留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Conversion of carbon nanotubes into curved graphene with improved capacitance

LI Xiao-yan WANG Qiang WANG Huan-wen

李小燕, 王强, 王欢文. 多壁碳纳米管的裁剪及其电容性能研究. 新型炭材料, 2021, 36(4): 835-842. doi: 10.1016/S1872-5805(21)60086-0
引用本文: 李小燕, 王强, 王欢文. 多壁碳纳米管的裁剪及其电容性能研究. 新型炭材料, 2021, 36(4): 835-842. doi: 10.1016/S1872-5805(21)60086-0
LI Xiao-yan, WANG Qiang, WANG Huan-wen. Conversion of carbon nanotubes into curved graphene with improved capacitance. New Carbon Mater., 2021, 36(4): 835-842. doi: 10.1016/S1872-5805(21)60086-0
Citation: LI Xiao-yan, WANG Qiang, WANG Huan-wen. Conversion of carbon nanotubes into curved graphene with improved capacitance. New Carbon Mater., 2021, 36(4): 835-842. doi: 10.1016/S1872-5805(21)60086-0

多壁碳纳米管的裁剪及其电容性能研究

doi: 10.1016/S1872-5805(21)60086-0
基金项目: 国家自然科学基金(21872162);中国科学院炭材料重点实验室开放基金(KLCMKFJJ2009)
详细信息
    通讯作者:

    王强,副研究员. E-mail:wqiang@sxicc.ac.cn

  • 中图分类号: TQ127.1+1

Conversion of carbon nanotubes into curved graphene with improved capacitance

Funds: The work was supported by the National Natural Science Foundation of China (21872162) and the CAS Key Laboratory of Carbon Materials (KLCMKFJJ2009)
More Information
  • 摘要: 商业化的多壁碳纳米管通常是相互缠绕且紧密团聚,长度高达数十微米,不利于电解液离子的传输,尤其是难以利用碳纳米管内部空间。本文通过简单的化学氧化方法从横向和纵向同时裁剪多壁碳纳米管,形成弯曲的石墨烯带(CGS),将其浸入0.1 mol L‒1高锰酸钾溶液中,合成了CGS-MnO2复合材料。利用FESEM、TEM、XRD、Raman对CGS-MnO2的形貌和结构进行详细表征,结果表明无定形MnO2成功地锚定在CGS的表面。在三电极体系中,CGS-MnO2在2 mV s‒1的扫速下电容值达到236 F g‒1,甚至在100 mV s‒1下电容仍能保持127 F g‒1,远高于对比样品的电容值,例如MWCNTs (15 F g‒1), CGS (88 F g‒1) 和 MWCNTs-MnO2 复合材料(111 F g‒1)。此外,该材料还表现出优异的循环稳定性能,循环1000次后电容仍然保持97%。
  • FIG. 788.  FIG. 788.

    FIG. 788.. 

    Figure  1.  The preparation of the CGS-MnO2 composite.

    Figure  2.  SEM images of (a, c) MWCNTs and (b, d) CGS.

    Figure  3.  TEM images of (a, b) MWCNTs, (c, d) CGS and (e,f) CGS-MnO2.

    Figure  4.  (a) XRD patterns and (b) Raman spectra of MWCNTs, CGS and CGS-MnO2.

    Figure  5.  (a-c) CV curves of the MWCNTs, CGS, MWCNTs-MnO2 and CGS-MnO2 composite, (d) Specific capacitance of CGS-MnO2 at different scan rates and (e) Cycle stability of CGS-MnO2.

