留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrochemical sensing of phenacetin on electrochemically reduced graphene oxide modified glassy carbon electrode

MENG Xiao-tong ZHU De-jing JIANG Yu-hang CAO Yue SI Wei-meng CAO Jun LI Qiu-hong LI Jiao LEI Wu

孟小桐, 朱德京, 姜宇航, 曹悦, 司维蒙, 曹俊, 李秋红, 李蛟, 雷武. 基于还原氧化石墨烯的非纳西丁电化学检测. 新型炭材料(中英文), 2022, 37(4): 764-772. doi: 10.1016/S1872-5805(21)60087-2
引用本文: 孟小桐, 朱德京, 姜宇航, 曹悦, 司维蒙, 曹俊, 李秋红, 李蛟, 雷武. 基于还原氧化石墨烯的非纳西丁电化学检测. 新型炭材料(中英文), 2022, 37(4): 764-772. doi: 10.1016/S1872-5805(21)60087-2
MENG Xiao-tong, ZHU De-jing, JIANG Yu-hang, CAO Yue, SI Wei-meng, CAO Jun, LI Qiu-hong, LI Jiao, LEI Wu. Electrochemical sensing of phenacetin on electrochemically reduced graphene oxide modified glassy carbon electrode. New Carbon Mater., 2022, 37(4): 764-772. doi: 10.1016/S1872-5805(21)60087-2
Citation: MENG Xiao-tong, ZHU De-jing, JIANG Yu-hang, CAO Yue, SI Wei-meng, CAO Jun, LI Qiu-hong, LI Jiao, LEI Wu. Electrochemical sensing of phenacetin on electrochemically reduced graphene oxide modified glassy carbon electrode. New Carbon Mater., 2022, 37(4): 764-772. doi: 10.1016/S1872-5805(21)60087-2

基于还原氧化石墨烯的非纳西丁电化学检测

doi: 10.1016/S1872-5805(21)60087-2
基金项目: 国家自然科学基金(51502161,51572127,21576138,21706148),山东省自然科学基金(ZR2018BB038),山东省高等学校科技计划(J15LA08,J16LA07)
详细信息
    通讯作者:

    司维蒙,副教授. E-mail:siweimeng@foxmail.com

  • 中图分类号: TQ127.1+1

Electrochemical sensing of phenacetin on electrochemically reduced graphene oxide modified glassy carbon electrode

More Information
    Author Bio:

    孟小桐,硕士研究生. E-mail:251033197@qq.com

    SI is an associate professor in SDUT. His research focuses on the carbon and application in sensors and electro-catalysis

    Corresponding author: SI Wei-meng, Associate professor. E-mail: siweimeng@foxmail.com
  • 摘要: 研究了非纳西丁在还原氧化石墨烯、氮掺杂石墨烯等材料表面的电化学氧化还原行为,证明了还原氧化石墨烯具有更好的电化学响应,体现为更高的电流响应和更低的氧化还原过电位。同时,通过电化学方法对非那西丁的氧化还原反应机理进行了推断,证明了非那西丁通过氧化反应生成了一种醌-亚胺阳离子的中间体,通过水解生成N-乙酰基-对-苯醌亚胺(NAPQI),经可逆的氧化还原反应实现NAPQI与对乙酰氨基酚的互相转化。基于还原氧化石墨烯修饰电极,对非那西丁进行了定量检测,检出限为0.91 μmol L−1;证明了对乙酰氨基酚不会干扰对非那西丁的检测,但非那西丁经氧化还原反应产生的对乙酰氨基酚会影响对溶液中原本的对乙酰氨基酚的测定。
  • FIG. 1660.  FIG. 1660.

    FIG. 1660..  FIG. 1660.

    Figure  1.  SEM images of (a,c) GO , (b,d,e) RGO, (f) NGE-A, (g) NGE-N and (h) NGE-U.

