留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of a porous carbon from Enteromorpha prolifera with excellent electrochemical properties

LI Shi-jie ZHANG Ming-yang GAO Yan LI Hui WANG Qian ZHANG Lin-hua

李诗杰, 张明阳, 高岩, 李辉, 王茜, 张林华. 基于“蛋盒”结构高电化学性能分级多孔炭的制备. 新型炭材料, 2021, 36(6): 1158-1168. doi: 10.1016/S1872-5805(21)60068-9
引用本文: 李诗杰, 张明阳, 高岩, 李辉, 王茜, 张林华. 基于“蛋盒”结构高电化学性能分级多孔炭的制备. 新型炭材料, 2021, 36(6): 1158-1168. doi: 10.1016/S1872-5805(21)60068-9
LI Shi-jie, ZHANG Ming-yang, GAO Yan, LI Hui, WANG Qian, ZHANG Lin-hua. Preparation of a porous carbon from Enteromorpha prolifera with excellent electrochemical properties. New Carbon Mater., 2021, 36(6): 1158-1168. doi: 10.1016/S1872-5805(21)60068-9
Citation: LI Shi-jie, ZHANG Ming-yang, GAO Yan, LI Hui, WANG Qian, ZHANG Lin-hua. Preparation of a porous carbon from Enteromorpha prolifera with excellent electrochemical properties. New Carbon Mater., 2021, 36(6): 1158-1168. doi: 10.1016/S1872-5805(21)60068-9

基于“蛋盒”结构高电化学性能分级多孔炭的制备

doi: 10.1016/S1872-5805(21)60068-9
基金项目: 山东建筑大学博士基金(XNBS1838)
详细信息
  • 中图分类号: TQ127.1+1

Preparation of a porous carbon from Enteromorpha prolifera with excellent electrochemical properties

Funds: This study was supported by the Doctoral Fund of Shandong Jianzhu University (XNBS1838)
More Information
  • 摘要: 基于浒苔中海藻酸钙的“蛋盒”结构,对浒苔炭化产物进行盐酸酸洗处理,去除海藻酸钙中的钙离子,形成“蛋盒”式初始孔结构。以酸洗处理后的炭化产物为前驱体,采用KOH活化法制备浒苔基分级多孔活性炭,并研究活性炭的孔结构特性及电化学性能。研究表明:浒苔基活性炭具有分级多孔结构,其比表面积(SBET)高达3 283 m2 g−1,其中介孔提供了66%以上的比表面积。当用作超级电容器电极材料时,即使在较高的电流密度下,浒苔基活性炭也表现出优异的电化学性能。当电流密度为0.1 A g−1时,浒苔基活性炭的比电容为361 F g−1,当电流密度增大至10 A g−1时,活性炭的比电容仍然高达323 F g−1,表现出优异的高倍率性能。
  • FIG. 1083.  FIG. 1083.

    FIG. 1083.. 

    Figure  1.  N2 adsorption-desorption isotherms of AC and EAC.

    Figure  2.  Pore size distributions of AC and EAC.

    Figure  3.  "Egg-box" structural macromolecular fragments formed by G unit and Ca2+.

    Figure  4.  Principle of pore formation by removing Ca2+ from carbonized products.

    Figure  5.  SEM images of carbonized products of EP before and after HCl pickling.

    Figure  6.  SEM and TEM images of EAC.

    Figure  7.  EDS analysis of carbonization products before and after pickling.

    Figure  8.  XRD patterns of AC and EAC.

    Figure  9.  FT-IR spectra of the AC and EAC.

    Figure  10.  GCD curves of AC and EAC at the different current densities.

    Figure  11.  CV curves of EAC and AC.

    Figure  12.  Rate performance of AC and EAC.

    Figure  13.  Cycle performance of AC and EAC at the current density of 5 A g−1.

    Figure  14.  Nyquist impedance plots of AC- and EAC-based supercapacitors.

    Table  1.   Ultimate analysis and proximate analysis of the EP.

    Ultimate analyses (ad)Proximate analyses (ad)
    SampleCHONSCaMgMAFCV
    EP38.64.933.51.90.63.21.34.916.315.063.8
    Note: M is the moisture, A is the ash, FC is the fixed carbon, V is the volatile.
    下载: 导出CSV

    Table  2.   Characteristics of pores in AC and EAC.