  • [1] Miller J R, Outlaw R A, Holloway B C. Graphene double-layer capacitor with ac line-filtering performance[J]. Science,2010,329:1637-1639. doi: 10.1126/science.1194372
    [2] Stoller M D, Ruoff R S. Best practice methods for determining an electrode material's performance for ultracapacitors[J]. Energy & Environmetal Science,2010,3:1294-1301. doi: 10.1039/c0ee00074d
    [3] Wang H L, Casalongue H S, Liang Y, et al. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials[J]. Journal of the American Chemical Society,2010,132:7472-7477. doi: 10.1021/ja102267j
    [4] Chen W, Rakhi R B, Hu L B, et al. High-performance nanostructured supercapacitors on a Sponge[J]. Nano Letters,2011,11:5165-5172. doi: 10.1021/nl2023433
    [5] Kim T Y, Lee H W, Stoller M, et al. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes[J]. ACS Nano,2011,5:436-442. doi: 10.1021/nn101968p
    [6] Hu C C, Chang K H, Lin M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors[J]. Nano Letters,2006,6:2690-2695. doi: 10.1021/nl061576a
    [7] Wang H, Xu D, Jia G, et al. Integration of flexibility, cyclability and high-capacity into one electrode for sodium-ion hybrid capacitors with low self-discharge rate[J]. Energy Storage Materials,2020,25:114-123. doi: 10.1016/j.ensm.2019.10.024
    [8] Kang M, Zhou H, Wen P S, et al. Highly hierarchical porous ultrathin Co3O4 nanosheets@Ni foam for high-performance supercapacitors[J]. ACS Applied Energy Materials,2021,4:1619-1627. doi: 10.1021/acsaem.0c02815
    [9] Shimde N M, Xia Q X, Yun J M, et al. Polycrystalline and mesoporous 3-D Bi2O3 nanostructured negatrodes for high-energy and power-asymmetric supercapacitors: superfast room-temperature direct wet chemical growth[J]. ACS Applied Materials & Interfaces,2018,10:11037-11047. doi: 10.1021/acsami.8b00260
    [10] Sadak O, Wang W Z, Guan J H, et al. MnO2 nanoflowers deposited on graphene paper as electrode materials for supercapacitors[J]. ACS Applied Energy Materials,2021,2:4386-4394. doi: 10.1021/acsanm.9b00797
    [11] Patel M N, Wang X Q, Slanac D A, et al. High pseudocapacitance of MnO2 nanoparticles in graphitic disordered mesoporous carbon at high scan rates[J]. Journal of Materials Chemistry,2012,22:3160-3169. doi: 10.1039/c1jm14513d
    [12] Jiang H, Zhao T, Ma J, et al. Ultrafine manganese dioxidenanowire network for high-performance supercapacitors[J]. Chemical. Communications,2011,47:1264-1266. doi: 10.1039/C0CC04134C
    [13] Wei W, Huang X B, Tao Y M, et al. Enhancement of the electrocapacitive performance of manganese dioxide by introducing a microporous carbon spheres network[J]. Physical Chemistry Chemical Physics,2012,14:5966-5972. doi: 10.1039/c2cp23235a
    [14] Lee J W, Hall A S, Kim J D, et al. A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability[J]. Chemistry of Materials,2012,24:1158-1164. doi: 10.1021/cm203697w
    [15] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009,38:2520-2531. doi: 10.1039/b813846j
    [16] Jiao L Y, Zhang L, Wang X R, et al. Narrow graphene nanoribbons from carbon nanotubes[J]. Nature,2009,458:877-880. doi: 10.1038/nature07919
    [17] Reddy A L M, Shaijumon M M, Gowda S R, et al. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries[J]. Nano Letters,2009,9:1002-1006. doi: 10.1021/nl803081j
    [18] Lee S W, Kim J Y, Chen S, et al. Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors[J]. ACS Nano,2010,4:3889-3896. doi: 10.1021/nn100681d
    [19] Subramanian V, Zhu H W, Wei B Q. Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials[J]. Electrochemistry Communications,2006,8:827-832. doi: 10.1016/j.elecom.2006.02.027
    [20] Saha M S, Kundu A. Functionalizing carbon nanotubes for proton exchange membrane fuel cells electrode[J]. Journal of Power Sources,2010,195:6255-6261. doi: 10.1016/j.jpowsour.2010.04.015
    [21] Sun C L, Chang C T, Lee H H, et al. Microwave-assisted synthesis of a core–shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid[J]. ACS Nano,2011,5:7788-7795. doi: 10.1021/nn2015908
    [22] Rubio N, Fabbro C, Herrero M A, et al. Ball-milling modification of single-walled carbon nanotubes: purification, cutting, and functionalization[J]. Small,2011,7:665-674. doi: 10.1002/smll.201001917
    [23] Wu Z S, Wang D W, Ren W C, et al. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors[J]. Advanced Functional Materials,2010,20:3595-3602. doi: 10.1002/adfm.201001054
    [24] Fei R, Wang H, Wang Q, et al. In situ hard-template synthesis of hollow bowl-like carbon: a potential versatile platform for sodium and zinc ion capacitors[J]. Advanced Energy Materials,2020,10:2002741. doi: 10.1002/aenm.202002741