    Figure  2.  CVs of phenacetin (0.05 mmol L−1) on various modified electrodes (a) the 1st cycle and (b) the 2nd cycle ( curve a: NGE-A, curve b: ERGO, cure c: NGE-U, curve d: NGE-N). CVs of phenacetin (0.1 mmol L−1) on ERGO at different pH values (c) the 1st cycle and (d) the 2nd cycle. (e) Dependence of Epa (phenacetin) and Epc (NAPQI) on pH value. (f) dependence of Epa (acetaminophen) on pH value at a scan rate of 100 mV s−1

    1.  Mechanism of phenacetin redox reactions

    Figure  3.  (a) CVs of phenacetin (0.1 mmol L−1) on ERGO at different scan rates (20-140 mV s−1). (b) Dependence of Epc on lnv. Dependence of the peak currents for (c) peak Ⅰ and (d) peak Ⅱ on the scan rate. (e) The relationship between logI and logv for phenacetin oxidation. (f) The relationship between logI and logv for NAPQI reduction (red) and acetaminophen oxidation (black)

    Figure  4.  (a) DPVs on ERGO with successive adding of phenacetin (10-100 μmol L−1). (b) Dependence of the peak current on the phenacetin concentration. (c) The 1st CV cycle of 1 mmol L−1 phenacetin (curve b) and 1 mmol L−1 phenacetin + 1 mmol L−1 acetaminophen (curve a). (d) The 2nd CV cycle of 1 mmol L−1 phenacetin (curve b) and 1 mmol L−1 phenacetin + 1 mmol L−1 acetaminophen (curve a)

