal of Power Sources,2006,159(2):1532-1542. doi: 10.1016/j.jpowsour.2005.12.023
    [122] Zhang Y, Zhang F, Li G D, et al. Microporous carbon derived from pinecone hull as anode material for lithium secondary batteries[J]. Materials Letters,2007,61(30):5209-5212. doi: 10.1016/j.matlet.2007.04.032
    [123] Thubsuang U, Laebang S, Manmuanpom N, et al. Tuning pore characteristics of porous carbon monoliths prepared from rubber wood waste treated with H3PO4 or NaOH and their potential as supercapacitor electrode materials[J]. Journal of Materials Science,2017,52(11):6837-6855. doi: 10.1007/s10853-017-0922-z
    [124] Wu F C, Tseng R L, Hu C C, et al. Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors[J]. Journal of Power Sources,2004,138(1):351-359.
    [125] Wu J, Xia M, Zhang X, et al. Hierarchical porous carbon derived from wood tar using crab as the template: Performance on supercapacitor[J]. Journal of Power Sources,2020,455:227982. doi: 10.1016/j.jpowsour.2020.227982
    [126] Wu F C, Tseng R L, Hu C C, et al. Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors[J]. Journal of Power Sources,2005,144(1):302-309. doi: 10.1016/j.jpowsour.2004.12.020
    [127] Phiri J, Dou J, Vuorinen T, et al. Highly porous willow wood-derived activated carbon for high-performance supercapacitor electrodes[J]. ACS omega,2019,4(19):18108-18117. doi: 10.1021/acsomega.9b01977
    [128] Liang C, Bao J, Li C, et al. One-dimensional hierarchically porous carbon from biomass with high capacitance as supercapacitor materials[J]. Microporous and Mesoporous Materials,2017,251:77-82. doi: 10.1016/j.micromeso.2017.05.044
    [129] Zhang L, Xu C, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass[J]. Energy Conversion and Management,2010,51(5):969-982. doi: 10.1016/j.enconman.2009.11.038
    [130] Saidur R, Abdelaziz E A, Demirbas A, et al. A review on biomass as a fuel for boilers[J]. Renewable and Sustainable Energy Reviews,2011,15(5):2262-2289. doi: 10.1016/j.rser.2011.02.015
    [131] Saha B C, Cotta M A. Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw[J]. Biotechnology Progress,2006,22(2):449-453. doi: 10.1021/bp050310r
    [132] Peiji G, Yinbo Q, Xin Z, et al. Screening microbial strain for improving the nutritional value of wheat and corn straws as animal feed[J]. Enzyme and Microbial Technology,1997,20(8):581-584. doi: 10.1016/S0141-0229(96)00191-3
    [133] Daud Z, Kassim M, Sari A, et al. Chemical composition and morphological of cocoa pod husks and cassava peels for pulp and paper production[J]. Australian Journal of Basic and Applied Sciences,2013,7(9):406-411.
    [134] Hassan E B M, Shukry N. Polyhydric alcohol liquefaction of some lignocellulosic agricultural residues[J]. Industrial Crops and Products,2008,27(1):33-38. doi: 10.1016/j.indcrop.2007.07.004
    [135] Abdullah S, Yusup S, Ahmad M M, et al. Thermogravimetry study on pyrolysis of various lignocellulosic biomass for potential hydrogen production[J]. International Journal of Chemical and Biological Engineering,2010,3(3):137-141.
