留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Advances in carbon materials for stable lithium metal batteries

JIN Cheng-bin SHI Peng ZHANG Xue-qiang HUANG Jia-qi

金成滨, 石鹏, 张学强, 黄佳琦. 炭材料在锂金属电池中应用进展. 新型炭材料(中英文), 2022, 37(1): 1-24. doi: 10.1016/S1872-5805(22)60573-0
引用本文: 金成滨, 石鹏, 张学强, 黄佳琦. 炭材料在锂金属电池中应用进展. 新型炭材料(中英文), 2022, 37(1): 1-24. doi: 10.1016/S1872-5805(22)60573-0
JIN Cheng-bin, SHI Peng, ZHANG Xue-qiang, HUANG Jia-qi. Advances in carbon materials for stable lithium metal batteries. New Carbon Mater., 2022, 37(1): 1-24. doi: 10.1016/S1872-5805(22)60573-0
Citation: JIN Cheng-bin, SHI Peng, ZHANG Xue-qiang, HUANG Jia-qi. Advances in carbon materials for stable lithium metal batteries. New Carbon Mater., 2022, 37(1): 1-24. doi: 10.1016/S1872-5805(22)60573-0

炭材料在锂金属电池中应用进展

doi: 10.1016/S1872-5805(22)60573-0
基金项目: 国家自然科学基金(52103342);中国博士后基金(BX2021136,2021M691712);山西清洁能源研究院子基金(SXKYJF015)
详细信息
    通讯作者:

    黄佳琦,教授. E-mail:jqhuang@bit.edu.cn

  • 中图分类号: TQ127.1+1

Advances in carbon materials for stable lithium metal batteries

More Information
  • 摘要: 金属锂作为下一代高能量密度电池的负极材料,具有广阔的应用前景。然而,金属锂的沉积/剥离过程常伴随着高曲折度的枝晶的形成,导致电池寿命短,甚至会诱发安全隐患。迄今为止,研究者们已开发出多种方法来抑制枝晶生长和调节固体电解质界面膜的均匀性。炭材料因其轻质、高导电、多级多孔、化学和物理稳定特性被设计成不同种类的材料来用于稳定金属锂。按照特定的功能进行分类,本文总结了炭材料在锂金属电池中作为骨架、电解液添加剂和涂层等方面的研究进展。从结构和化学方面讨论了各种炭材料的优点和局限性。最后,就如何推动锂金属电池的应用,展望了未来炭材料的发展前景。
  • FIG. 1213.  FIG. 1213.

    FIG. 1213.. 

    Figure  1.  Various carbon products for LMBs with different designs on structure, surface chemistry, functionalization, and mechanical properties.

    Figure  2.  (a) Schematic illustration showing the Li deposition within the Ag particle anchored CF[120]. (b-d) SEM images of Ag particle anchored CF before and after Li nucleation/growth, respectively[119]. (e, f) SEM images of pristine GT and GT after Li deposition, respectively[134]. (g) SEM image of Li/rGO composite[124]. (Reprinted with permission).

    Figure  3.  (a) TEM image of hollow carbon with Au nanoparticles inside. (b) Schematic illustration of Li deposition within the hollow carbon with Au nanoparticles[135]. (c) SEM image and elemental mappings of MgO modified carbonized-wood[95]. (d) SEM images of MAG before and after Li deposition along with a schematic model showing the Li/MAG interaction[139]. (e) SEM image of tubular fibers after Li deposition. Inset is the corresponding schematic diagram[138]. (f) Schematic process of creep-enabled Li deposition/stripping in a MIEC matrix. (g) SEM image of carbonaceous MIEC tubules. (h) TEM image of the Li plating process in a single carbon tubule with lithiophilic ZnOx[137]. (Reprinted with permission).