    [25] Mao Z F, Wang R, He B B, et al. Large-area, uniform, aligned arrays of Na3(VO)2(PO4)2F on carbon nanofiber for quasi-solid-state sodium-ion hybrid capacitors[J]. Small,2019,15:1902466. doi: 10.1002/smll.201902466
    [26] Li Y Z, Tian L, Wang R, et al. Encapsulation of Fe3O4 between copper nanorod and thin TiO2 film by ALD for lithium-ion capacitors[J]. ACS Applied Materials & Interfaces,2019,11:19115-19122. doi: 10.1021/acsami.9b03454
    [27] Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80:1339. doi: 10.1021/ja01539a017
    [28] Wang H W, Yi H, Chen X, et al. One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors[J]. Journal of Materials Chemistry A,2014,2:1165-1173. doi: 10.1039/C3TA13932H
    [29] Mao Z F, Wang H W, Chao D L, et al. Al2O3-assisted confinement synthesis of oxide/carbon hollowcomposite nanofibers and application in metal-ion capacitors[J]. Small,2020,16:2001950. doi: 10.1002/smll.202001950
    [30] Gu Z, Peng H, Hauge R H, et al. Cutting single-wall carbon nanotubes through fluorination[J]. Nano Letters,2002,2:1009-1013. doi: 10.1021/nl025675+
    [31] Wang X X, Wang J N, Chang H, et al. Preparation of short carbon nanotubes and application as an electrode material in Li-ion batteries[J]. Advanced Functional Materials,2007,17:3613-3618. doi: 10.1002/adfm.200700319
    [32] Dimiev A M, Khannanov A, Vakhitovet I, et al. Revisiting the mechanism of oxidative unzipping of multiwall carbon nanotubes to graphene nanoribbons[J]. ACS Nano,2018,12:3985-3993. doi: 10.1021/acsnano.8b01617
    [33] Shinde D B, Debgupta J, Kushwaha A, et al. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons[J]. Journal of the American Chemical Society,2011,133:4168-4171. doi: 10.1021/ja1101739
    [34] Kosynkin D V, Lu W, Sinitskii A, et al. Highly conductive graphene nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor[J]. ACS Nano,2011,5:968-974. doi: 10.1021/nn102326c
    [35] Li Z P, Wang J Q, Liu S, et al. Synthesis of hydrothermally reduced graphene/MnO2 composites and their electrochemical properties as supercapacitors[J]. Journal of Power Sources,2011,196:8160-8165. doi: 10.1016/j.jpowsour.2011.05.036
    [36] Jin X, Zhou W, Zhang S, et al. Nanoscale microelectrochemical cells on carbon nanotubes[J]. Small,2007,3:1513-1517. doi: 10.1002/smll.200700139
    [37] Szabo T, Tombacz E, Illes E, et al. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides[J]. Carbon,2006,44:537-545. doi: 10.1016/j.carbon.2005.08.005
    [38] Nethravathi C, Rajamathi J T, Ravishankar N, et al. Graphite oxide-intercalated anionic clay and its decomposition to graphene−inorganic material nanocomposites[J]. Langmuir,2008,24:8240-8244. doi: 10.1021/la8000027
    [39] Lee H, Kang J M, Cho M S, et al. MnO2/graphene composite electrodes for supercapacitors: the effect of graphene intercalation on capacitance[J]. Journal of Materials Chemistry,2011,21:18215-18219. doi: 10.1039/c1jm13364k
    [40] Gao J, Liu F, Liu Y, et al. Environment-friendly method to produce graphene that employs vitamin C and amino acid[J]. Chemistry of Materials,2010,22:2213-2218. doi: 10.1021/cm902635j
    [41] Julien C, Massot M, Baddour-Hadjean R, et al. Raman spectra of birnessite manganese dioxides[J]. Solid State Ionics,2003,159:345-356. doi: 10.1016/S0167-2738(03)00035-3
    [42] Ma S B, Ahn K Y, Lee E S, et al. Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes[J]. Carbon,2007,45:375-382. doi: 10.1016/j.carbon.2006.09.006
    [43] Yan J, Fan Z J, Wei T, et al. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes[J]. Carbon,2010,48:3825-3833. doi: 10.1016/j.carbon.2010.06.047
    [44] Subramanian V, Zhu H W, Wei B Q. Nanostructured MnO2: hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material[J]. J Power Sources,2006,159:361-364. doi: 10.1016/j.jpowsour.2006.04.012
    [45] Wang Y H, Zhitomirsky I. Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors[J]. Langmuir,2009,25:9684-9689. doi: 10.1021/la900937e
    [46] Shin D, Hwang H, Yeo T, et al. Sol-gel-driven combustion wave for scalable transformation of Mn(NO3)2 precursors into MnO2-x/MWCNT supercapacitor electrodes capable of electrochemical activation[J]. Carbon,2019,152:746-754. doi: 10.1016/j.carbon.2019.06.071
  • 支撑材料-李小燕-王强.docx
  • 加载中
图(6)
计量
  • 文章访问数:  5344
  • HTML全文浏览量:  578
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-17
  • 修回日期:  2021-07-14
  • 网络出版日期:  2021-07-22
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回