    [136] Hassan A, Salema A A, Ani F N, et al. A review on oil palm empty fruit bunch fiber-reinforced polymer composite materials[J]. Polymer Composites,2010,31(12):2079-2101. doi: 10.1002/pc.21006
    [137] Lee J. Biological conversion of lignocellulosic biomass to ethanol[J]. Journal of Biotechnology,1997,56(1):1-24. doi: 10.1016/S0168-1656(97)00073-4
    [138] Karimi K, Kheradmandinia S, Taherzadeh M J. Conversion of rice straw to sugars by dilute-acid hydrolysis[J]. Biomass and Bioenergy,2006,30(3):247-253. doi: 10.1016/j.biombioe.2005.11.015
    [139] Nanda S, Mohanty P, Pant K K, et al. Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels[J]. Bioenergy Research,2013,6(2):663-677. doi: 10.1007/s12155-012-9281-4
    [140] Adeyi O. Proximate composition of some agricultural wastes in Nigeria and their potential use in activated carbon production[J]. Journal of Applied Sciences and Environmental Management,2010,14(1):55-58. doi: 10.4314/jasem.v14i1.56490
    [141] Kim M, Day D F. Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills[J]. Journal of Industrial Microbiology and Biotechnology,2011,38(7):803-807. doi: 10.1007/s10295-010-0812-8
    [142] Kalderis D, Bethanis S, Paraskeva P, et al. Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times[J]. Bioresource Technology,2008,99(15):6809-6816. doi: 10.1016/j.biortech.2008.01.041
    [143] Li X, Xing W, Zhuo S, et al. Preparation of capacitor’s electrode from sunflower seed shell[J]. Bioresource Technology,2011,102(2):1118-1123. doi: 10.1016/j.biortech.2010.08.110
    [144] Valente Nabais J M, Teixeira J G, Almeida I. Development of easy made low cost bindless monolithic electrodes from biomass with controlled properties to be used as electrochemical capacitors[J]. Bioresource Technology,2011,102(3):2781-2787. doi: 10.1016/j.biortech.2010.11.083
    [145] He X, Ling P, Qiu J, et al. Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density[J]. Journal of Power Sources,2013,240:109-113. doi: 10.1016/j.jpowsour.2013.03.174
    [146] Peng C, Yan X B, Wang R T, et al. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes[J]. Electrochimica Acta,2013,87:401-408. doi: 10.1016/j.electacta.2012.09.082
    [147] Li M. Nanomanufacturing of carbon nanocomposites for energy storage and environmental applications[D]. Vanderbilt University 2018.
    [148] Lang J W, Yan X B, Liu W W, et al. Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes[J]. Journal of Power Sources,2012,204:220-229. doi: 10.1016/j.jpowsour.2011.12.044
    [149] Anbia M, Moradi S E. The examination of surface chemistry and porosity of carbon nanostructured adsorbents for 1-naphthol removal from petrochemical wastewater streams[J]. Korean Journal of Chemical Engineering,2012,29(6):743-749. doi: 10.1007/s11814-011-0237-8
    [150] Sathyamoorthi S, Tubtimkuna S, Sawangphruk M. Influence of structures and functional groups of carbon on working potentials of supercapacitors in neutral aqueous electrolyte: In situ differential electrochemical mass spectrometry[J]. Journal of Energy Storage,2020,29:101379. doi: 10.1016/j.est.2020.101379
    [151] Si W J, Wu X Z, Xing W, et al. Bagasse-based nanoporous carbon for supercapacitor application[J]. Journal of Inorganic Materials,2011,1:019.
    [152] Ma G, Yang Q, Sun K, et al. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor[J]. Bioresource Technology,2015,197:137-142. doi: 10.1016/j.biortech.2015.07.100
    [153] Wang C, Wu D, Wang H, et al. A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity[J]. Journal of Materials Chemistry A,2018,6(3):1244-1254. doi: 10.1039/C7TA07579K
    [154] Liu X, Ma C, Li J, et al. Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors[J]. Journal of Power Sources,2019,412:1-9. doi: 10.1016/j.jpowsour.2018.11.032
    [155] Rufford T E, Hulicova-Jurcakova D, Zhu Z, et al. Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors[J]. Electrochemistry Communications,2008,10(10):1594-1597. doi: 10.1016/j.elecom.2008.08.022
    [156] Zhao G, Li Y, Zhu G, et al. Biomass-based N, P, and S self-doped porous carbon for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7(14):12052-12060.
    [157] Rufford T E, Hulicova-Jurcakova D, Fiset E, et al. Double-layer capacitance of waste coffee ground activated carbons in an organic electrolyte[J]. Electrochemistry Communications,2009,11(5):974-977. doi: 10.1016/j.elecom.2009.02.038
    [158] Jin H, Wang X, Gu Z, et al. Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation[J]. Journal of Power Sources,2013,236:285-292. doi: 10.1016/j.jpowsour.2013.02.088
    [159] Sudhan N, Subramani K, Karnan M, et al. Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes[J]. Energy & Fuels,2017,31(1):977-985.