    Figure  4.  (a) Schematic representation of the Li nucleation on conductive frameworks[113]. (b) Schematic illustration and SEM images of Al2O3/HCS electrodes after electrochemical Li plating[143]. (c-e) Illustration of self-smoothing behavior in the Li/C anode. (f) Cycling performances of the Li/C || NMC811, Li/C || NMC622 and Li || NMC622 cells. Inset are SEM images of the flexible carbon film prepared by electrospinning, and the STEM image of an individual Li/C fiber after cycling with a smooth surface and uniform Li layer with SEI[141]. (Reprinted with permission).

    Figure  5.  (a) STEM and elemental mapping images of the Na, Mg, C, Mn, and F elements of a single NMMF@C cube. (b) Morphology of Li plated on the NMMF@C-modified Cu grid. (c) HRTEM image of the SEI formed on NMMF@C-modified Cu grid[142]. (d) SEM images and elemental mappings of iodine/carbon capsule. (e) SEM images of cycled Li foil without and with iodine treatment. (f) Cycling performance of Li || LiFePO4 pouch cell[140]. (Reprinted with permission).

    Figure  6.  (a) Time-lapse image of Li melt-infusion process for lithiophilic materials[130]. (b) Fabrication of a layered Li/rGO composite film[124]. (c) Transformation of lithium particle size during a process of chemical ethicizing and emulsification. (d) The digital photo and schematic model showing the Li microparticles dispersed in an electric and ionic dually conductive matrix composed of polymer and carbon. (e) Schematic illustration of a symmetric cell using the semi-liquid Li dispersion with improved interface contact[168]. (f) Mechanical processing of Li/C composite anode. (g) Electrochemical deposition for obtaining Li/C composite anode. (Reprinted with permission).

    Figure  7.  (a) Schematic illustrating the co-deposition of Li ions on nanodiamond, growth of the columnar Li film and the stripping of Li deposits. (b) Diffusion barrier of Li on different surfaces. (c) Li deposits in LiPF6-EC/DEC electrolyte with nanodiamond additives[179]. (d, e) EPMA images of cycled Li with nitro-C60 of cross-sectional morphology and C distribution, respectively. (f) HRTEM images of cycled Li with nitro-C60 additive[178]. (Reprinted with permission).

    Figure  8.  (a) SEM image of the hollow carbon nanosphere thin-film peeled off the Cu substrate. Inset is the SEM image of the carbon-coated polystyrene nanoparticle array. (b) Schematic illustrating the Li deposition under the protection of hollow carbon nanosphere thin-film. (c) Schematic showing the configuration of the in-situ TEM cell, and TEM images of the Li deposition process on Cu wires decorated with hollow carbon nanospheres taken at different times[189]. (d) Schematic illustrating the Li deposition in a cell using separator with a carbon-based coating layer. (e) In situ TEM images of Li deposition with the adoption of functionalized carbon[190]. (f) Schematic illustrating the double-layer nanodiamond film on a Cu substrate. (g) Cycling performance of the prototypical Li-S cells with Li foil, bare Cu with electrodeposited Li, or double-layer nanodiamond-polymer with electrodeposited Li as the anode[192]. (Reprinted with permission).

