留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

炭纸衬底上化学气相沉积直立型二维过渡金属硫化物及其电催化产氢性能

王克 汤飞 姚孝璋 HitanshuKumar 干林

王克, 汤飞, 姚孝璋, HitanshuKumar, 干林. 炭纸衬底上化学气相沉积直立型二维过渡金属硫化物及其电催化产氢性能. 新型炭材料(中英文), 2022, 37(6): 1183-1192. doi: 10.1016/S1872-5805(21)60078-1
引用本文: 王克, 汤飞, 姚孝璋, HitanshuKumar, 干林. 炭纸衬底上化学气相沉积直立型二维过渡金属硫化物及其电催化产氢性能. 新型炭材料(中英文), 2022, 37(6): 1183-1192. doi: 10.1016/S1872-5805(21)60078-1
WANG Ke, TANG Fei, YAO Xiao-zhang, Hitanshu Kumar, GAN Lin. Chemical vapor deposition of two-dimensional transition metal sulfides on carbon paper for electrocatalytic hydrogen evolution. New Carbon Mater., 2022, 37(6): 1183-1192. doi: 10.1016/S1872-5805(21)60078-1
Citation: WANG Ke, TANG Fei, YAO Xiao-zhang, Hitanshu Kumar, GAN Lin. Chemical vapor deposition of two-dimensional transition metal sulfides on carbon paper for electrocatalytic hydrogen evolution. New Carbon Mater., 2022, 37(6): 1183-1192. doi: 10.1016/S1872-5805(21)60078-1

炭纸衬底上化学气相沉积直立型二维过渡金属硫化物及其电催化产氢性能

doi: 10.1016/S1872-5805(21)60078-1
基金项目: 国家自然科学基金(No. 52173222);广东珠江人才计划地方创新研究团队项目(No. 2017BT01N111);广东省自然科学基金杰出青年基金(No. 2016A030306035)。
详细信息
    作者简介:

    王克:王 克,硕士. E-mail:wang-k16@mails.tsinghua.edu.cn

    通讯作者:

    干 林,博士,副教授. E-mail:lgan@sz.tsinghua.edu.cn

  • 中图分类号: TB33

Chemical vapor deposition of two-dimensional transition metal sulfides on carbon paper for electrocatalytic hydrogen evolution

Funds: National Natural Science Foundation of China (52173222), Guangdong Pearl River Talent Plan Local Innovation Research Team (2017BT01N111), Outstanding Youth Fund of Guangdong Natural Science Foundation (2016A030306035).
More Information
  • 摘要: 以MoS2为代表的二维过渡金属硫化物近年来在电催化水分解产氢反应中表现出良好的电催化活性而受到广泛关注。但二维过渡金属硫化物的导电性一般较差、且催化活性位常在有限的边缘位置,成为限制其催化性能的重要因素。本文通过化学气相沉积方法研究了在炭纸基底上直接生长3种过渡金属硫化物(MoS2、NbS2和WS2)构筑一体化催化电极,以提高整个电极的导电性。通过优化生长工艺,实现了炭纸表面3种过渡金属硫化物的直立型生长并对电催化产氢反应表现出良好的催化性能,尤其是WS2表现出新颖的纳米片/纳米纤维层次结构,其对产氢反应表现出最佳的催化性能。在此基础上,对炭纸上生长的过渡金属硫化物通过阴极电化学活化处理的方式引入硫缺陷,从而提高其HER活性。结合透射电子显微镜和原位电化学拉曼光谱仪研究了二维过渡金属硫化物在电化学活化前后的结构变化尤其是所产生的硫缺陷的微观结构,为其产氢性能的提升提供合理的解释。
  • FIG. 1966.  FIG. 1966.

    FIG. 1966..  FIG. 1966.

    图  1  TMDs(MoS2、NbS2、WS2)的合成示意图

    Figure  1.  Schematic of synthesis of TMDs (MoS2, NbS2, WS2)

    图  2  在12 L/h的气体流速下,生长在碳纸上的MoSx的SEM照片:750 °C的(a)低倍和(b)高倍照片,850 °C的(c)低倍和(d)高倍照片;12 L/h的气体流速下850 °C生长的MoS2的(e)TEM照片和(f)HRTEM照片,内嵌图为其FFT以及(g)尺寸分布图;(h)12 L/h的气体流速下,750 °C和850 °C生长在碳纸上的MoSx的XRD谱图

    Figure  2.  SEM images of synthesized MoSx on carbon paper with a flow of 12 L/h. (a-b) 750 °C, (c-d) 850 °C, (e) TEM image, (f) HRTEM image with FFT and (g) size distribution of MoS2 on carbon paper with a flow of 12 L/h under 850 °C and (h) XRD patterns of synthesized MoSx on carbon paper with a flow of 12 L/h under 750 °C or 850 °C