    [160] Balathanigaimani M S, Shim W G, Lee M J, et al. Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors[J]. Electrochemistry Communications,2008,10(6):868-871. doi: 10.1016/j.elecom.2008.04.003
    [161] Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marín F, et al. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes[J]. Bioresource Technology,2012,111:185-190. doi: 10.1016/j.biortech.2012.02.010
    [162] Kalpana D, Cho S H, Lee S B, et al. Recycled waste paper-A new source of raw material for electric double-layer capacitors[J]. Journal of Power Sources,2009,190(2):587-591. doi: 10.1016/j.jpowsour.2009.01.058
    [163] Qian W, Sun F, Xu Y, et al. Human hair-derived carbon flakes for electrochemical supercapacitors[J]. Energy & Environmental Science,2014,7(1):379-386.
    [164] Rufford T E, Hulicova-Jurcakova D, Khosla K, et al. Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse[J]. Journal of Power Sources,2010,195(3):912-918. doi: 10.1016/j.jpowsour.2009.08.048
    [165] Misra R. Recycled waste paper-An inexpensive carbon material for supercapacitor applications. [D]. Central Electrochemical Research Institute, 2016.
    [166] Tian W, Gao Q, Zhang L, et al. Renewable graphene-like nitrogen-doped carbon nanosheets as supercapacitor electrodes with integrated high energy–power properties[J]. Journal of Materials Chemistry A,2016,4(22):8690-8699. doi: 10.1039/C6TA02828D
    [167] Liu M C, Kong L B, Lu C, et al. Waste paper based activated carbon monolith as electrode materials for high performance electric double-layer capacitors[J]. RSC Advances,2012,2(5):1890-1896. doi: 10.1039/c2ra01175a
    [168] Taer E, Deraman M, Talib I A, et al. Physical, electrochemical and supercapacitive properties of activated carbon pellets from pre-carbonized rubber wood sawdust by CO2 activation[J]. Current Applied Physics,2010,10(4):1071-1075. doi: 10.1016/j.cap.2009.12.044
    [169] Bhattacharjya D, Yu J S. Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor[J]. Journal of Power Sources,2014,262:224-231. doi: 10.1016/j.jpowsour.2014.03.143
    [170] Zhao Y Q, Lu M, Tao P Y, et al. Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors[J]. Journal of Power Sources,2016,307:391-400. doi: 10.1016/j.jpowsour.2016.01.020
    [171] Centeno T, Rubiera F, Stoeckli F. Recycling of residues as precursors of carbons for supercapacitors[C]. Proceedings of the 1st spanish national conference on advances in materials recycling and eco-energy, Madrid, 2009.
    [172] Ali G a M, Habeeb O A, Algarni H, et al. CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study[J]. Journal of Materials Science,2019,54(1):683-692. doi: 10.1007/s10853-018-2871-6
    [173] Sun K, Leng C Y, Jiang J C, et al. Microporous activated carbons from coconut shells produced by self-activation using the pyrolysis gases produced from them, that have an excellent electric double layer performance[J]. Carbon,2018,130:844.
    [174] Jurewicz K, Babeł K. Efficient capacitor materials from active carbons based on coconut shell/melamine precursors[J]. Energy & Fuels,2010,24(6):3429-3435.
    [175] Li Z, Zhang L, Amirkhiz B S, et al. Carbonized chicken eggshell membranes with 3D architectures as high‐performance electrode materials for supercapacitors[J]. Advanced Energy Materials,2012,2(4):431-437. doi: 10.1002/aenm.201100548
    [176] Kalyani P, Anitha A. Refuse derived energy-tea derived boric acid activated carbon as an electrode material for electrochemical capacitors[J]. Portugaliae Electrochimica Acta,2013,31(3):165-174. doi: 10.4152/pea.201303165
    [177] Luo M, Wang X, Meng T, et al. Rapid one-step preparation of hierarchical porous carbon from chitosan-based hydrogel for high-rate supercapacitors: The effect of gelling agent concentration[J]. International Journal of Biological Macromolecules,2020,146:453-461. doi: 10.1016/j.ijbiomac.2019.12.187
    [178] Divya P, Rajalakshmi R. Renewable low cost green functional mesoporous electrodes from Solanum lycopersicum leaves for supercapacitors[J]. Journal of Energy Storage,2020,27:101149. doi: 10.1016/j.est.2019.101149
    [179] Ubaidullah M, Al-Enizi A M, Ahamad T, et al. Fabrication of highly porous N-doped mesoporous carbon using waste polyethylene terephthalate bottle-based MOF-5 for high performance supercapacitor[J]. Journal of Energy Storage, 2021, 33: 102125.