  • [1] Cherp A, Vinichenko V, Tosun J, et al. National growth dynamics of wind and solar power compared to the growth required for global climate targets[J]. Nature Energy,2021,6(7):742-754. doi: 10.1038/s41560-021-00863-0
    [2] Borlaug B, Muratori M, Gilleran M, et al. Heavy-duty truck electrification and the impacts of depot charging on electricity distribution systems[J]. Nature Energy,2021,6(6):673-682. doi: 10.1038/s41560-021-00855-0
    [3] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature,2012,488(7411):294-303. doi: 10.1038/nature11475
    [4] Jin C, Nai J, Sheng O, et al. Biomass-based materials for green lithium secondary batteries[J]. Energy & Environmental Science,2021,14(3):1326-1379. doi: 10.1039/D0EE02848G
    [5] Schmidt O, Hawkes A, Gambhir A, et al. The future cost of electrical energy storage based on experience rates[J]. Nature Energy,2017,2(8):17110. doi: 10.1038/nenergy.2017.110
    [6] Pomerantseva E, Gogotsi Y. Two-dimensional heterostructures for energy storage[J]. Nature Energy,2017,2(7):17089. doi: 10.1038/nenergy.2017.89
    [7] Davies D M, Verde M G, Mnyshenko O, et al. Combined economic and technological evaluation of battery energy storage for grid applications[J]. Nature Energy,2019,4(1):42-50. doi: 10.1038/s41560-018-0290-1
    [8] Li Z, Wan Z, Zeng X, et al. A robust network binder via localized linking by small molecules for high-areal-capacity silicon anodes in lithium-ion batteries[J]. Nano Energy,2021,79:105430. doi: 10.1016/j.nanoen.2020.105430
    [9] Li M, Lu J, Chen Z, et al. 30 years of lithium-ion batteries[J]. Advanced Materials,2018,30:1800561. doi: 10.1002/adma.201800561
    [10] Li Z, Zhang Y, Liu T, et al. Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high‐areal‐capacity lithium‐ion batteries[J]. Advanced Energy Materials,2020,10(20):1903110. doi: 10.1002/aenm.201903110
    [11] Zubi G, Dufo-López R, Carvalho M, et al. The lithium-ion battery: State of the art and future perspectives[J]. Renewable and Sustainable Energy Reviews,2018,89:292-308. doi: 10.1016/j.rser.2018.03.002
    [12] Yao N, Chen X, Shen X, et al. An atomic insight into the chemical origin and variation of the dielectric constant in liquid electrolytes[J]. Angewandte Chemie International Edition,2021,60(39):21473-21478. doi: 10.1002/anie.202107657
    [13] Yao Y X, Chen X, Yan C, et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte[J]. Angewandte Chemie International Edition,2021,60(8):4090-4097. doi: 10.1002/anie.202011482
    [14] Liu T, Tong C J, Wang B, et al. Trifunctional electrode additive for high active material content and volumetric lithium‐ion electrode densities[J]. Advanced Energy Materials,2019,9(10):1803390. doi: 10.1002/aenm.201803390
    [15] Liu T, Yuan Y, Tao X, et al. Bipolar electrodes for next-generation rechargeable batteries[J]. Advanced Science,2020,7(17):2001207. doi: 10.1002/advs.202001207
    [16] Cheng X B, Liu H, Yuan H, et al. A perspective on sustainable energy materials for lithium batteries[J]. SusMat,2021,1(1):38-50. doi: 10.1002/sus2.4
    [17] Liu H, Zhu Z, Yan Q, et al. A disordered rock salt anode for fast-charging lithium-ion batteries[J]. Nature,2020,585(7823):63-67. doi: 10.1038/s41586-020-2637-6
    [18] Assat G, Tarascon J M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries[J]. Nature Energy,2018,3(5):373-386. doi: 10.1038/s41560-018-0097-0
    [19] Lu J, Chen Z, Pan F, et al. High-performance anode materials for rechargeable lithium-ion batteries[J]. Electrochemical Energy Reviews,2018,1(1):35-53. doi: 10.1007/s41918-018-0001-4
