留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A correlation of the hydrogen evolution reaction activity to the number of defects formed by the decomposition of doped phosphorus species in carbon nanotubes

AI Jie LIU Zi-wu SUN Mao-mao LIU Ling WANG Quan-de

艾杰, 刘滋武, 孙毛毛, 刘玲, 王全德. 石墨磷引起的缺陷碳纳米管展现出较高的氢析出活性. 新型炭材料(中英文), 2022, 37(4): 773-780. doi: 10.1016/S1872-5805(21)60052-5
引用本文: 艾杰, 刘滋武, 孙毛毛, 刘玲, 王全德. 石墨磷引起的缺陷碳纳米管展现出较高的氢析出活性. 新型炭材料(中英文), 2022, 37(4): 773-780. doi: 10.1016/S1872-5805(21)60052-5
AI Jie, LIU Zi-wu, SUN Mao-mao, LIU Ling, WANG Quan-de. A correlation of the hydrogen evolution reaction activity to the number of defects formed by the decomposition of doped phosphorus species in carbon nanotubes. New Carbon Mater., 2022, 37(4): 773-780. doi: 10.1016/S1872-5805(21)60052-5
Citation: AI Jie, LIU Zi-wu, SUN Mao-mao, LIU Ling, WANG Quan-de. A correlation of the hydrogen evolution reaction activity to the number of defects formed by the decomposition of doped phosphorus species in carbon nanotubes. New Carbon Mater., 2022, 37(4): 773-780. doi: 10.1016/S1872-5805(21)60052-5

石墨磷引起的缺陷碳纳米管展现出较高的氢析出活性

doi: 10.1016/S1872-5805(21)60052-5
详细信息
    通讯作者:

    刘滋武. E-mail:lzwmsy@cumt.edu.cn

    王全德. E-mail:306088995@qq.com

  • 中图分类号: TQ127.1+1

A correlation of the hydrogen evolution reaction activity to the number of defects formed by the decomposition of doped phosphorus species in carbon nanotubes

More Information
  • 摘要: 作为一种新型碳基析氢反应催化剂,磷掺杂炭材料近年来已引起了较大关注。然而到目前为止,磷掺杂炭材料中的C―P物种对于氢析出活性的作用尚未被揭示。为了探讨碳基催化剂中C―P物种对其氢析出性能的影响,制备了4种具有不同石墨、吡啶、吡咯类磷物种分布的磷掺杂碳纳米管,并探讨了这3种磷物种的含量和氢析出活性之间的关系。结果表明在酸性介质中,一种在电流密度为10 mA cm−2 时过电位为0.266 V的磷掺杂碳纳米管展现出较高的氢析出活性。同时,密度泛函理论计算表明较高的氢析出性能主要是由石墨磷分解产生的五元环和九元环缺陷所引起,这为磷掺杂碳基催化剂表面的析氢反应提供更为深入的理解。
  • FIG. 1661.  FIG. 1661.

    FIG. 1661..  FIG. 1661.

    Figure  1.  SEM images of (a) P-CNTs1, (d) P-CNTs2 , (g) P-CNTs3 and (j) P-CNTs4 . TEM images of (b, c) P-CNTs1 , (e, f ) P-CNTs2, (h, i) P-CNTs3 and (k, l) P-CNTs4 , and their HRTEM images inserted in their corresponding TEM images (c, f, i and l).

    Figure  2.  Deconvoluted Raman spectra and ID/IG values of (a) P-CNTs1 , (b) P-CNTs2 , (c) P-CNTs3 and (d) P-CNTs4 .

    Figure  3.  The high-resolution C 1s spectra of (a) P-CNTs1, (b) P-CNTs2 , (c) P-CNTs3 and (d) P-CNTs4 .

    Figure  4.  The high-resolution P2p spectra of (a) P-CNTs1, (b) P-CNTs2 , (c) P-CNTs3 and (d) P-CNTs4 .

