留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔炭复合V2O3纳米材料用于锂离子电容器的研究

任晓龙 艾德生 吕瑞涛 康飞宇 黄正宏

任晓龙, 艾德生, 吕瑞涛, 康飞宇, 黄正宏. 多孔炭复合V2O3纳米材料用于锂离子电容器的研究. 新型炭材料, 2021, 36(6): 1103-1108. doi: 10.1016/S1872-5805(21)60070-7
引用本文: 任晓龙, 艾德生, 吕瑞涛, 康飞宇, 黄正宏. 多孔炭复合V2O3纳米材料用于锂离子电容器的研究. 新型炭材料, 2021, 36(6): 1103-1108. doi: 10.1016/S1872-5805(21)60070-7
REN Xiao-long, AI De-sheng, LU Rui-tao, KANG Fei-yu, HUANG Zheng-hong. Porous V2O3/C composite anodes with pseudocapacitive characteristics for lithium-ion capacitors. New Carbon Mater., 2021, 36(6): 1103-1108. doi: 10.1016/S1872-5805(21)60070-7
Citation: REN Xiao-long, AI De-sheng, LU Rui-tao, KANG Fei-yu, HUANG Zheng-hong. Porous V2O3/C composite anodes with pseudocapacitive characteristics for lithium-ion capacitors. New Carbon Mater., 2021, 36(6): 1103-1108. doi: 10.1016/S1872-5805(21)60070-7

多孔炭复合V2O3纳米材料用于锂离子电容器的研究

doi: 10.1016/S1872-5805(21)60070-7
基金项目: 国家自然科学基金 (51672151, 52172047).
详细信息
    作者简介:

    任晓龙,博士研究生. E-mail:18801291089@163.com

    通讯作者:

    艾德生,教授. E-mail:ai_desh@mail.tsinghua.edu.cn

    黄正宏,教授. E-mail:zhhuang@tsinghua.edu.cn

  • 中图分类号: TB33

Porous V2O3/C composite anodes with pseudocapacitive characteristics for lithium-ion capacitors

Funds: National Natural Science Foundation of China (51672151, 52172047).
More Information
  • 摘要: 以NaCl为模板、结合冷冻干燥技术合成了多孔炭复合V2O3纳米材料,研究其用作锂离子电池负极材料的动力学特征,并与商业化活性炭构建锂离子电容器,测试其电化学性能。结果表明,多孔炭复合V2O3纳米材料具有赝电容行为,所构建的锂离子电容器同时具有高能量、高功率和长效循环稳定性,是一种很有前景的锂离子电容器负极材料。
  • FIG. 1077.  FIG. 1077.

    FIG. 1077..  FIG. 1077.

    图  1  三维炭复合 V2O3材料的电化学性能:(a) 不同扫描速率下的CV曲线,(b) 根据峰电流和扫描速率计算的b值,(c) 动力学分析,(d) 不同扫速下电容和扩散反应对容量的贡献比例

    Figure  1.  Electrochemical performance of the 3D porous V2O3@C anode. (a) CV curves of V2O3@C at various scanning rates. (b) Determination of the b value using the relationship between peak current and scan rate. (c) Quantification of the capacitive and diffusion charge storage in V2O3@C anode. (d) Contribution ratio of diffusion and capacitive capacities at different scan rates.

    图  2  (a) 活性炭的SEM照片,(b) 活性炭氮吸附/脱附曲线和相应的孔径分布图,(c) 活性炭倍率性能,(d) 5 A g−1电流密度下的循环性能

    Figure  2.  (a) Typical SEM image of commercial AC. (b) Nitrogen adsorption-desorption isotherm with the corresponding pore size distribution curve (the inset picture) of the commercial AC. (c) Rate performance of commercial AC at various current densities. (b) Cycle performance of commercial AC at a current density of 5 A g−1.