    [20] Yang C, Chen J, Ji X, et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite[J]. Nature,2019,569(7755):245-250. doi: 10.1038/s41586-019-1175-6
    [21] Li Z, Wan Z, Wu G, et al. A biopolymer network for lean binder in silicon nanoparticle anodes for lithium-ion batteries[J]. Sustainable Materials and Technologies,2021,30:e00333. doi: 10.1016/j.susmat.2021.e00333
    [22] Cai W, Yan C, Yao Y X, et al. Rapid lithium diffusion in order@disorder pathways for fast‐charging graphite anodes[J]. Small Structures,2020,1(1):2000010. doi: 10.1002/sstr.202000010
    [23] Hou L P, Zhang X Q, Li B Q, et al. Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium–sulfur batteries[J]. Materials Today,2021,45:62-76. doi: 10.1016/j.mattod.2020.10.021
    [24] Shen X, Zhang X Q, Ding F, et al. Advanced electrode materials in lithium batteries: Retrospect and prospect[J]. Energy Material Advances,2021,2021:1-15. doi: 10.34133/2021/1205324
    [25] Liu J, Bao Z, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy,2019,4(3):180-186. doi: 10.1038/s41560-019-0338-x
    [26] Albertus P, Babinec S, Litzelman S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy,2018,3(1):16-21. doi: 10.1038/s41560-017-0047-2
    [27] Winter M, Barnett B, Xu K. Before Li ion batteries[J]. Chemical Reviews,2018,118(23):11433-11456. doi: 10.1021/acs.chemrev.8b00422
    [28] Liu B, Zhang J G, Xu W. Advancing lithium metal batteries[J]. Joule,2018,2(5):833-845. doi: 10.1016/j.joule.2018.03.008
    [29] Sheng O, Jin C, Luo J, et al. Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance[J]. Nano Letters,2018,18(5):3104-3112. doi: 10.1021/acs.nanolett.8b00659
    [30] Liu T, Hu H, Ding X, et al. 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020)[J]. Energy Storage Materials,2020,30:346-366. doi: 10.1016/j.ensm.2020.05.023
    [31] Zhang X Q, Li T, Li B Q, et al. A sustainable solid electrolyte interphase for high-energy-density lithium metal batteries under practical conditions[J]. Angewandte Chemie International Edition,2020,59(8):3252-3257. doi: 10.1002/anie.201911724
    [32] Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology,2017,12(3):194-206. doi: 10.1038/nnano.2017.16
    [33] Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews,2017,117(15):10403-10473. doi: 10.1021/acs.chemrev.7b00115
    [34] Guo Y, Li H, Zhai T. Reviving lithium-metal anodes for next-generation high-energy batteries[J]. Advanced Materials,2017,29(29):1700007. doi: 10.1002/adma.201700007
    [35] Sheng O, Jin C, Chen M, et al. Platinum nano-interlayer enhanced interface for stable all-solid-state batteries observed via cryo-transmission electron microscopy[J]. Journal of Materials Chemistry A,2020,8(27):13541-13547. doi: 10.1039/D0TA03270K
    [36] Sheng O, Jin C, Ding X, et al. A decade of progress on solid‐state electrolytes for secondary batteries: Advances and contributions[J]. Advanced Functional Materials,2021,31:2100891. doi: 10.1002/adfm.202100891
    [37] Ju Z, Nai J, Wang Y, et al. Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy[J]. Nature Communications,2020,11(1):488. doi: 10.1038/s41467-020-14358-1
    [38] Ren X C, Zhang X Q, Xu R, et al. Analyzing energy materials by cryogenic electron microscopy[J]. Advanced Materials,2020,32(24):1908293. doi: 10.1002/adma.201908293
    [39] Xin X, Ito K, Dutta A, et al. Dendrite-free epitaxial growth of lithium metal during charging in Li-O2 batteries[J]. Angewandte Chemie International Edition,2018,57(40):13206-13210. doi: 10.1002/anie.201808154
    [40] Yan C, Cheng X B, Tian Y, et al. Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition[J]. Advanced Materials,2018,30(25):1707629. doi: 10.1002/adma.201707629