    [180] Liu M, Niu J, Zhang Z, et al. Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors[J]. Nano Energy,2018,51:366-372. doi: 10.1016/j.nanoen.2018.06.037
    [181] Wang H, Liu Z, Li H, et al. Electrochemical performance of lead-carbon battery with chitosan composite carbon/lead negative plate[J]. International Journal of Electrochemical Science,2018,13:136-146.
    [182] Divya P, Rajalakshmi R. Facile synthesis of micro/mesoporous functional carbon from Turbinaria conoides seaweed for high performance of supercapacitors[J]. Materials Today: Proceedings,2020,27:44-53. doi: 10.1016/j.matpr.2019.08.200
    [183] Wang J, Li Z, Yan S, et al. Modifying the microstructure of algae-based active carbon and modelling supercapacitors using artificial neural networks[J]. RSC Advances,2019,9(26):14797-14808. doi: 10.1039/C9RA01255A
    [184] Wang C, Liu T. Nori-based N, O, S, Cl co-doped carbon materials by chemical activation of ZnCl2 for supercapacitor[J]. Journal of Alloys and Compounds,2017,696:42-50. doi: 10.1016/j.jallcom.2016.11.206
    [185] Haykiri-Acma H, Yaman S. Effects of dilute phosphoric acid treatment on structure and burning characteristics of lignocellulosic biomass[J]. Journal of Energy Resources Technology,2019,141(8):082203-1-082203-8.
    [186] Raymundo-Piñero E, Cadek M, Béguin F. Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds[J]. Advanced Functional Materials,2009,19(7):1032-1039. doi: 10.1002/adfm.200801057
    [187] Prakoso T, Nurastuti R, Hendriansyah R, et al. Hydrothermal carbonization of seaweed for advanced biochar production[C]. MATEC Web of Conferences. EDP Sciences. 2018, p. 05012.
    [188] Abbas Q, Mirzaeian M, Ogwu A A, et al. Effect of physical activation/surface functional groups on wettability and electrochemical performance of carbon/activated carbon aerogels based electrode materials for electrochemical capacitors[J]. International Journal of Hydrogen Energy,2018,45(25):13586-13595.
    [189] Ioannidou O, Zabaniotou A. Agricultural residues as precursors for activated carbon production−a review[J]. Renewable and Sustainable Energy Reviews,2007,11(9):1966-2005. doi: 10.1016/j.rser.2006.03.013
    [190] Aworn A, Thiravetyan P, Nakbanpote W. Preparation and characteristics of agricultural waste activated carbon by physical activation having micro-and mesopores[J]. Journal of Analytical and Applied Pyrolysis,2008,82(2):279-285. doi: 10.1016/j.jaap.2008.04.007
    [191] Cao Y, Wang X, Gu Z, et al. Potassium chloride templated carbon preparation for supercapacitor[J]. Journal of Power Sources,2018,384:360-366. doi: 10.1016/j.jpowsour.2018.02.079
    [192] Wang J, Kaskel S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry,2012,22(45):23710-23725. doi: 10.1039/c2jm34066f
    [193] Kim D W, Wee J H, Yang C M, et al. Efficient removals of Hg and Cd in aqueous solution through NaOH-modified activated carbon fiber[J]. Chemical Engineering Journal,2020,392:123768. doi: 10.1016/j.cej.2019.123768
    [194] Wang L, Sun F, Hao F, et al. A green trace K2CO3 induced catalytic activation strategy for developing coal-converted activated carbon as advanced candidate for CO2 adsorption and supercapacitors[J]. Chemical Engineering Journal,2020,383:123205. doi: 10.1016/j.cej.2019.123205
    [195] Moulefera I, García-Mateos F J, Benyoucef A, et al. Effect of Co-solution of carbon precursor and activating agent on the textural properties of highly porous Aactivated carbon obtained by chemical activation of lignin with H3PO4[J]. Frontiers in Materials,2020,7:153. doi: 10.3389/fmats.2020.00153