    图  3  V2O3@C基锂离子电容器的电化学性能:(a) 器件充电过程中正负极电势变化的示意图,(b) 不同正负极质量配比性能图,(c)不同扫描速率下的CV图,(d) 不同电流密度下的恒流充放电曲线,(e) V2O3@C基锂离子电容器和其他锂离子电容器性能对比图,(f) 1 A g−1电流密度下的循环性能

    Figure  3.  Electrochemical performance of AC//V2O3@C. (a) Schematic of voltage changes of AC//V2O3@C during the charge process. (b) Ragone plots of AC//V2O3@C at different mass ratios of two electrodes. (c) CV curves at various scanning rates from 2 to 20 mV s−1. (d) Charge/discharge profiles at various current densities from 0.1 to 1A g−1. (e) Ragone plots of AC//V2O3@C and other reported LICs. (f) Cycle performance at a current density of 1 A g−1.

  • [1] Deng B H, Lei T Y, Zhu W H, et al. In-plane assembled orthorhombic Nb2O5 nanorod films with high-rate Li+ intercalation for high-performance flexible Li-ion capacitors[J]. Advanced Functional Materials,2018,28(1):1704330.
    [2] Wang F, Wang C, Zhao Y, et al. A quasi-solid-state Li-ion capacitor based on porous TiO2 hollow microspheres wrapped with graphene nanosheets[J]. Small,2016,12(45):6207-6213. doi: 10.1002/smll.201602331
    [3] Umeshbabu E, Rao G. R. Vanadium pentoxide nanochains for high-performance electrochemical supercapacitors[J]. Journal of colloid interface science,2016,472:210-219. doi: 10.1016/j.jcis.2016.03.050
    [4] Aravindan V, Chuiling W, Reddy M, et al. Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors[J]. Physical Chemistry Chemical Physics,2012,14(16):5808-5814. doi: 10.1039/c2cp40603a
    [5] Luo J, Zhang W, Yuan H, et al. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors[J]. ACS nano,2017,11(3):2459-2469. doi: 10.1021/acsnano.6b07668
    [6] Wang G, Lu C, Zhang X, et al. Toward ultrafast lithium ion capacitors: A novel atomic layer deposition seeded preparation of Li4Ti5O12/graphene anode[J]. Nano Energy,2017,36:46-57. doi: 10.1016/j.nanoen.2017.04.020
    [7] Wang X F, Shen G Z. Intercalation pseudo-capacitive TiNb2O7 carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density[J]. Nano Energy,2015,15:104-115. doi: 10.1016/j.nanoen.2015.04.011
    [8] Que L, Wang Z, Yu F, et al. 3D ultralong nanowire arrays with a tailored hydrogen titanate phase as binder-free anodes for Li-ion capacitors[J]. Journal of Materials Chemistry A,2016,4(22):8716-8723. doi: 10.1039/C6TA02413K
    [9] Gao X, Zhan C, Yu X, et al. A high performance lithium-ion capacitor with both electrodes prepared from Sri Lanka graphite ore[J]. Materials (Basel),2017,10(4):414. doi: 10.3390/ma10040414
    [10] Zhang J B, Li Q W, Liao Z H, et al. In situ synthesis of V2O3-intercalated N-doped graphene nanobelts from VOx-amine hybrid as high-performance anode material for alkali-ion batteries[J]. Chemelectrochem,2018,5(10):1387-1393. doi: 10.1002/celc.201800213
    [11] Liu X Q, Zhang D, Li G S, et al. In situ synthesis of V2O3 nanorods anchored on reduced graphene oxide as high-performance lithium ion battery anode[J]. Chemistryselect,2018,3(43):12108-12112. doi: 10.1002/slct.201802730
    [12] Li H Y, Jiao K, Wang L, et al. Micelle anchored in situ synthesis of V2O3 nanoflakes@C composites for supercapacitors[J]. Journal of Materials Chemistry A,2014,2(44):18806-18815. doi: 10.1039/C4TA04062G
    [13] Leng J G, Mei H L, Zhan L, et al. V2O3 nanoparticles anchored onto the reduced graphene oxide for superior lithium storage[J]. Electrochimica Acta,2017,231:732-738. doi: 10.1016/j.electacta.2017.01.133
    [14] Bai Y C, Tang Y K, Liu L, et al. Peapod-like CNT@V2O3 with superior electrochemical performance as an anode for lithium-ion batteries[J]. Acs Sustainable Chemistry & Engineering,2018,6(11):14614-14620.