    [41] Zhang T, Lu H, Yang J, et al. Stable lithium metal anode enabled by a lithiophilic and electron/ion conductive framework[J]. ACS Nano,2020,14(5):5618-5627. doi: 10.1021/acsnano.9b10083
    [42] Shi P, Zhang X Q, Shen X, et al. A pressure self‐adaptable route for uniform lithium plating and stripping in composite anode[J]. Advanced Functional Materials,2021,31(5):2004189. doi: 10.1002/adfm.202004189
    [43] Zhang Q K, Zhang X Q, Yuan H, et al. Thermally stable and nonflammable electrolytes for lithium metal batteries: Progress and perspectives[J]. Small Science,2021,1:2100058. doi: 10.1002/smsc.202100058
    [44] Hou L P, Zhang X Q, Li B Q, et al. Cycling a lithium metal anode at 90 oC in a liquid electrolyte[J]. Angewandte Chemie International Edition,2020,59(35):15109-15113. doi: 10.1002/anie.202002711
    [45] Meng X, Xu Y, Cao H, et al. Internal failure of anode materials for lithium batteries — A critical review[J]. Green Energy & Environment,2020,5(1):22-36. doi: 10.1016/j.gee.2019.10.003
    [46] Fang C, Li J, Zhang M, et al. Quantifying inactive lithium in lithium metal batteries[J]. Nature,2019,572(7770):511-515. doi: 10.1038/s41586-019-1481-z
    [47] Chen K H, Wood K N, Kazyak E, et al. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes[J]. Journal of Materials Chemistry A,2017,5(23):11671-11681. doi: 10.1039/C7TA00371D
    [48] Xu S, Chen K H, Dasgupta N P, et al. Evolution of dead lithium growth in lithium metal batteries: Experimentally validated model of the apparent capacity loss[J]. Journal of The Electrochemical Society,2019,166(14):A3456-A3463. doi: 10.1149/2.0991914jes
    [49] Hsieh Y C, Leißing M, Nowak S, et al. Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy[J]. Cell Reports Physical Science,2020,1(8):100139. doi: 10.1016/j.xcrp.2020.100139
    [50] Shen X, Zhang R, Shi P, et al. How does external pressure shape Li dendrites in Li metal batteries?[J]. Advanced Energy Materials,2021,11(10):2003416. doi: 10.1002/aenm.202003416
    [51] He Y, Zhang Y, Yu P, et al. Ion association tailoring SEI composition for Li metal anode protection[J]. Journal of Energy Chemistry,2020,45:1-6. doi: 10.1016/j.jechem.2019.09.033
    [52] Yan C, Li H R, Chen X, et al. Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes[J]. Journal of the American Chemical Society,2019,141(23):9422-9429. doi: 10.1021/jacs.9b05029
    [53] Sheng O, Zheng J, Ju Z, et al. In situ construction of a LiF-enriched interface for stable all-solid-state batteries and its origin revealed by cryo-TEM[J]. Advanced Materials,2020,32(34):2000223. doi: 10.1002/adma.202000223
    [54] Yao Y X, Zhang X Q, Li B Q, et al. A compact inorganic layer for robust anode protection in lithium‐sulfur batteries[J]. InfoMat,2020,2(2):379-388. doi: 10.1002/inf2.12046
    [55] Peled E, Menkin S. Review—SEI: Past, present and future[J]. Journal of The Electrochemical Society,2017,164(7):A1703-A1719. doi: 10.1149/2.1441707jes
    [56] Shen X, Zhang R, Chen X, et al. The failure of solid electrolyte interphase on Li metal anode: Structural uniformity or mechanical strength?[J]. Advanced Energy Materials,2020,10(10):1903645. doi: 10.1002/aenm.201903645
    [57] Ding J F, Xu R, Yan C, et al. A review on the failure and regulation of solid electrolyte interphase in lithium batteries[J]. Journal of Energy Chemistry,2021,59:306-319. doi: 10.1016/j.jechem.2020.11.016
    [58] Li S, Jiang M, Xie Y, et al. Developing high-performance lithium metal anode in liquid electrolytes: Challenges and progress[J]. Advanced Materials,2018,30(17):1706375. doi: 10.1002/adma.201706375
