留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coating a Na3V2(PO4)3 cathode material with carbon to improve its sodium storage

CHEN Yan-jun CHENG Jun SUN Shi-qi WANG Yan-zhong GUO Li

陈彦俊, 程军, 孙式琦, 王延忠, 郭丽. 不同碳源对Na3V2(PO4)3正极材料储钠性能的影响. 新型炭材料, 2021, 36(6): 1118-1127. doi: 10.1016/S1872-5805(21)60098-7
引用本文: 陈彦俊, 程军, 孙式琦, 王延忠, 郭丽. 不同碳源对Na3V2(PO4)3正极材料储钠性能的影响. 新型炭材料, 2021, 36(6): 1118-1127. doi: 10.1016/S1872-5805(21)60098-7
CHEN Yan-jun, CHENG Jun, SUN Shi-qi, WANG Yan-zhong, GUO Li. Coating a Na3V2(PO4)3 cathode material with carbon to improve its sodium storage. New Carbon Mater., 2021, 36(6): 1118-1127. doi: 10.1016/S1872-5805(21)60098-7
Citation: CHEN Yan-jun, CHENG Jun, SUN Shi-qi, WANG Yan-zhong, GUO Li. Coating a Na3V2(PO4)3 cathode material with carbon to improve its sodium storage. New Carbon Mater., 2021, 36(6): 1118-1127. doi: 10.1016/S1872-5805(21)60098-7

不同碳源对Na3V2(PO4)3正极材料储钠性能的影响

doi: 10.1016/S1872-5805(21)60098-7
基金项目: 山西省高等学校科技创新项目(2019L0538),山西省科技重大专项(20181102018),山西省高等学校中青年拔尖创新人才支持计划,中北大学自然科学基金(XJJ201821)
详细信息
    通讯作者:

    陈彦俊,讲师. E-mail:yjchen@nuc.edu.cn

  • 中图分类号: TB33

Coating a Na3V2(PO4)3 cathode material with carbon to improve its sodium storage

More Information
  • 摘要: 具有独特三维框架结构的钠超离子导体型磷酸钒钠是非常具有前景的钠电正极材料。在本工作中,两种碳源被选择作为原材料,通过溶胶凝胶法制备了碳包覆的磷酸钒钠。深入研究了不同炭材料对晶体结构、形貌特征、动力学特性以及电化学储钠特性的影响。结果表明柠檬酸作为碳源制备得到的磷酸钒钠,具有更大的晶胞体积和更小的粒子尺寸,导致了拓宽的离子迁移通道和缩短的离子迁移路径,进而提高动力学特性。该材料表现出优异的电化学特性,在0.1 C下可以释放112.3 mAh g−1的容量。在1 C 循环200圈下容量保持率接近100%。由于快速的粒子导电特性,在2 C和5 C的大倍率循环下,该材料可以释放90.0和89.1 mAh g−1的初始容量,循环200圈后保持率分别为92.7%和90%。因此,这种改性的磷酸钒钠电极材料可以作为优异的正极材料应用在钠电池领域。
  • FIG. 1079.  FIG. 1079.

    FIG. 1079.. 

    Figure  1.  Schematic of synthesis for NVP/C materials via sol-gel method.

    Figure  2.  Refined XRD patterns of (a) C-NVP/C and (b) O-NVP/C.

    Figure  3.  SEM images of (a,b,c) C-NVP/C and (d,e,f) O-NVP/C samples; (g) EDX mapping image of C-NVP/C composite .

    Figure  4.  TEM images of (a) C-NVP/C and (b) O-NVP/C.

    Figure  5.  (a) TEM image and (b) HRTEM image of C-NVP/C sample (insert graph is FFT result).

    Figure  6.  (a) TEM image and (b) HRTEM image of O-NVP/C (insert graph is FFT result).

    Figure  7.  Raman spectra of (a) C-NVP/C and (b) O-NVP/C.

    Figure  8.  XPS survey spectra of (a) C-NVP/C and (b) O-NVP/C ; Core levels of Na1s for (c) C-NVP/C and (d) O-NVP/C; Core levels of V2p for (e) C-NVP/C and (f) O-NVP/C.