    SampleSBET
    (m2 g−1)
    SMic
    (m2 g−1)
    SMes
    (m2 g−1)
    SMes/SMicVTot
    (cm3 g−1)
    VMic
    (cm3 g−1)
    DMic
    (nm)
    DMes
    (nm)
    EAC3283110521781.973.861.530.754.62
    AC217518593160.172.131.250.623.10
    Note: SMic represents micropore specific surface area, SMes represents mesopore specific surface area, VTot represents total pore volume, VMic represents micropore volume, DMic represents micropore average pore diameter, DMes represents mesopore average pore diameter.
    下载: 导出CSV

    Table  3.   Gravimetric capacitance of AC and EAC at different current densities.

    SampleCapacitance (F g−1)
    0.1
    (A g−1)
    0.2
    (A g−1)
    0.5
    (A g−1)
    1
    (A g−1)
    2
    (A g−1)
    5
    (A g−1)
    10
    (A g−1)
    AC253233220213208205202
    EAC361350338330327325323
    下载: 导出CSV
  • [1] Mao L, Li Y, Chi C Y, et al. Conjugated polyfluorene imidazolium ionic liquids intercalated reduced graphene oxide for high performance supercapacitor electrodes[J]. Nano Energy,2014,6:119-128. doi: 10.1016/j.nanoen.2014.03.018
    [2] Wang G M, Wang H Y, Lu X H, et al. Solid-State supercapacitor based on activated carbon cloths exhibits excellent rate capability[J]. Adv Mater,2014,26:2676-2682. doi: 10.1002/adma.201304756
    [3] Westover A S, Tian J W, Bernath S, et al. A multifunctional load-bearing solid-state supercapacitor[J]. Nano Lett,2014,14:3197-3202. doi: 10.1021/nl500531r
    [4] Bai X X, Hu X J, Zhou S Y, et al. In situ polymerization and characterization of grafted poly (3, 4-ethylenedioxythiophene)/multiwalled carbon nanotubes composite with high electrochemical performances[J]. Electrochimica Acta,2013,87:394-400. doi: 10.1016/j.electacta.2012.09.079
    [5] Chen H, Guo Y C, Wang F, et al. An activated carbon derived from tobacco waste for use as a supercapacitor electrode material[J]. New Carbon Mater,2017,32:592-599. doi: 10.1016/S1872-5805(17)60140-9
    [6] KS Lee, MS Park, JD Kim. Nitrogen doped activated carbon with nickel oxide for high specific capacitance as supercapacitor electrodes[J]. Colloids Surf, A,2017,533:323-329.
    [7] Jin H, Wang X M, Gu Z R, et al. A facile method for preparing nitrogen-doped graphene and its application in supercapacitors[J]. J Power Sources,2015,273:1156-1162. doi: 10.1016/j.jpowsour.2014.10.010
    [8] Sharma R, Manzie C, Bessede M, et al. Conventional, hybrid and electric vehicles for Australian driving conditions -Part 1: Technical and financial analysis[J]. Transport Res C,2012,25:238-249. doi: 10.1016/j.trc.2012.06.003
    [9] Sun K, Leng C Y, Jian-Chun J, et al. Microporous activated carbons from coconut shells produced by self-activation using the pyrolysis gases produced from them, that have an excellent electric double layer performance[J]. New Carbon Mater,2017,32:451-459. doi: 10.1016/S1872-5805(17)60134-3
    [10] Volperts A, Dobele G, Zhurinsh A, et al. Wood based activated carbons for supercapacitor electrodes with sulfuric acid electrolyte[J]. New Carbon Mater,2017,32:319-326. doi: 10.1016/S1872-5805(17)60125-2
    [11] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nat Mater,2008,7:845-854. doi: 10.1038/nmat2297
    [12] Tao Y, Xie X Y, Lv W, et al. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors[J]. Sci Rep,2013,3:2975. doi: 10.1038/srep02975
    [13] Barzegar F, Bello A, Dangbegnon J K, et al. Asymmetric supercapacitor based on activated expanded graphite and pinecone tree activated carbon with excellent stability[J]. Appl Energy,2017,207:417-426. doi: 10.1016/j.apenergy.2017.05.110
