留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic modification of used tea leaves for uranium adsorption

YANG Ai-li YANG Sheng-ya ZHU Yu-kuan

杨爱丽, 杨胜亚, 朱玉宽. 废茶渣磁性改性物的制备及其去铀性能. 新型炭材料, 2021, 36(4): 821-826. doi: 10.1016/S1872-5805(21)60053-7
引用本文: 杨爱丽, 杨胜亚, 朱玉宽. 废茶渣磁性改性物的制备及其去铀性能. 新型炭材料, 2021, 36(4): 821-826. doi: 10.1016/S1872-5805(21)60053-7
YANG Ai-li, YANG Sheng-ya, ZHU Yu-kuan. Magnetic modification of used tea leaves for uranium adsorption. New Carbon Mater., 2021, 36(4): 821-826. doi: 10.1016/S1872-5805(21)60053-7
Citation: YANG Ai-li, YANG Sheng-ya, ZHU Yu-kuan. Magnetic modification of used tea leaves for uranium adsorption. New Carbon Mater., 2021, 36(4): 821-826. doi: 10.1016/S1872-5805(21)60053-7

废茶渣磁性改性物的制备及其去铀性能

doi: 10.1016/S1872-5805(21)60053-7
基金项目: 国家自然科学基金项目(No. 21407132);中国工程物理研究院环保基金项目(No. YAHZY-2018-008)
详细信息
    通讯作者:

    杨爱丽,博士,副研究员. E-mail: yang770117@sina.com

  • 中图分类号: TQ127.1+1

Magnetic modification of used tea leaves for uranium adsorption

Funds: National Natural Science Foundation of China (21407132) and Environmental Protection Foundation of China Academy of Engineering Physics (YAHZY-2018-008)
More Information
  • 摘要: 将改进Hummers法合成的氧化石墨烯(GO)与废茶渣(TW)、Fe3O4进行复合获得废茶渣磁性改性物rGO/Fe3O4/TW,通过FTIR光谱和XRD对产物结构和晶型进行表征。考察溶液pH 值、振荡时间和铀初始浓度对合成产物吸附行为的影响。采用孔结构分析仪和XPS对rGO/Fe3O4/TW吸附前后样品的孔特性和表面结构进行吸附机理分析。结果表明,rGO/Fe3O4/TW不仅具有优良的去铀性能,短时间内可达近100%的去除率,而且负载铀之后通过磁场作用易从液相中快速分离出来。rGO/Fe3O4/TW对铀的吸附过程符合Langmuir 模型和准二级动力学模型。对于初始浓度为10 mg/L的含铀溶液,TW、MTW和rGO/Fe3O4/TW的最大吸附量分别为97.70 mg g−1、79.46 mg g−1和103.84 mg g−1。同时,rGO/Fe3O4/TW具有良好的循环再利用性,经5个吸附-解吸-再吸附循环之后,仍可达到较好的去铀效果,去铀率约为85%。
  • FIG. 786.  FIG. 786.

    FIG. 786.. 

    Figure  1.  (a) FTIR spectra and (b) XRD pattern of TW, MTW, Fe3O4 and rGO/Fe3O4/TW.

    Figure  2.  Influence of pH value on the adsorption efficiencies of TW, MTW and rGO/Fe3O4/TW. (Cinitial U=10 mg L−1, sorbent dose of m/V=0.5 g L−1, shaking time=30 min).

    Figure  3.  (a) Influence of adsorption time on uranium removal rate on TW, MTW and rGO/Fe3O4/TW and (b) adsorption kinetics model fit of U(VI) adsorption on TW, MTW and rGO/Fe3O4/TW. (Cinitial U=10 mg L−1, pH=6.0, the sorbent dose of m/V=0.5 g L−1).

    Figure  4.  Langmuir and Freundlich models fit of U(VI) adsorption on TW, MTW and rGO/Fe3O4/TW (Cinitial U=10 mg L−1, pH=6.0, the sorbent dose of m/V=0.5 g L−1, shaking time=24 h).

    Figure  5.  Reusability for U(VI) adsorption on rGO/Fe3O4/TW over 5 cycles.

    Table  1.   Adsorption kinetic model parameters for TW, MTW and rGO/Fe3O4/TW.

    SorbentsPseudo-first-order model Pseudo-second-order model
    Qe
    (mg/g)
    k1 (g/(mg·
    min)
    R2Qe (mg/g)k2 (g/(mg·
    min)
    R2
    TW0.57560.0260.936119.920.2330.9999
    MTW0.12980.0180.967712.350.0060.9945
    rGO/Fe3O4/TW0.20750.0350.973020.410.0270.9993
    下载: 导出CSV

    Table  2.   Adsorption parameters for langmuir and freundlich isotherm models.