    Figure  9.  (a) CV curves of both samples at 0.1 mV s−1; CV curves of (b) O-NVP/C and (d) C-NVP/C at different scan rate from 0.1 to 5 mV s−1; Relationship between Ip and v1/2 of (c) O-NVP/C and (e) C-NVP/C.

    Figure  10.  (a) Nyquist plots of C-NVP/C and O-NVP/C measured at a charge state (insert: equivalent circuit model); (b) Relationship between Z’ and ω−0.5 in the low-frequency region.

    Figure  11.  (a) First cycle at 0.1 C for C-NVP/C and O-NVP/C cathodes. (b) Rate capability of both electrodes from 0.1 to 10 C. Cycling performance of both samples at (c) 2 C and (d) 5 C.

    Table  1.   Refined cell parameters for C-NVP/C and O-NVP/C.

    Samplea=b (nm)c (nm)Volume (nm3)
    C-NVP/C0.87162.1821.43538
    O-NVP/C0.87032.1771.42802
    下载: 导出CSV

    Table  2.   Apparent diffusion coefficients of Na+ of both electrodes.

    SampleSlope DNa+ /cm2 s−1
    ChargeDischarge ChargeDischarge
    C-NVP/C 0.0382 −0.0388 5.20×10−11 5.36×10−11
    O-NVP/C 0.0271 −0.0123 2.61×10−11 5.39×10−12
    下载: 导出CSV

    Table  3.   Fitted Rct, σ, DNa+ values for C-NVP/C and O-NVP/C electrodes.