    图  3  在800 °C下,生长在碳纸上的NbSx的SEM照片:12 L/h的气体流速的(a)低倍和(b)高倍照片,40 L/h的气体流速的(c)低倍和(d)高倍照片;在800 °C,12 L/h的气体流速下生长的NbS2的(e)TEM照片和(f)HRTEM照片,内嵌图为其FFT以及(g)尺寸分布图;(h)在800 °C,12 L/h和40 L/h的气体流速下,生长在碳纸上的NbS2的XRD图谱

    Figure  3.  SEM images of synthesized NbS2 on carbon paper under 750 °C with a flow of (a-b) 12 L/h, (c-d) 40 L/h, (e) TEM image, (f) HRTEM image with FFT and (g) size distribution of NbS2 on carbon paper under 800 °C with a flow of 40 L/h and (h) XRD patterns of synthesized NbS2 on carbon paper under 800 °C with a flow of 12 L/h or 40 L/h

    图  4  三种合成的WSx的SEM图:(a-b)850 °C及4 L/h的气体流速,(c-d)850 °C及12 L/h的气体流速,(e-f)750 °C及12 L/h的气体流速;在750 °C,12 L/h的气体流速下生长的WS2的(g)TEM照片和(h)HRTEM照片,内嵌图为其FFT以及(i)尺寸分布图;(j)在750 °C,12 L/h的气体流速下,生长在碳纸上的WS2的XRD图谱

    Figure  4.  SEM images of three types of synthesized WSx on carbon paper (a-b) under 850 °C with a flow of 4 L/h, (c-d) under 850 °C with a flow of 12 L/h, (e-f) under 750 °C with a flow of 12 L/h. (g) TEM image, (h) HRTEM image with FFT, (i) size distribution and (j) XRD patterns of WS2 on carbon paper under 750 °C with a flow of 12 L/h

    图  5  三种TMDs在0.05 mol L−1 H2SO4中的HER电催化性能:(a)碳纸及MoS2 (850 °C, 12 L/h)、NbS2 (800 °C, 40 L/h)、WS2 (750 °C, 12 L/h)的HER极化曲线,(b)MoS2、NbS2、WS2的Tafel斜率图

    Figure  5.  (a) HER plots and (b) Tafel slopes of MoS2, NbS2 and WS2

    图  6  MoS2、NbS2和WS2在0.05 mol L−1 H2SO4中阴极电化学活化(-1.0 V, 3 min)前后的HER极化曲线

    Figure  6.  HER plots of MoS2, NbS2 and WS2 before and after electrochemical cathodic activation

    图  7  (a)活化后的MoS2的HRTEM照片及该区域的FFT,(b)活化后的NbS2的TEM照片以及(b)中两个区域(c)I和(d)II的EDX谱图

    Figure  7.  (a) HRTEM image of activated MoS2 with FFT, (b) TEM image of activated NbS2, EDX patterns of two regions (c) I and (d) II from Fig. 7(a)

    图  8  三种TMDs在0~ –0.6 V(vs. RHE)电位下的原位电化学拉曼光谱图:(a-b)MoS2、(c)NbS2、(d)WS2

    Figure  8.  In-situ electrochemical Raman spectra of (a, b) MoS2, (c) NbS2 and (d) WS2 under steady state chronoamperometry by holding at each potential (from 0 to -0.6 V/RHE) for 2 min