    [59] Zhai P, Liu L, Gu X, et al. Interface engineering for lithium metal anodes in liquid electrolyte[J]. Advanced Energy Materials,2020,10(34):2001257. doi: 10.1002/aenm.202001257
    [60] Zhang X Q, Cheng X B, Zhang Q. Advances in interfaces between Li metal anode and electrolyte[J]. Advanced Materials Interfaces,2018,5(2):1701097. doi: 10.1002/admi.201701097
    [61] Chen J X, Zhang X Q, Li B Q, et al. The origin of sulfuryl-containing components in SEI from sulfate additives for stable cycling of ultrathin lithium metal anodes[J]. Journal of Energy Chemistry,2020,47:128-131. doi: 10.1016/j.jechem.2019.11.024
    [62] Li T, Zhang X Q, Yao N, et al. Stable anion-derived solid electrolyte interphase in lithium metal batteries[J]. Angewandte Chemie International Edition,2021,133:22865-22869. doi: 10.1002/ange.202107732
    [63] Ni S, Tan S, An Q, et al. Three dimensional porous frameworks for lithium dendrite suppression[J]. Journal of Energy Chemistry,2020,44:73-89. doi: 10.1016/j.jechem.2019.09.031
    [64] Zhang X, Wang A, Liu X, et al. Dendrites in lithium metal anodes: Suppression, regulation, and elimination[J]. Accounts of Chemical Research,2019,52(11):3223-3232. doi: 10.1021/acs.accounts.9b00437
    [65] Wang D, Zhang W, Zheng W, et al. Towards high-safe lithium metal anodes: Suppressing lithium dendrites via tuning surface energy[J]. Advanced Science,2017,4(1):1600168. doi: 10.1002/advs.201600168
    [66] Gao X, Zhou Y N, Han D, et al. Thermodynamic understanding of Li-dendrite formation[J]. Joule,2020,4(9):1864-1879. doi: 10.1016/j.joule.2020.06.016
    [67] Liu H, Cheng X B, Xu R, et al. Plating/stripping behavior of actual lithium metal anode[J]. Advanced Energy Materials,2019,9(44):1902254. doi: 10.1002/aenm.201902254
    [68] Mao H, Yu W, Cai Z, et al. Current-density regulating lithium metal directional deposition for long cycle-life Li metal batteries[J]. Angewandte Chemie International Edition,2021,60:19036-19313. doi: 10.1002/anie.202105831
    [69] Xu Q, Yang Y, Shao H. Enhanced cycleability and dendrite-free lithium deposition by addition of sodium ion in electrolyte for lithium metal batteries[J]. Electrochimica Acta,2018,271:617-623. doi: 10.1016/j.electacta.2018.03.182
    [70] Liu Y, Xu X, Sadd M, et al. Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal[J]. Advanced Science,2021,8(5):2003301. doi: 10.1002/advs.202003301
    [71] Zhang X Q, Wang X M, Li B Q, et al. Crosstalk shielding of transition metal ions for long cycling lithium–metal batteries[J]. Journal of Materials Chemistry A,2020,8(8):4283-4289. doi: 10.1039/C9TA12269A
    [72] Huang K, Bi S, Kurt B, et al. Regulation of SEI formation by anion receptors to achieve ultra-stable lithium metal battery[J]. Angewandte Chemie International Edition,2021,60:19232-19240. doi: 10.1002/anie.202104671
    [73] Li F, He J, Liu J, et al. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries[J]. Angewandte Chemie International Edition,2021,60(12):6600-6608. doi: 10.1002/anie.202013993
    [74] Zhang X Q, Chen X, Cheng X B, et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angewandte Chemie International Edition,2018,57(19):5301-5305. doi: 10.1002/anie.201801513
    [75] Xu R, Shen X, Ma X X, et al. Identifying the critical anion-cation coordination to regulate the electric double layer for an efficient lithium-metal anode interface[J]. Angewandte Chemie International Edition,2021,60(8):4215-4220. doi: 10.1002/anie.202013271
    [76] Wei J Y, Zhang X Q, Hou L P, et al. Shielding polysulfide intermediates by an organosulfur-containing solid electrolyte interphase on the lithium anode in lithium-sulfur batteries[J]. Advanced Materials,2020,32(37):2003012. doi: 10.1002/adma.202003012