    [15] Wang J, Liu Z, Yang W, et al. A one-step synthesis of porous V2O3@C hollow spheres as a high-performance anode for lithium-ion batteries[J]. Chemical Communications,2018,54(53):7346-7349. doi: 10.1039/C8CC03875A
    [16] Ren X L, Ai D S, Zhan C Z, et al. NaCl-template-assisted freeze-drying synthesis of 3D porous carbon-encapsulated V2O3 for lithium-ion battery anode[J]. Electrochimica Acta,2019,318:730-736. doi: 10.1016/j.electacta.2019.06.138
    [17] Kong N, Jia M, Yang C, et al. Encapsulating V2O3 nanoparticles in carbon nanofibers with internal void spaces for a self-supported anode material in superior lithium-ion capacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7(24):19483-19495.
    [18] Augustyn V, Come J, Lowe M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nature materials,2013,12(6):518-522. doi: 10.1038/nmat3601
    [19] Shen L, Lv H, Chen S, et al. Peapod-like Li3VO4/N-Doped carbon nanowires with pseudocapacitive properties as advanced materials for high-energy lithium-ion capacitors[J]. Advanced Materials,2017,29(27):1700142. doi: 10.1002/adma.201700142
    [20] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry,1985,57(4):603-619. doi: 10.1351/pac198557040603
    [21] Zhan C Z, Liu W, Hu M X, et al. High-performance sodium-ion hybrid capacitors based on an interlayer-expanded MoS2/rGO composite: Surpassing the performance of lithium-ion capacitors in a uniform system[J]. Npg Asia Materials,2018,10(8):775-787. doi: 10.1038/s41427-018-0073-y
    [22] Han C P, Xu L, Li H F, et al. Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors[J]. Carbon,2018,140:296-305. doi: 10.1016/j.carbon.2018.09.010
    [23] Li S H, Chen J W, Gong X F, et al. Holey graphene-wrapped porous TiNb24O62 microparticles as high-performance intercalation pseudocapacitive anode materials for lithium-ion capacitors[J]. Npg Asia Materials,2018,10:406-416. doi: 10.1038/s41427-018-0042-5
    [24] Zhao Y, Cui Y, Shi J, et al. Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors[J]. Journal of Materials Chemistry A,2017,5(29):15243-15252. doi: 10.1039/C7TA04154C
    [25] Wang F, Liu Z, Yuan X, et al. A quasi-solid-state Li-ion capacitor with high energy density based on Li3VO4/carbon nanofibers and electrochemically-exfoliated graphene sheets[J]. Journal of Materials Chemistry A,2017,5(28):14922-14929. doi: 10.1039/C7TA03920D
    [26] Xu X N, Niu F, Zhang D P, et al. Hierarchically porous Li3VO4/C nanocomposite as an advanced anode material for high-performance lithium-ion capacitors[J]. Journal of Power Sources,2018,384:240-248. doi: 10.1016/j.jpowsour.2018.03.007
    [27] Li G C, Yin Z L, Guo H J, et al. Metalorganic quantum dots and their graphene-like derivative porous graphitic carbon for advanced lithium-ion hybrid supercapacitor[J]. Advanced Energy Materials,2019,9(2):1802878. doi: 10.1002/aenm.201802878
    [28] Yang Z W, Guo H J, Li X H, et al. Graphitic carbon balanced between high plateau capacity and high rate capability for lithium ion capacitors[J]. Journal of Materials Chemistry A,2017,5(29):15302-15309. doi: 10.1039/C7TA03862C
    [29] Li X X, Fu J J, Pan Z G, et al. Peapod-like V2O3 nanorods encapsulated into carbon as binder-free and flexible electrodes in lithium-ion batteries[J]. Journal of Power Sources,2016,331:58-66. doi: 10.1016/j.jpowsour.2016.09.031
  • 加载中
图(4)
计量
  • 文章访问数:  1188
  • HTML全文浏览量:  311
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-04
  • 修回日期:  2020-04-20
  • 网络出版日期:  2021-06-11
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回