    SorbentsLangmuir isotherm Freundlich isotherm
    Qm
    (mg g−1)
    kL
    (L mg−1)
    R2nkF (mg1−n Ln g−1)R2
    TW97.700.110.98992.4216.860.9885
    MTW79.460.140.99693.4221.520.8937
    rGO/Fe3O4/TW103.840.750.99834.0540.270.8749
    下载: 导出CSV
  • [1] Safarik I, Baldikova E, Prochazkova J, et al. Magnetically modified agricultural and food waste: Preparation and application[J]. J Agric Food Chem,2018,66:2538-2552. doi: 10.1021/acs.jafc.7b06105
    [2] Sarici-Özdemir Ç, Kiliç F. Kinetics behavior of methylene blue onto agricultural waste[J]. Particul Sci Technol,2018,36(2):194-201. doi: 10.1080/02726351.2016.1240127
    [3] Afroze S, Sen T K. A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents[J]. Water Air Soil Pollut,2018,229:225-274. doi: 10.1007/s11270-018-3869-z
    [4] Wu X X, Zhang C Y, Tian Z W, et al. Large-surface-area carbons derived from lotus stem waste for efficient CO2 capture[J]. New Carbon Mater,2018,33(3):252-261. doi: 10.1016/S1872-5805(18)60338-5
    [5] Dieng H, Zawawi R B M, Yusof N I S B M, et al. Green tea and its waste attract workers of formicine ants and kill their workers—implications for pest management[J]. Ind Crop Prod,2016,89:157-166. doi: 10.1016/j.indcrop.2016.05.019
    [6] Foroughi-dahr M, Abolghasemi H, Esmaieli M, et al. Experimental study on the adsorptive behavior of Congo red in cationic surfactant-modified tea waste[J]. Process Saf Environ Prot,2015,95:226-236. doi: 10.1016/j.psep.2015.03.005
    [7] Yang S X, Wu Y H, Aierken A, et al. Mono/competitive adsorption of Arsenic(Ⅲ) and Nickel(Ⅱ) using modified green tea waste[J]. J Taiwan Inst Chem E,2016,60:213-221. doi: 10.1016/j.jtice.2015.07.007
    [8] Gupta A, Balomajumder C. Simultaneous adsorption of Cr(VI) and phenol onto tea waste biomass from binary mixture: multicomponent adsorption, thermodynamic and kinetic study[J]. J Environ Chem Eng,2015,3:785-796. doi: 10.1016/j.jece.2015.03.003
    [9] Weng C H, Lin Y T, Hong D Y, et al. Effective removal of copper ions from aqueous solution using base treated black tea waste[J]. Ecol Eng,2014,67:127-133. doi: 10.1016/j.ecoleng.2014.03.053
    [10] Tzeng J H, Weng C H, Huang J W, et al. Spent tea leaves: A new non-conventional and low-cost biosorbent for ethylene removal[J]. Int Biodeter Biodegr,2015,104:67-73. doi: 10.1016/j.ibiod.2015.05.012
    [11] Ding D X, Liu X T, Hu N, et al. Removal and recovery of uranium from aqueous solution by tea waste[J]. J Radioanal Nucl Chem,2012,293:735-741. doi: 10.1007/s10967-012-1866-z
    [12] Cai H M, Chen G J, Peng C Y, et al. Removal of fluoride from drinking water using tea waste loaded with Al/Fe oxides: A novel, safe and efficient biosorbent[J]. Appl Surf Sci,2015,328:34-44. doi: 10.1016/j.apsusc.2014.11.164
    [13] Boruah P K, Borthakur P, Darabdhara G, et al. Sunlight assisted degradation of dye molecules and reduction of toxic Cr(VI) in aqueous medium using magnetically recoverable Fe3O4/reduced graphene oxide nanocomposite[J]. RSC Adv,2016,6:11049-11063. doi: 10.1039/C5RA25035H
    [14] Vu H C, Dwivedi A D, Le T T, et al. Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr(VI) and As(V) from aqueous solutions: role of crosslinking metal cations in pH control[J]. Chem Eng J,2017,307:220-229. doi: 10.1016/j.cej.2016.08.058
    [15] Madrakian T, Afkhami A, Ahmadi M. Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples[J]. Spectrochim Acta A,2012,99:102-109. doi: 10.1016/j.saa.2012.09.025
    [16] Ma J, Liu C H, Li R, et al. Properties and structural characterization of oxide starch/chitosan/graphene oxide biodegradable nanocomposites[J]. J Appl Polym Sci,2012,123:2933-2944. doi: 10.1002/app.34901
    [17] Li X Y, Li F B, Jin Y, et al. The uptake of uranium by tea wastes investigated by batch, spectroscopic and modeling techniques[J]. J Mol Liq,2015,209:413-418. doi: 10.1016/j.molliq.2015.06.014
    [18] Atarod M, Nasrollahzadeh M, Sajadi S M. Green synthesis of Pd/RGO/Fe3O4 nanocomposite using withania coagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nitrophenol[J]. J Colloid Interf Sci,2016,465:249-258. doi: 10.1016/j.jcis.2015.11.060
    [19] Madhuvilakku R, Alagar S, Mariappan R, et al. Green one-pot synthesis of flowers-like Fe3O4/rGO hybrid nanocomposites for effective electrochemical detection of riboflavin and low-cost supercapacitor applications[J]. Sensor Actuat B-Chem,2017,253:879-892. doi: 10.1016/j.snb.2017.06.126
    [20] Helal A S, Mazario E, Mayoral A, et al. Highly efficient and selective extraction of uranium from aqueous solution using a magnetic device: Succinyl-β-cyclodextrin-APTES@maghemite nanoparticles[J]. Environ Sci: Nano,2018,5:158-168. doi: 10.1039/C7EN00902J
    [21] Campos A F C, Oliveira H A L, F N Silva, et al. Core-shell bimagnetic nanoadsorbents for hexavalent chromium removal from aqueous solutions[J]. J Hazard Mater,2019,362:82-91. doi: 10.1016/j.jhazmat.2018.09.008
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  587
  • HTML全文浏览量:  388
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-07
  • 修回日期:  2020-02-03
  • 网络出版日期:  2021-04-15
  • 刊出日期:  2021-07-30

目录

    /

    返回文章
    返回