留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A DFT study of the effect of stacking on the quantum capacitance of bilayer graphene materials

CUI Guang-yu YI Zong-lin SU Fang-yuan CHEN Cheng-meng HAN Pei-de

崔光宇, 易宗琳, 苏方远, 陈成猛, 韩培德. 双层堆叠对石墨烯材料量子电容影响的理论研究. 新型炭材料, 2021, 36(6): 1062-1072. doi: 10.1016/S1872-5805(21)60079-3
引用本文: 崔光宇, 易宗琳, 苏方远, 陈成猛, 韩培德. 双层堆叠对石墨烯材料量子电容影响的理论研究. 新型炭材料, 2021, 36(6): 1062-1072. doi: 10.1016/S1872-5805(21)60079-3
CUI Guang-yu, YI Zong-lin, SU Fang-yuan, CHEN Cheng-meng, HAN Pei-de. A DFT study of the effect of stacking on the quantum capacitance of bilayer graphene materials. New Carbon Mater., 2021, 36(6): 1062-1072. doi: 10.1016/S1872-5805(21)60079-3
Citation: CUI Guang-yu, YI Zong-lin, SU Fang-yuan, CHEN Cheng-meng, HAN Pei-de. A DFT study of the effect of stacking on the quantum capacitance of bilayer graphene materials. New Carbon Mater., 2021, 36(6): 1062-1072. doi: 10.1016/S1872-5805(21)60079-3

双层堆叠对石墨烯材料量子电容影响的理论研究

doi: 10.1016/S1872-5805(21)60079-3
基金项目: 中国科学院洁净能源创新研究院合作项目资助(DNL201915);2020年山西省关键核心技术和共性技术研发攻关专项(20201102018);国家自然科学基金委员会优秀青年科学基金项目(21922815)
详细信息
    通讯作者:

    苏方远,副研究员. E-mail:sufangyuan@sxicc.ac.cn

    韩培德,教授. E-mail:hanpeide@126.com

  • 中图分类号: TQ127.1+1

A DFT study of the effect of stacking on the quantum capacitance of bilayer graphene materials

More Information
    Corresponding author: SU Fang-yuan, Associate Professor. E-mail: sufangyuan@sxicc.ac.cnHAN Pei-de, Professor. E-mail: hanpeide@126.com
  • **These authors contributed equally to this work and should be considered co-first authors
  • 摘要: 石墨烯材料由于比表面积大、导电性能好,被作为正极材料与多孔炭材料一起用于锂离子电容器。石墨烯材料在制备和使用过程中易发生片层堆叠积聚,难以保证单层存在。堆叠会影响材料的电子结构进而影响量子电容。为了考察层间相互作用对石墨烯电子结构和量子电容性能的影响规律,基于密度泛函理论计算,本文系统研究了堆叠对于多种缺陷结构石墨烯材料的量子电容、表面电量等性能的影响。计算发现,由于层间相互作用以及基底层提供了部分电荷,单层石墨烯堆叠后量子电容性能增加,并且相较于完整和表面带有点缺陷的石墨烯,掺N双层石墨烯的量子电容提升幅度较大。同时在层间相互作用影响下,堆叠后拥有相近结构的石墨烯之间的量子电容性能差距减小。对于顶层不含悬挂键和孤对电子的石墨烯片层,发生堆叠后量子电容曲线随电压变化的波动趋势降低。
    **These authors contributed equally to this work and should be considered co-first authors
  • FIG. 1073.  FIG. 1073.

    FIG. 1073.. 

    Figure  1.  The schematic diagrams of (a) charging process of LICs[1] (Copyright 2012, Springer New York), and (b) charging mechanism of electric double-layer electrodes [15](Copyright 2009, Royal Society of Chemistry).

    Figure  2.  Configurations of defected bilayer graphene containing point-defects. (a) pristine bilayer graphene, (b) SW type (55-77) defected bilayer graphene, (c) D2_Ⅰ type (the defected carbon rings are arranged as 585 structure) defected bilayer graphene, (d) D2_Ⅱ type (555-777) defected bilayer graphene and (e) D2_Ⅲ type (5555-6-7777) defected bilayer graphene.

    Figure  3.  (a) Specific quantum capacitance (CQ) and (b) excessive surface charge density (ESCD) waveforms for the defected graphene before and after stacking.

    Figure  4.  Comparison of density of states (DOS) between the defected double-layer graphene and the defected single-layer graphene with same defect types. (a) DOS of SW type defected graphene, (b) DOS of D2_Ⅰ type defected graphene, (c) DOS of D2_Ⅱ type defected graphene and (d) DOS of D2_Ⅲ type defected graphene.