    [14] Fujishige M, Yoshida I, Toya Y, et al. Preparation of activated carbon from bamboo-cellulose fiber and its use for EDLC electrode material[J]. J Environ Chem Eng,2017,5:1801-1808. doi: 10.1016/j.jece.2017.03.011
    [15] Liu H J, Cui W J, Jin L H, et al. Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors[J]. J Mater Chem,2009,19:3661-3667. doi: 10.1039/b819820a
    [16] Xiao Y, Long C, Zheng M T, et al. High-capacity porous carbons prepared by KOH activation of activated carbon for supercapacitors[J]. Chin Chem Lett,2014,25:865-868. doi: 10.1016/j.cclet.2014.05.004
    [17] Kleszyk P, Ratajczak P, Skowron P, et al. Carbons with narrow pore size distribution prepared by simultaneous carbonization and self-activation of tobacco stems and their application to supercapacitors[J]. Carbon,2015,81:148-157. doi: 10.1016/j.carbon.2014.09.043
    [18] Abioye A M, Ani F N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review[J]. Renew Sust Energ Rev,2015,52:1282-1293. doi: 10.1016/j.rser.2015.07.129
    [19] Farma R, Deraman M, Awitdrus A, et al. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors[J]. Bioresour Technol,2013,132:254-261. doi: 10.1016/j.biortech.2013.01.044
    [20] Wang G M, Ling Y C, Qian F, et al. Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes[J]. J Power Sources,2011,196:5209-5214. doi: 10.1016/j.jpowsour.2011.02.019
    [21] Kang D M, Liu Q L, Gu J J, et al. “Egg-box”-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors[J]. ACS Nano,2015,9:11225-11233. doi: 10.1021/acsnano.5b04821
    [22] Jurewicz K, Babel K. Efficient capacitor materials from active carbons based on coconut shell/melamine precursors[J]. Energy Fuels,2010,24:3429-3435. doi: 10.1021/ef901554j
    [23] Balathanigaimani M S, Shim W G, Lee M J, et al. Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors[J]. Electrochem Commun,2008,10:868-871. doi: 10.1016/j.elecom.2008.04.003
    [24] Li X L, Han C L, Chen X Y, et al. Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes[J]. Microporous Mesoporous Mater,2010,131:303-309. doi: 10.1016/j.micromeso.2010.01.007
    [25] Zhao S, Wang C Y, Chen M M, et al. Potato starch-based activated carbon spheres as electrode material for electrochemical capacitor[J]. J Phys Chem Solids,2009,70:1256-1260. doi: 10.1016/j.jpcs.2009.07.004
    [26] Chen H B, Wang H B, Yang L F, et al. High specific surface area rice hull based porous carbon prepared for EDLCs[J]. Int J Electrochem Sci,2012,7:4889-4897.
    [27] Li X A, Xing W, Zhuo S P, et al. Preparation of capacitor’s electrode from sunflower seed shell[J]. Bioresour. Technol.,2011,102:1118-1123. doi: 10.1016/j.biortech.2010.08.110
    [28] He J J, Zhang D Y, Wang Y L, et al. Biomass-derived porous carbons with tailored graphitization degree and pore size distribution for supercapacitors with ultra-high rate capability[J]. Appl Surf Sci,2020,515
    [29] Qiu Y C, Zhang X F, Yang S H. High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets[J]. Phys Chem Chem Phys,2011,13:12554-12558. doi: 10.1039/c1cp21148j
    [30] Nolan M, Long R, English N J, et al. Hybrid density functional theory description of N- and C-doping of NiO[J]. J Chem Phys,2011,134:735.
    [31] Sarhan A, Nakanishi H, Dino W A, et al. Oxygen vacancy effects on electronic structure of Pt/NiO/Pt capacitor-like system[J]. Surf Sci,2012,606:239-246. doi: 10.1016/j.susc.2011.09.022
    [32] Wang D W, Li F, Fang H T, et al. Effect of pore packing defects in 2-D ordered mesoporous carbons on ionic transport[J]. J Phys Chem B,2006,110:8570-8575. doi: 10.1021/jp0572683