    SampleRct(Ω)σDNa+(cm2 s−1)
    C-NVP/C273.511.113.69×10−13
    O-NVP/C330.239.262.96×10−14
    下载: 导出CSV
  • [1] Kabbour H, Coillot D, Colmont M, et al. Alpha-Na3M2(PO4)3 (M = Ti, Fe): absolute cationic ordering in NASICON-type phases[J]. Journal of American Chemical Society,2011,133:11900-11903. doi: 10.1021/ja204321y
    [2] Li D, Huang Y, Sharma N, et al. Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction[J]. Physical Chemistry Chemical Physics,2012,14:3634-3639. doi: 10.1039/c2cp24062a
    [3] Yan J, Yuan W, Tang Z, et al. Synthesis and electrochemical performance of Li3V2(PO4)3−xClx/C cathode materials for lithium-ion batteries[J]. Journal of Power Sources,2012,209:251-256. doi: 10.1016/j.jpowsour.2012.02.110
    [4] Bin Y, Imran M, Akif Z, et al. Synergistic effect of graphene and multi-walled carbon nanotubes composite supported Pd nanocubes on enhancing catalytic activity for electro-oxidation of formic acid[J]. Catalysis Science & Technology,2016,00:4794-4801.
    [5] Lim S, Han D, Nam D, et al. Structural enhancement of Na3V2(PO4)3/C composite cathode materials by pillar ion doping for high power and long cycle life sodium-ion batteries[J]. Journal of Materials Chemistry A,2014,2:19623-19632. doi: 10.1039/C4TA03948C
    [6] Zhu C, Song K, Aken P, et al. Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: An ultrafast Na-storage cathode with the potential of outperforming Li cathodes[J]. Nano Lett,2014,14:2175. doi: 10.1021/nl500548a
    [7] Chotard J, Rousse G, David R, et al. Discovery of a sodium-ordered form of Na3V2(PO4)3 below ambient temperature[J]. Chemistry of Materials,2015,27:5982-5987. doi: 10.1021/acs.chemmater.5b02092
    [8] Li H, Yu X, Bai Y, et al. Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries[J]. Journal of Materials Chemistry A,2015,3:9578-9586. doi: 10.1039/C5TA00277J
    [9] Yang Z, Hu J, Chen Z, et al. Sol-gel-assisted, fast and low-temperature synthesis of La-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries[J]. RSC Advances,2015,5:17924-17930. doi: 10.1039/C4RA15880F
    [10] Hu P, Wang X, Wang T, et al. Boron substituted Na3V2(P1-43 cathode materials with enhanced performance for sodium-ion batteries[J]. Advanced Science,2016,3:1600112. doi: 10.1002/advs.201600112
    [11] Li H, Bai Y, Wu F, et al. Na-rich Na3+xV2-xNix(PO4)3/C for sodium ion batteries: Controlling the doping site and improving the electrochemical performances[J]. ACS Applied Materials & Interfaces,2016,8:27779-27787. doi: 10.1021/acsami.6b09898
    [12] Li H, Bi X, Bai Y, et al. High-rate, durable sodium-ion battery cathode enabled by carbon-coated micro-sized Na3V2(PO4)3 particles with interconnected vertical nanowalls[J]. Advanced Materials Interfaces,2016:3(9): 1500740.
    [13] Zhang Y, Zhao H, Du Y. Symmetric full cells assembled by using self-supporting Na3V2(PO4)3 bipolar electrodes for superior sodium energy storage[J]. Journal of Materials Chemistry A,2016,4:7155-7159. doi: 10.1039/C6TA02218A
    [14] Aragon M, Lavela P, Ortiz G, et al. Induced rate performance enhancement in off-stoichiometric Na3+3xV2-x(PO4)3 with potential applicability as the cathode for sodium-ion batteries[J]. Chemistry,2017,23:7345-7352. doi: 10.1002/chem.201700716
    [15] Cao X, Mo L, Zhu L, et al. Preparation and electrochemical properties of Li(3)V(2)(PO(4))3-xBrx/carbon composites as cathode materials for lithium-ion batteries[J]. Nanomaterials,2017:7(3): 52-52(1).
    [16] Inoishi A, Omuta T, Kobayashi E, et al. A single-phase, all-solid-state sodium battery using Na3−xV2−xZrx(PO4)3 as the cathode, anode, and electrolyte[J]. Advanced Materials Interfaces,2017:4(5): 1600942.
    [17] Jiang Y, Zhang H, Yang H, et al. Na3V2(PO4)3@nitrogen, sulfur-codoped 3D porous carbon enabling ultra-long cycle life sodium-ion batteries[J]. Nanoscale,2017,9:6048-6055. doi: 10.1039/C7NR01280B
    [18] Yao Y, Jiang Y, Yang H, et al. Na3V2(PO4)3 coated by N-doped carbon from ionic liquid as cathode materials for high rate and long-life Na-ion batteries[J]. Nanoscale,2017,9:10880-10885. doi: 10.1039/C7NR03342G
    [19] Tian Z, Chen Y, Cheng J. Boosting the rate capability and working lifespan of K/Co co-doped Na3V2(PO4)3/C for sodium ion batteries[J]. Ceramics International,2021,47:22025-22034. doi: 10.1016/j.ceramint.2021.04.222