    Figure  5.  (a) The HER polarization curves of P-CNTs1, P-CNTs2, P-CNTs3, P-CNTs4 and 40 wt% Pt/C catalysts in a N2-saturated 0.5 mol L−1 H2SO4 solution, (b) Their corresponding overpotentials at the current density of 10 mA cm−2 and (c) tafel plots from (a), (d) The dependence of the HER current densities (at 300 mV overpotential) of P-CNTs1 (■), P-CNTs2 (■), P-CNTs3 (■), P-CNTs4 (■) on the C-P content and the values of ID/IG, (e) Impedance diagrams of P-CNTs1, P-CNTs2, P-CNTs3, and P-CNTs4, (f) The HER curves of P-CNTs4 in a 0.5 mol L−1 H2SO4 medium before and after 1000 cycles.

    Figure  6.  Cyclic voltammograms of (a) P-CNTs1, (b) P-CNTs2, (c) P-CNTs3 and (d) P-CNTLs4 in 0.5 mol L−1 H2SO4 at different scan rates.

    Figure  7.  The capacitive currents as a function of the scan rate for P-CNTs1, P-CNTs2, P-CNTs3 and P-CNTs4.

    Figure  8.  (a) The CNTs with a C3-P graphite-like configuration, (b) The blank normal CNT framework and (c) the CNTs with the pentagon- and nine-membered ring defects formed by the decomposition of C3-P group.

    Figure  9.  The possible formation mechanism of pentagon- and nine-membered ring defects with the decomposition of the C3-P group.

    Figure  10.  The possible HER routes on P-CNTs in an acidic medium.

    Table  1.   Elemental contents in 4 samples from the XPS.

    SamplesCOP
    C―PC3―P=OC―O―PC―P―O
    P-CNTs193.12%6.52%0.191%0.109%0.032%0.028%
    P-CNTs297.52%2.20%0.131%0.082%0.067%0
    P-CNTs397.98%1.79%0.119%0.039%0.072%0
    P-CNTs498.27%1.73%0000
    下载: 导出CSV

    Table  2.   The contents of sp2 and sp3 carbons, C=O, C―O, π-π* and the ratios of sp2/sp3 carbon from the C 1s spectra.

    Samplessp2sp3sp3/sp2C―Oπ-π*
    P-CNTs1 69.74% 8.77% 12.58 10.80% 10.69%
    P-CNTs2 66.82% 10.84% 16.22 6.14% 13.73%
    P-CNTs3 66.76% 11.66% 17.46 6.58% 12.98%
    P-CNTs4 66.07% 14.40% 21.79 5.08% 12.71%
    下载: 导出CSV

    Table  3.   The charge and spin densities (a.u.) of carbon atoms in the new formed defects after the decomposition of the C3―P graphite-like structure and those of the corresponding carbon atoms in the blank.

    Carbon atomCharge density (Blank)Spin density (Blank)Charge density (After pyrolysis)Spin density
    (After pyrolysis)
    1 −0.009 0 −0.026 0
    2 0 0 0.038 0
    3 0 0 −0.067 0
    4 0.018 0 −0.009 0
    5 −0.014 0 −0.063 0
    6 −0.014 0 0.034 0
    7 0.035 0 0.030 0
    8 −0.153 0 −0.143 0
    9 0.016 0 −0.042 0
    10 0.002 0 −0.073 0
    11 0.002 0 −0.046 0
    12 −0.021 0 0.009 0
    13 0.019 0
    下载: 导出CSV

    Table  4.   The H+ adsorption energies (kcal mol−1) on carbon atoms in the new formed defects from the decomposition of the C3―P graphite-like structure and those of corresponding carbon atoms in the blank.