    [77] Tantratian K, Cao D, Abdelaziz A, et al. Stable Li metal anode enabled by space confinement and uniform curvature through lithiophilic nanotube arrays[J]. Advanced Energy Materials,2020,10(5):1902819. doi: 10.1002/aenm.201902819
    [78] Zhou T, Shen J, Wang Z, et al. Regulating lithium nucleation and deposition via MOF‐derived Co@C‐modified carbon cloth for stable Li metal anode[J]. Advanced Functional Materials,2020,30(14):1909159. doi: 10.1002/adfm.201909159
    [79] Lee D, Sun S, Kwon J, et al. Copper nitride nanowires printed Li with stable cycling for Li metal batteries in carbonate electrolytes[J]. Advanced Materials,2020,32(7):1905573. doi: 10.1002/adma.201905573
    [80] Um J H, Yu S H. Unraveling the mechanisms of lithium metal plating/stripping via in situ/operando analytical techniques[J]. Advanced Energy Materials,2020,11(27):2003004. doi: 10.1002/aenm.202003004
    [81] Zhan Y X, Shi P, Zhang R, et al. Deciphering the effect of electrical conductivity of hosts on lithium deposition in composite lithium metal anodes[J]. Advanced Energy Materials,2021,11:2101654. doi: 10.1002/aenm.202101654
    [82] Zhu R, Yang H, Fadillah L, et al. A lithiophilic carbon scroll as a Li metal host with low tortuosity design and “Dead Li” self-cleaning capability[J]. Journal of Materials Chemistry A,2021,9(22):13332-13343. doi: 10.1039/D1TA02491D
    [83] Jin C, Sheng O, Chen M, et al. Armed lithium metal anodes with functional skeletons[J]. Materials Today Nano,2021,13:100103. doi: 10.1016/j.mtnano.2020.100103
    [84] Yuan H, Liu T, Liu Y, et al. A review of biomass materials for advanced lithium-sulfur batteries[J]. Chemical Science,2019,10(32):7484-7495. doi: 10.1039/C9SC02743B
    [85] Zhan Y X, Shi P, Zhang X Q, et al. The insights of lithium metal plating/stripping in porous hosts: Progress and perspectives[J]. Energy Technology,2021,9(2):2000700. doi: 10.1002/ente.202000700
    [86] Hong D, Choi Y, Ryu J, et al. Homogeneous Li deposition through the control of carbon dot-assisted Li-dendrite morphology for high-performance Li-metal batteries[J]. Journal of Materials Chemistry A,2019,7(35):20325-20334. doi: 10.1039/C9TA06260B
    [87] Zhao Y, Sun Q, Li X, et al. Carbon paper interlayers: A universal and effective approach for highly stable Li metal anodes[J]. Nano Energy,2018,43:368-375. doi: 10.1016/j.nanoen.2017.11.032
    [88] Kim J S, Kim D W, Jung H T, et al. Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive[J]. Chemistry of Materials,2015,27(8):2780-2787. doi: 10.1021/cm503447u
    [89] Deng W, Zhou X, Fang Q, et al. Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes[J]. Advanced Energy Materials,2018,8(12):1703152. doi: 10.1002/aenm.201703152
    [90] Zhang R, Chen X R, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition,2017,56(27):7764-7768. doi: 10.1002/anie.201702099
    [91] Wang X, Pan Z, Wu Y, et al. Reducing lithium deposition overpotential with silver nanocrystals anchored on graphene aerogel[J]. Nanoscale,2018,10(35):16562-16567. doi: 10.1039/C8NR04655G
    [92] Zhang R, Cheng X B, Zhao C Z, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth[J]. Advanced Materials,2016,28(11):2155-2162. doi: 10.1002/adma.201504117
    [93] Wang H, Lin D, Xie J, et al. An interconnected channel‐like framework as host for lithium metal composite anodes[J]. Advanced Energy Materials,2019,9(7):1802720. doi: 10.1002/aenm.201802720
    [94] Chen M, Zheng J, Sheng O, et al. Sulfur–nitrogen co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode[J]. Journal of Materials Chemistry A,2019,7(31):18267-18274. doi: 10.1039/C9TA05684J