    [20] Li H, Wu C, Bai Y, et al. Controllable synthesis of high-rate and long cycle-life Na3V2(PO4)3 for sodium-ion batteries[J]. Journal of Power Sources,2016,326:14-22. doi: 10.1016/j.jpowsour.2016.06.096
    [21] Rajagopalan R, Zhang L, Dou S, et al. Tuned in situ growth of nanolayered rGO on 3D Na3V2(PO4)3 matrices: A step toward long lasting, high power Na-ion batteries[J]. Advanced Materials Interfaces,2016:3(13): 1600007.
    [22] Shen W, Li H, Guo Z, et al. Improvement on the high-rate performance of Mn-doped Na3V2(PO4)3/C as a cathode material for sodium ion batteries[J]. RSC Advances,2016,6:71581-71588. doi: 10.1039/C6RA16515J
    [23] Shen W, Li H, Guo Z, et al. Double-nanocarbon synergistically modified Na3V2(PO4)3: An advanced cathode for high-rate and long-life sodium-ion batteries[J]. ACS Applied Materials & Interfaces,2016,8:15341-15351. doi: 10.1021/acsami.6b03410
    [24] Tao S, Cui P, Huang W, et al. Sol-gel design strategy for embedded Na3V2(PO4)3 particles into carbon matrices for high-performance sodium-ion batteries[J]. Carbon,2016,96:1028-1033. doi: 10.1016/j.carbon.2015.10.054
    [25] Tao S, Wang X, Cui P, et al. Fabrication of graphene-encapsulated Na3V2(PO4)3 as high-performance cathode materials for sodium-ion batteries[J]. RSC Advances,2016,6:43591-43597. doi: 10.1039/C6RA04237F
    [26] Xu G, Sun G. Mg2+-doped Na3V2(PO4) 3 /C decorated with graphene sheets: An ultrafast Na-storage cathode for advanced energy storage[J]. Ceramics International,2016,42:14774-14781. doi: 10.1016/j.ceramint.2016.06.107
    [27] Xu Y, Wei Q, Xu C, et al. Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode[J]. Advanced Energy Materials,2016:6(13): 1600389.
    [28] Kretschmer K, Sun B, Zhang J, et al. 3D interconnected carbon fiber network-enabled ultralong life Na3V2(PO4)3@carbon paper cathode for sodium-ion batteries[J]. Small,2017:13: 1603318.
    [29] Zhang D, Feng P, Xu B, et al. High rate performance of Na3V2−xCux(PO4)3/C cathodes for sodium ion batteries[J]. Journal of The Electrochemical Society,2017,164:A3563-A3569. doi: 10.1149/2.0381714jes
    [30] Huang Y, Li X, Wang J, et al. Superior Na-ion storage achieved by Ti substitution in Na3V2(PO4)3[J]. Energy Storage Materials,2018,15:108-115. doi: 10.1016/j.ensm.2018.03.021
    [31] Ni Q, Bai Y, Li Y, et al. 3D electronic channels wrapped large-sized Na3V2(PO4)3 as flexible electrode for sodium-ion batteries[J]. Small,2018,14:e1702864. doi: 10.1002/smll.201702864
    [32] Sun P, Wang Y, Wang X, et al. Off-stoichiometric Na3−3xV2+x(PO4)3/C nanocomposites as cathode materials for high-performance sodium-ion batteries prepared by high-energy ball milling[J]. RSC Advances,2018,8:20319-20326. doi: 10.1039/C8RA02843E
    [33] Xiao H, Huang X, Ren Y, et al. Enhanced sodium ion storage performance of Na3V2(PO4)3 with N-doped carbon by folic acid as carbon-nitrogen source[J]. Journal of Alloys and Compounds,2018,732:454-459. doi: 10.1016/j.jallcom.2017.10.195
    [34] Zeng Q, Luo L, Yu Z, et al. Ultrafine Na3V2(PO4)3@C nanoparticles embedded in boron-doped graphene as high-rate and long cycle-life cathode material for sodium-ion batteries[J]. Solid State Ionics,2018,323:92-96. doi: 10.1016/j.ssi.2018.05.023
    [35] Zhang B, Zeng T, Liu Y, et al. Effect of Ti-doping on the electrochemical performance of sodium vanadium(III) phosphate[J]. RSC Advances,2018,8:5523-5531. doi: 10.1039/C7RA12743J
    [36] Zhang J, Liu W, Hu H, et al. An advanced blackberry-shaped Na3V2(PO4)3 cathode: Assists in high-rate performance and long-life stability[J]. Electrochimica Acta,2018,292:736-741. doi: 10.1016/j.electacta.2018.10.007
    [37] Zhang L, Zhou Y, Li T, et al. Multi-heteroatom doped carbon coated Na3V2(PO4)3 derived from ionic liquids[J]. Dalton Transactions,2018,47:4259-4266. doi: 10.1039/C8DT00062J
    [38] Zhao L, Zhao H, Long X, et al. Superior high-rate and ultralong-lifespan Na3V2(PO4)3@C cathode by enhancing the conductivity both in bulk and on surface[J]. ACS Applied Materials & Interfaces,2018,10:35963-35971. doi: 10.1021/acsami.8b12055
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  1241
  • HTML全文浏览量:  776
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-06
  • 修回日期:  2021-07-28
  • 网络出版日期:  2021-11-19
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回