    [33] Li S J, Han K H, Si P C, et al. High-performance activated carbons prepared by KOH activation of gulfweed for supercapacitors[J]. Int J Electrochem Sci,2018,13:1728-1743.
    [34] Cuong D V, Wu P C, Liu N L, et al. Hierarchical porous carbon derived from activated biochar as an eco-friendly electrode for the electrosorption of inorganic ions[J]. Sep Purif Technol,2020,242
    [35] Zheng H J, Yu A M, Ma C A. Effect of pore characteristics on electrochemical capacitance of activated carbons[J]. Russ J Electrochem,2012,48:1179-1186. doi: 10.1134/S102319351205014X
    [36] Rychagov A Y, Urisson N A, Vol'Fkovich Y M. Electrochemical characteristics and properties of the surface of activated carbon electrodes in a double-layer capacitor[J]. Russ J Electrochem,2001,37:1172-1179. doi: 10.1023/A:1012715615873
    [37] Chen W C, Wen T C, Teng H. Polyaniline-deposited porous carbon electrode for supercapacitor[J]. Electrochim Acta,2003,48:641-649. doi: 10.1016/S0013-4686(02)00734-X
    [38] Huang Q H, Wang X Y, Li J, et al. Nickel hydroxide/activated carbon composite electrodes for electrochemical capacitors[J]. J Power Sources,2007,164:425-429. doi: 10.1016/j.jpowsour.2006.09.066
    [39] Kim I H, Kim J H, Cho B W, et al. Synthesis and electrochemical characterization of vanadium oxide on carbon nanotube film substrate for pseudocapacitor applications[J]. J Electrochem Soc,2006,153:1451-1458. doi: 10.1149/1.2203936
    [40] Fang B, Wei Y Z, Kumagai M. Modified carbon materials for high-rate EDLCs application[J]. J Power Sources,2006,155:487-491. doi: 10.1016/j.jpowsour.2005.04.012
    [41] Kim C H, Pyun S I, Shin H C. Kinetics of double-layer charging/discharging of activated carbon electrodes: Role of surface acidic functional groups[J]. J Electrochem Soc,2002,149:93-98.
    [42] Tongpoothorn W, Sriuttha M, Homchan P, et al. Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties[J]. Chem Eng Res Des,2011,89:335-340. doi: 10.1016/j.cherd.2010.06.012
    [43] Bedin K C, Martins A C, Cazetta A L, et al. KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal[J]. Chem Eng J,2016,286:476-484. doi: 10.1016/j.cej.2015.10.099
    [44] Gomez-Serrano V, Pastor-Villegas J, Perez-Florindo A, et al. FT-IR study of rockrose and char and activated carbon[J]. J Anal Appl Pyrolysis,1996,36:71-80. doi: 10.1016/0165-2370(95)00921-3
    [45] EI-Hendawy A N A. Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions[J]. J Anal Appl Pyrolysis,2006,75:159-166. doi: 10.1016/j.jaap.2005.05.004
    [46] Dong X C, Wang X W, Wang L, et al. Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode[J]. Carbon,2012,50:4865-4870. doi: 10.1016/j.carbon.2012.06.014
    [47] Zhou H, Lv B L, Xu Y, et al. Synthesis and electrochemical properties of NiO nanospindles[J]. Mater Res Bull,2014,50:399-404. doi: 10.1016/j.materresbull.2013.11.004
    [48] Pawar S M, Inamdar A I, Gurav K V, et al. Effect of oxidant on the structural, morphological and supercapacitive properties of nickel hydroxide nanoflakes electrode films[J]. Mater Lett,2015,141:336-339. doi: 10.1016/j.matlet.2014.11.133
    [49] Sun H Y, Liu S W, Lu Q F, et al. Template-synthesis of hierarchical Ni(OH)2 hollow spheres with excellent performance as supercapacitor[J]. Mater Lett,2014,128:136-139. doi: 10.1016/j.matlet.2014.04.134
    [50] Qu D, Zheng M, Zhang L, et al. CORRIGENDUM: Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots[J]. Sci Rep,2014,4:5294. doi: 10.1038/srep05294
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  5263
  • HTML全文浏览量:  287
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-10
  • 修回日期:  2020-06-01
  • 网络出版日期:  2021-08-10
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回