  • [1] Miner D J, Rice J R, Riggin R M, et al. Voltammetry of acetaminophen and its metabolites[J]. Analytical chemistry,1981,53(14):2258-2263. doi: 10.1021/ac00237a029
    [2] Bussy U, Giraudeau P, Tea I, et al. Understanding the degradation of electrochemically-generated reactive drug metabolites by quantitative NMR[J]. Talanta,2013,116:554-558. doi: 10.1016/j.talanta.2013.07.026
    [3] Nouri-Nigjeh E, Bischoff R, Bruins A P, et al. Electrochemical oxidation by square-wave potential pulses in the imitation of phenacetin to acetaminophen biotransformation[J]. Analyst,2011,136(23):5064-5067. doi: 10.1039/c1an15643h
    [4] Yarman A, Scheller F W. MIP‐esterase/tyrosinase combinations for paracetamol and phenacetin[J]. Electroanalysis,2016,28(9):2222-2227. doi: 10.1002/elan.201600042
    [5] Jiang L, Gu S, Ding Y, et al. Facile and novel electrochemical preparation of a graphene–transition metal oxide nanocomposite for ultrasensitive electrochemical sensing of acetaminophen and phenacetin[J]. Nanoscale,2014,6(1):207-214. doi: 10.1039/C3NR03620K
    [6] Yin H, Meng X, Xu Z, et al. Electrochemical behavior of phenacetin on CdSe microspheres modified glassy carbon electrode and its simultaneous determination with paracetamol and 4-aminophenol[J]. Analytical Methods,2012,4(5):1445-1451. doi: 10.1039/c2ay05912f
    [7] Li R, Li H, Li Z, et al. Electrochemical determination of acetaminophen using a glassy carbon electrode modified with a hybrid material consisting of graphene aerogel and octadecylamine-functionalized carbon quantum dots[J]. Microchimica Acta,2018,185(2):1-9.
    [8] Wong A, Santos A M, Silva T A, et al. Simultaneous determination of isoproterenol, acetaminophen, folic acid, propranolol and caffeine using a sensor platform based on carbon black, graphene oxide, copper nanoparticles and PEDOT: PSS[J]. Talanta,2018,183:329-338. doi: 10.1016/j.talanta.2018.02.066
    [9] Zhu W, Huang H, Gao X, et al. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly (4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films[J]. Materials Science and Engineering: C,2014,45:21-28. doi: 10.1016/j.msec.2014.08.067
    [10] Zhang X, Wang K P, Zhang L N, et al. Phosphorus-doped graphene-based electrochemical sensor for sensitive detection of acetaminophen[J]. Analytica chimica acta,2018,1036:26-32. doi: 10.1016/j.aca.2018.06.079
    [11] Cao Y, Si W, Zhang Y, et al. Nitrogen-doped graphene: effect of graphitic-N on the electrochemical sensing properties towards acetaminophen[J]. FlatChem,2018,9:1-7. doi: 10.1016/j.flatc.2018.03.002
    [12] Anuar N S, Basirun W J, Ladan M, et al. Fabrication of platinum nitrogen-doped graphene nanocomposite modified electrode for the electrochemical detection of acetaminophen[J]. Sensors and Actuators B: Chemical,2018,266:375-383. doi: 10.1016/j.snb.2018.03.138
    [13] Wu L, Lei W, Han Z, et al. A novel non-enzyme amperometric platform based on poly (3-methylthiophene)/nitrogen doped graphene modified electrode for determination of trace amounts of pesticide phoxim[J]. Sensors and Actuators B: Chemical,2015,206:495-501. doi: 10.1016/j.snb.2014.09.098
    [14] Chen X, Zhang G, Shi L, et al. Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine[J]. Materials Science and Engineering: C,2016,65:80-89. doi: 10.1016/j.msec.2016.03.106
    [15] Geng D, Chen Y, Chen Y, et al. High oxygen-reduction activity and durability of nitrogen-doped graphene[J]. Energy & Environmental Science,2011,4(3):760-764.
    [16] Lin Z, Waller G, Liu Y, et al. Facile synthesis of nitrogen‐doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen‐reduction reaction[J]. Advanced Energy Materials,2012,2(7):884-888. doi: 10.1002/aenm.201200038
    [17] Deng D, Pan X, Yu L, et al. Toward N-doped graphene via solvothermal synthesis[J]. Chemistry of Materials,2011,23(5):1188-1193. doi: 10.1021/cm102666r
    [18] Si W, Lei W, Hao Q, et al. Facile synthesis of nitrogen-doped graphene derived from graphene oxide and vitamin B3 as high-performance sensor for imidacloprid determination[J]. Electrochimica Acta,2016,212:784-790. doi: 10.1016/j.electacta.2016.07.063
    [19] Wang L, Wang C, Wang H, et al. ZIF-8 nanocrystals derived N-doped carbon decorated graphene sheets for symmetric supercapacitors[J]. Electrochimica Acta,2018,289:494-502. doi: 10.1016/j.electacta.2018.09.091
    [20] Wang H, Hao Q, Yang X, et al. Graphene oxide doped polyaniline for supercapacitors[J]. Electrochemistry Communications,2009,11(6):1158-1161. doi: 10.1016/j.elecom.2009.03.036
    [21] Wang H, Hao Q, Yang X, et al. Effect of graphene oxide on the properties of its composite with polyaniline[J]. ACS applied materials & interfaces,2010,2(3):821-828.
    [22] Hao Q, Xia X, Lei W, et al. Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors[J]. Carbon,2015,81:552-563. doi: 10.1016/j.carbon.2014.09.090
    [23] Rocha D P, Dornellas R M, Cardoso R M, et al. Chemically versus electrochemically reduced graphene oxide: Improved amperometric and voltammetric sensors of phenolic compounds on higher roughness surfaces[J]. Sensors and Actuators B: Chemical,2018,254:701-708. doi: 10.1016/j.snb.2017.07.070
    [24] Lv W, Zhang C, Li Z, et al. Self-assembled 3D graphene monolith from solution[J]. The journal of physical chemistry letters,2015,6(4):658-668. doi: 10.1021/jz502655m
    [25] Adhikari B R, Govindhan M, Chen A. Sensitive detection of acetaminophen with graphene-based electrochemical sensor[J]. Electrochimica Acta,2015,162:198-204. doi: 10.1016/j.electacta.2014.10.028
    [26] Ensafi A A, Ahmadi N, Rezaei B, et al. A new electrochemical sensor for the simultaneous determination of acetaminophen and codeine based on porous silicon/palladium nanostructure[J]. Talanta,2015,134:745-753. doi: 10.1016/j.talanta.2014.12.028
    [27] Nematollahi D, Shayani-Jam H, Alimoradi M, et al. Electrochemical oxidation of acetaminophen in aqueous solutions: Kinetic evaluation of hydrolysis, hydroxylation and dimerization processes[J]. Electrochimica Acta,2009,54(28):7407-7415. doi: 10.1016/j.electacta.2009.07.077
    [28] Laviron E. Surface linear potential sweep voltammetry: Equation of the peaks for a reversible reaction when interactions between the adsorbed molecules are taken into account[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1974,52(3):395-402. doi: 10.1016/S0022-0728(74)80449-3
    [29] Yin H, Cui L, Ai S, et al. Electrochemical determination of bisphenol A at Mg–Al–CO3 layered double hydroxide modified glassy carbon electrode[J]. Electrochimica Acta,2010,55(3):603-610. doi: 10.1016/j.electacta.2009.09.020
  • 加载中
图(6)
计量
  • 文章访问数:  871
  • HTML全文浏览量:  424
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-20
  • 修回日期:  2021-06-21
  • 网络出版日期:  2021-11-09
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回