    Figure  5.  Diagram of band decomposition charge density (BDCD) of (a) ideal double-layer graphene, (b) SW type defected double-layer graphene, (c) D2_Ⅰtype double layer graphene, (d) D2_Ⅱ type double-layer graphene, (e) D2_Ⅲ type double-layer graphene. In front views the defected layers are at the top, while in side views the defected layers are on the right. (iso=0.006 e Bohr−3).

    Figure  6.  Configurations of three types of defected double-layer graphene with dangling bonds. (a) SV type(single-vacancy) defected double-layer graphene, (b) pyridinic-N double-layer graphene and (c) pyrrolic-N double-layer graphene.

    Figure  7.  Diagram of (a) specific CQ and (b) ESCD of the defected double-layer graphene with dangling bonds.

    Figure  8.  Comparison of DOS between double-layer graphene and single-layer graphene with same type of defects. (a) SV-type defect graphene, (b) pyrrolic-N graphene and (c) pyridinic-N graphene.

    Figure  9.  Diagram of BDCD of (a) SV-type defected double-layer graphene, (b) pyrrolic-N doped double-layer graphene and (c) pyridinic-N doped double-layer graphene. At the left column there are front views of the BDCD plots, while the side views are at the right column. (iso = 0.006 e Bohr−3).

  • [1] Naoi K. Electrochemical supercapacitors and hybrid systems BT-batteries for sustainability: Selected entries from the encyclopedia of sustainability science and technology [G]//BRODD R J. New York, NY: Springer New York, 2013: 93–115.
    [2] Naoi K. "Nanohybrid Capacitor": The next generation electrochemical capacitors[J]. Fuel Cells,2010,10(5):825-833.
    [3] Han P, Xu G, Han X, et al. Lithium ion capacitors in organic electrolyte system: Scientific problems, material development, and key technologies[J]. Advanced Energy Materials,2018,8(26):1-30.
    [4] Geim A, Novoselov K. The rise of graphene[J]. Nature Materials,2007,6(3):183-191. doi: 10.1038/nmat1849
    [5] Stoller M, Park S, Zhu Y, et al. Graphene-based Ultracapacitors[J]. Nano Letters,2008,8:3498-3502. doi: 10.1021/nl802558y
    [6] Sun Y, Wu Q, Shi G. Graphene based new energy materials[J]. Energy and Environmental Science,2011,4(4):1113-1132. doi: 10.1039/c0ee00683a
    [7] Raza W, Ali F, Raza N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy,2018,52(7):441-473.
    [8] Li Z, Peng H, Liu R, et al. Quantitative assessment of basal-, edge- and defect-surfaces of carbonaceous materials and their influence on electric double-layer capacitance[J]. Journal of Power Sources,2020,457:228022. doi: 10.1016/j.jpowsour.2020.228022
    [9] Uysal A, Zhou H, Feng G, et al. Interfacial ionic “liquids”: Connecting static and dynamic structures[J]. Journal of Physics Condensed Matter,2015,27(3):32101. doi: 10.1088/0953-8984/27/3/032101
    [10] Chen F, Qing Q, Xia J, et al. Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution[J]. Journal of the American Chemical Society,2009,131(29):9908-9909. doi: 10.1021/ja9041862
    [11] Paek E, Pak A, Hwang G. A computational study of the interfacial structure and capacitance of graphene in [BMIM][PF6] ionic liquid[J]. Journal of the Electrochemical Society,2013,160(1
    [12] Su F, Xie L, Sun G, et al. Theoretical research progress on the use of graphene in different electrochemical processes[J]. New Carbon Materials,2016,31(4):363-377.
    [13] Luryi S. Quantum capacitance devices[J]. Applied Physics Letters,1988,52(6):501-503. doi: 10.1063/1.99649
    [14] Xia J, Chen F, Li J, et al. Measurement of the quantum capacitance of graphene[J]. Nature Nanotechnology,2009,4(8):505-509. doi: 10.1038/nnano.2009.177
    [15] Zhang L, Zhao X. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009,38(9):2520-2531. doi: 10.1039/b813846j
    [16] Hirunsit P, Liangruksa M, Khanchaitit P. Electronic structures and quantum capacitance of monolayer and multilayer graphenes influenced by Al, B, N and P doping, and monovacancy: Theoretical study[J]. Carbon,2016,108:7-20.