    Carbon atom Adsorption energies (kcal mol−1)
    Pure CNT (blank)CNT (after pyrolysis)
    1−58.163−74.825
    3−56.805−101.009
    4−55.909−113.664
    5−58.719−101.588
    9−55.458−80.907
    10−55.824−142.826
    11−57.595−75.465
    下载: 导出CSV
  • [1] Liu Z W, Peng F, Wang H J, et al. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium[J]. Angew Chem Int Ed,2011,50:3257-3261. doi: 10.1002/anie.201006768
    [2] Liu Z W, Peng F, Wang H J, et al. Novel phosphorus-doped multiwalled nanotubes with high electrocatalytic activity for O2 reduction in alkaline medium[J]. Catal Commun,2011,16:35-38. doi: 10.1016/j.catcom.2011.08.038
    [3] Liu Z W, Peng F, Wang H J, et al. Preparation of phosphorus-doped carbon nanospheres and their electrocatalytic performance for O2 reduction[J]. J Nat Gas Chem,2012,21:257-264. doi: 10.1016/S1003-9953(11)60362-9
    [4] Hou H S, Shao L D, Zhang Y, et al. Large-area carbon nanosheets doped with phosphorus: A high-performance anode material for sodium-ion batteries[J]. Adv Sci,2017,4:1600243. doi: 10.1002/advs.201600243
    [5] Li K, Hu Z Y, Ma J Z, et al. A 3D and stable lithium anode for high-performance lithium-iodine batteries[J]. Adv Mater,2019,31:1902399. doi: 10.1002/adma.201902399
    [6] Wang J X, Xia Y, Liu Y, et al. Mass production of large-pore phosphorus-doped mesoporous carbon for fast-rechargeable lithium-ion batteries[J]. Energy Storage Materials,2019,22:147-153. doi: 10.1016/j.ensm.2019.01.008
    [7] Wen Y Y, Wang B, Huang C C, et al. Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors[J]. Chem Eur J,2014,20:1-7. doi: 10.1002/chem.201390210
    [8] Yang W, Yang W, Kong L N, et al. Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: A balanced strategy for pore structure and chemical composition[J]. Carbon,2018,127:557-567. doi: 10.1016/j.carbon.2017.11.050
    [9] Lv B J, Li P P, Liu Y, et al. Nitrogen and phosphorus co-doped carbon hollow spheres derived from polypyrrole for high-performance supercapacitor electrodes[J]. Applied Surface Science,2018,437:169-175. doi: 10.1016/j.apsusc.2017.12.171
    [10] Zheng Y, Jiao Y, Li L H, et al. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution[J]. ACS Nano,2014,8:5290-5296. doi: 10.1021/nn501434a
    [11] Xiao Z H, Huang X B, Xu L, et al. Edge-selectively phosphorus-doped few-layer graphene as an efficient metal-free electrocatalyst for the oxygen evolution reaction[J]. Chen Commun,2016,52:13008-13011. doi: 10.1039/C6CC07217H
    [12] Jiang H L, Zhu Y H, Su Y H, et al. Highly dual-doped multilayer nanoporous graphene: efficient metal-free electrocatalysts for the hydrogen evolution reaction[J]. J Mater Chem A,2015,3:12642-12645. doi: 10.1039/C5TA02792F
    [13] Liu Z W, Ai J, Sun M M, et al. Phosphorous-doped graphite layers with outstanding electrocatalytic activities for the oxygen and hydrogen evolution reactions in water electrolysis[J]. Adv Funct Mater,2020,30:1910741. doi: 10.1002/adfm.201910741
    [14] Mcevoy N, Peltekis N, Kumar S, et al. Synthesis and analysis of thin conducting pyrolytic carbon films[J]. Carbon,2012,50:1216-1226. doi: 10.1016/j.carbon.2011.10.036
    [15] Zhou Y, Ma R G, Candelaria S L, et al. Phosphorus/sulfur Co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction[J]. J Power Sources,2016,314:39-48. doi: 10.1016/j.jpowsour.2016.03.009
    [16] Tian X D, Li X, Yang T, et al. Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor[J]. Electrochim Acta,2017,247:1060-1071. doi: 10.1016/j.electacta.2017.07.103
    [17] Liu Z J, Zhao Z H, Wang Y Y, et al. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis[J]. Adv Mater,2017,29:1606207. doi: 10.1002/adma.201606207
    [18] Bi Z H, Luo L, Kong Q Q, et al. Structural evolution of phosphorus species on graphene with a stabilized electrochemical interface[J]. ACS Appl Mater Interfaces,2019,11:11421-11430. doi: 10.1021/acsami.8b21903
  • 20200168 -Supporting Information.pdf
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  602
  • HTML全文浏览量:  310
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-11
  • 修回日期:  2020-11-27
  • 网络出版日期:  2021-03-16
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回