    [196] Qin L, Xiao Z, Zhai S, et al. Alginate-derived porous carbon obtained by nano-ZnO hard template-induced ZnCl2-activation method for enhanced electrochemical performance[J]. Journal of the Electrochemical Society,2020,167(4):040505. doi: 10.1149/1945-7111/ab717b
    [197] Bedia J, Peñas-Garzón M, Gómez-Avilés A, et al. Review on activated carbons by chemical activation with FeCl3[J]. C—Journal of Carbon Research,2020,6(2):21. doi: 10.3390/c6020021
    [198] Ogungbenro A E, Quang D V, Al-Ali K A, et al. Synthesis and characterization of activated carbon from biomass date seeds for carbon dioxide adsorption[J]. Journal of Environmental Chemical Engineering,2020,8(5):104257. doi: 10.1016/j.jece.2020.104257
    [199] Nassar H, Zyoud A, El-Hamouz A, et al. Aqueous nitrate ion adsorption/desorption by olive solid waste-based carbon activated using ZnCl2[J]. Sustainable Chemistry and Pharmacy,2020,18:100335. doi: 10.1016/j.scp.2020.100335
    [200] Heidarinejad Z, Dehghani M H, Heidari M, et al. Methods for preparation and activation of activated carbon: A review[J]. Environmental Chemistry Letters,2020:1-23.
    [201] Liu Z, Zhu Z, Dai J, et al. Waste biomass based-activated carbons derived from soybean pods as electrode materials for high-performance supercapacitors[J]. ChemistrySelect,2018,3(21):5726-5732. doi: 10.1002/slct.201800609
    [202] Deng H, Li G, Yang H, et al. Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation[J]. Chemical Engineering Journal,2010,163(3):373-381. doi: 10.1016/j.cej.2010.08.019
    [203] Hesas R H, Daud W M a W, Sahu J, et al. The effects of a microwave heating method on the production of activated carbon from agricultural waste: a review[J]. Journal of Analytical and Applied Pyrolysis,2013,100:1-11. doi: 10.1016/j.jaap.2012.12.019
    [204] Yuen F K, Hameed B. Recent developments in the preparation and regeneration of activated carbons by microwaves[J]. Advances in Colloid and Interface Science,2009,149(1-2):19-27. doi: 10.1016/j.cis.2008.12.005
    [205] Pourhosseini S E M, Norouzi O, Salimi P, et al. Synthesis of a novel interconnected 3D pore network Algal Biochar constituting iron nanoparticles derived from a harmful marine biomass as high-performance asymmetric supercapacitor electrodes[J]. ACS Sustainable Chemistry & Engineering,2018,6(4):4746-4758.
    [206] Mushtaq F, Mat R, Ani F N. A review on microwave assisted pyrolysis of coal and biomass for fuel production[J]. Renewable and Sustainable Energy Reviews,2014,39:555-574. doi: 10.1016/j.rser.2014.07.073
    [207] Bommier C, Xu R, Wang W, et al. Self-activation of cellulose: A new preparation methodology for activated carbon electrodes in electrochemical capacitors[J]. Nano Energy,2015,13:709-717. doi: 10.1016/j.nanoen.2015.03.022
    [208] Biswal M, Banerjee A, Deo M, et al. From dead leaves to high energy density supercapacitors[J]. Energy & Environmental Science,2013,6(4):1249-1259.
    [209] Ling Z, Wang Z, Zhang M, et al. Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors[J]. Advanced Functional Materials,2016,26(1):111-119. doi: 10.1002/adfm.201504004
    [210] Kubo S, White R J, Yoshizawa N, et al. Ordered carbohydrate-derived porous carbons[J]. Chemistry of Materials,2011,23(22):4882-4885. doi: 10.1021/cm2020077
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  6572
  • HTML全文浏览量:  2500
  • PDF下载量:  425
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-12
  • 修回日期:  2021-05-06
  • 网络出版日期:  2021-05-26
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回