    [17] Sruthi T, Tarafder K. Enhancement of quantum capacitance by chemical modification of graphene supercapacitor electrodes: A study by first principles[J]. Bulletin of Materials Science,2019,42(6
    [18] Ugeda M, Brihuega I, Guinea F, et al. Missing atom as a source of carbon magnetism[J]. Physical Review Letters,2010,104(9):96804. doi: 10.1103/PhysRevLett.104.096804
    [19] Xie L, Su F, Xie L, et al. Effect of pore structure and doping species on charge storage mechanisms in porous carbon-based supercapacitors[J]. Materials Chemistry Frontiers,2020,4(9):2610-2634. doi: 10.1039/D0QM00180E
    [20] Song C, Wang J, Meng Z, et al. Density functional theory calculations of the quantum capacitance of graphene oxide as a supercapacitor electrode[J]. ChemPhysChem,2018,19(13):1579-1583. doi: 10.1002/cphc.201800070
    [21] Su F, Huo L, Kong Q, et al. Theoretical study on the quantum capacitance origin of graphene cathodes in lithium ion capacitors[J]. Catalysts,2018,8(10):444. doi: 10.3390/catal8100444
    [22] Zhan C, Neal J, Wu J, et al. Quantum effects on the capacitance of graphene-based electrodes[J]. Journal of Physical Chemistry C,2015,119(39):22297-22303. doi: 10.1021/acs.jpcc.5b05930
    [23] Mousavi-Khoshdel S, Targholi E. Exploring the effect of functionalization of graphene on the quantum capacitance by first principle study[J]. Carbon,2015,89:148-160.
    [24] Luo X, Chen Y, Mo Y. A review of charge storage in porous carbon-based supercapacitors[J]. New Carbon Materials,2021,36(1):49-68. doi: 10.1016/S1872-5805(21)60004-5
    [25] Raccichini R, Varzi A, Passerini S, et al. The role of graphene for electrochemical energy storage[J]. Nature Materials,2015,14(3):271-279. doi: 10.1038/nmat4170
    [26] Saito Y, Luo X, Zhao C, et al. Filling the gaps between graphene oxide: A general strategy toward nanolayered oxides[J]. Advanced Functional Materials,2015,25(35):5683-5690.
    [27] Teobaldi G, Ohnishi H, Tanimura K, et al. The effect of van der Waals interactions on the properties of intrinsic defects in graphite[J]. Carbon,2010,48(14):4145-4161. doi: 10.1016/j.carbon.2010.07.029
    [28] Lee C, Wei X, Kysar J, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [29] Ohta T, Bostwick A, Mcchesney J, et al. Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy[J]. Physical Review Letters,2007,98(20):16-19.
    [30] Kuroda M, Tersoff J, Martyna G. Nonlinear screening in multilayer graphene systems[J]. Physical Review Letters,2011,106(11):1-4.
    [31] Wood B, Ogitsu T, Otani M, et al. First-principles-inspired design strategies for graphene-based supercapacitor electrodes[J]. The Journal of Physical Chemistry C,2014,118(1):4-15. doi: 10.1021/jp4044013
    [32] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B - Condensed Matter and Materials Physics,1996,54(16):11169-11186. doi: 10.1103/PhysRevB.54.11169
    [33] Kohn W, Sham L. Self-consistent equations including exchange and correlation effects[J]. Physical Review,1965,140(4A):A1133-A1138.
    [34] Perdew J, Chevary J, Vosko S, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B,1992,46(11):6671-6687. doi: 10.1103/PhysRevB.46.6671
    [35] Blöchl P. Projector augmented-wave method[J]. Physical Review B,1994,50(24):17953-17979. doi: 10.1103/PhysRevB.50.17953
    [36] Dubal D, Ayyad O, Ruiz V, et al. Hybrid energy storage: The merging of battery and supercapacitor chemistries[J]. Chemical Society Reviews,2015,44(7):1777-1790. doi: 10.1039/C4CS00266K
    [37] Zhang S. Dual‐carbon lithium‐ion capacitors: Principle, materials, and technologies[J]. Batteries & Supercaps,2020,3(11):1137-1146.
    [38] Banhart F, Kotakoski J, Krasheninnikov A. Structural defects in graphene[J]. ACS Nano,2011,5(1):26-41. doi: 10.1021/nn102598m
    [39] Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications[J]. ACS Catalysis,2012,2(5):781-794. doi: 10.1021/cs200652y
  • 加载中
图(10)
计量
  • 文章访问数:  4095
  • HTML全文浏览量:  475
  • PDF下载量:  618
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-20
  • 修回日期:  2021-03-01
  • 网络出版日期:  2021-07-06
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回