  • [1] Dresselhau MS, Thomas IL. Alternative energy technologies[J]. Nature,2001,414:332-337. doi: 10.1038/35104599
    [2] Dunn S. Hydrogen futures toward a sustainable energy system[J]. International Journal of Hydrogen Energy,2002,27:235-264. doi: 10.1016/S0360-3199(01)00131-8
    [3] Khaselev O, Turner JA. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting[J]. Science,1998,280:425-427. doi: 10.1126/science.280.5362.425
    [4] Funk JE. Thermochemical hydrogen production: past and present[J]. International Journal of Hydrogen Energy,2001,26:185-190. doi: 10.1016/S0360-3199(00)00062-8
    [5] Kapdan IK, Kargi F. Bio-hydrogen production from waste materials[J]. Enzyme and microbial technology,2006,38:569-582. doi: 10.1016/j.enzmictec.2005.09.015
    [6] Das D, Veziroǧlu TN. Hydrogen production by biological processes: a survey of literature[J]. International journal of hydrogen energy,2001,26:13-28. doi: 10.1016/S0360-3199(00)00058-6
    [7] Yan Y, Xia BY, Zhao B, Wang X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting[J]. Journal of Materials Chemistry A,2016,4:17587-17603. doi: 10.1039/C6TA08075H
    [8] Choi W, Choudhary N, Han GW, et al. Recent development of two-dimensional transition metal dichalcogenides and their applications[J]. Materials Today,2017,20:116-130. doi: 10.1016/j.mattod.2016.10.002
    [9] Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials,2017,2:17033. doi: 10.1038/natrevmats.2017.33
    [10] Joyce B. Molecular beam epitaxy[J]. Reports on Progress in Physics,1985,48:1637. doi: 10.1088/0034-4885/48/12/002
    [11] Dumcenco D, Ovchinnikov D, Marinov K, et al. Large-area epitaxial monolayer MoS2[J]. ACS Nano,2015,9:4611-4620. doi: 10.1021/acsnano.5b01281
    [12] Najmaei S, Liu Z, Zhou W, et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers[J]. Nature Materials,2013,12:754. doi: 10.1038/nmat3673
    [13] Van Der Zande AM, Huang PY, Chenet DA, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide[J]. Nature Materials,2013,12:554. doi: 10.1038/nmat3633
    [14] Kang K, Xie S, Huang L, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity[J]. Nature,2015,520:656. doi: 10.1038/nature14417
    [15] Wang D, Pan Z, Wu Z, et al. Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts[J]. Journal of Power Sources,2014,264:229-234. doi: 10.1016/j.jpowsour.2014.04.066
    [16] Novoselov KS, Fal'ko VI, Colombo L, et al. A roadmap for graphene[J]. Nature,2012,490:192-200. doi: 10.1038/nature11458
    [17] Zhou J, Lin J, Huang X, et al. A library of atomically thin metal chalcogenides[J]. Nature,2018,556:355-359. doi: 10.1038/s41586-018-0008-3
    [18] Jena D, Banerjee K, Xing GH. 2D crystal semiconductors: Intimate contacts[J]. Nature Materials,2014,13:1076. doi: 10.1038/nmat4121
    [19] Johnson D. Structure-property relationships in carbon fibres[J]. Journal of Physics D: Applied Physics,1987,20:286. doi: 10.1088/0022-3727/20/3/007
    [20] Dicks AL. The role of carbon in fuel cells[J]. Journal of Power Sources,2006,156:128-141. doi: 10.1016/j.jpowsour.2006.02.054
    [21] Lukowski MA, Daniel AS, Meng F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. J Am Chem Soc,2013,135:10274-10277. doi: 10.1021/ja404523s
    [22] Hinnemann B, Moses PG, Bonde J, et al. Biomimetic hydrogen evolution MoS2 nanoparticles as catalyst for hydrogen evolution[J]. J Am Chem Soc,2005,127:5308-5309. doi: 10.1021/ja0504690
    [23] Jaramillo TF, Jørgensen KP, Bonde J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science,2007,317:100-102. doi: 10.1126/science.1141483
    [24] Li H, Tsai C, Koh AL, Cai L, et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies[J]. Nat Mater,2016,15:364.
    [25] Tsai C, Li H, Park S, et al. Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution[J]. Nat Commun,2017,8:1-8. doi: 10.1038/s41467-016-0009-6
    [26] Yu Y, Li C, Liu Y, et al. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films[J]. Sci Rep,2013,3:1866. doi: 10.1038/srep01866
    [27] Ge W, Kawahara K, Tsuji M, et al. Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD[J]. Nanoscale,2013,5:5773-5778. doi: 10.1039/c3nr00723e
    [28] Mark A. Lukowski ASD, Caroline RE, et al. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets[J]. Energy & Environmental Science,2014,7:2608-2613.
    [29] Russell AE. Preface[J]. Faraday Discuss,2009,140:9-10. doi: 10.1039/B814058H
    [30] Wu Z, Fang B, Bonakdarpour A, et al. WS2 nanosheets as a highly efficient electrocatalyst for hydrogen evolution reaction[J]. Applied Catalysis B: Environmental,2012,125:59-66. doi: 10.1016/j.apcatb.2012.05.013
    [31] Chen JM, Wang CS. Second order Raman spectrum of MoS2[J]. Solid State Communications,1974,14:857-860. doi: 10.1016/0038-1098(74)90150-1
    [32] Berkdemir A, Gutiérrez HR, Botello-Méndez AR, et al. Identification of individual and few layers of WS2 using Raman spectroscopy[J]. Scientific Reports,2013:3.
    [33] McMullan WG, Irwin JC. Raman scattering from 2H and 3R-NbS2[J]. Solid State Communications,1983,45:557-560. doi: 10.1016/0038-1098(83)90426-X
    [34] Ward AT. Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures[J]. The Journal of Physical Chemistry C,1968:72.
  • 加载中
图(9)
计量
  • 文章访问数:  532
  • HTML全文浏览量:  326
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-24
  • 修回日期:  2019-07-23
  • 网络出版日期:  2022-10-24
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回