    [95] Jin C, Sheng O, Lu Y, et al. Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA cm−2[J]. Nano Energy,2018,45:203-209. doi: 10.1016/j.nanoen.2017.12.055
    [96] Jin C, Sheng O, Luo J, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries[J]. Nano Energy,2017,37:177-186. doi: 10.1016/j.nanoen.2017.05.015
    [97] Liu T, Li H, Yue J, et al. Ultralight electrolyte for high-energy lithium-sulfur pouch cells[J]. Angewandte Chemie International Edition,2021,60(32):17547-17555. doi: 10.1002/anie.202103303
    [98] Yin Y C, Yu Z L, Ma Z Y, et al. Bio-inspired low-tortuosity carbon host for high-performance lithium-metal anode[J]. National Science Review,2019,6(2):247-256. doi: 10.1093/nsr/nwy148
    [99] Sun Z, Jin S, Jin H, et al. Robust expandable carbon nanotube scaffold for ultrahigh-capacity lithium-metal anodes[J]. Advanced Materials,2018,30(32):1800884. doi: 10.1002/adma.201800884
    [100] Jin C, Sheng O, Zhang W, et al. Sustainable, inexpensive, naturally multi-functionalized biomass carbon for both Li metal anode and sulfur cathode[J]. Energy Storage Materials,2018,15:218-225. doi: 10.1016/j.ensm.2018.04.001
    [101] Zhang Y, Luo W, Wang C, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(14):3584-3589. doi: 10.1073/pnas.1618871114
    [102] Guo J, Zhao S, Yang H, et al. Electron regulation enabled selective lithium deposition for stable anodes of lithium-metal batteries[J]. Journal of Materials Chemistry A,2019,7(5):2184-2191. doi: 10.1039/C8TA11193F
    [103] Zhang C, Huang Z, Lv W, et al. Carbon enables the practical use of lithium metal in a battery[J]. Carbon,2017,123:744-755. doi: 10.1016/j.carbon.2017.08.027
    [104] Shi P, Zhang X Q, Shen X, et al. A review of composite lithium metal anode for practical applications[J]. Advanced Materials Technologies,2020,5(1):1900806. doi: 10.1002/admt.201900806
    [105] Chang J, Shang J, Sun Y, et al. Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium[J]. Nature Communications,2018,9(1):4480. doi: 10.1038/s41467-018-06879-7
    [106] Shi P, Li T, Zhang R, et al. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries[J]. Advanced Materials,2019,31(8):1807131. doi: 10.1002/adma.201807131
    [107] Xiong W S, Xia Y, Jiang Y, et al. Highly conductive and robust three-dimensional host with excellent alkali metal infiltration boosts ultrastable lithium and sodium metal anodes[J]. ACS Applied Materials & Interfaces,2018,10(25):21254-21261. doi: 10.1021/acsami.8b03572
    [108] Wang T, Villegas Salvatierra R, Jalilov A S, et al. Ultrafast charging high capacity asphalt-lithium metal batteries[J]. ACS Nano,2017,11(11):10761-10767. doi: 10.1021/acsnano.7b05874
    [109] Zhu M, Li B, Li S, et al. Dendrite-free metallic lithium in lithiophilic carbonized metal-organic frameworks[J]. Advanced Energy Materials,2018,8(18):1703505. doi: 10.1002/aenm.201703505
    [110] Huang M, Yao Z, Yang Q, et al. Consecutive nucleation and confinement modulation towards Li plating in seeded capsules for durable Li-metal batteries[J]. Angewandte Chemie International Edition,2021,60(25):14040-14050. doi: 10.1002/anie.202102552
    [111] Ye W, Pei F, Lan X, et al. Stable nano‐encapsulation of lithium through seed‐free selective deposition for high‐performance Li battery anodes[J]. Advanced Energy Materials,2020,10(7):1902956. doi: 10.1002/aenm.201902956
    [112] Fang Y, Zhang S L, Wu Z-P, et al. A highly stable lithium metal anode enabled by Ag nanoparticle–embedded nitrogen-doped carbon macroporous fibers[J]. Science Advances,2021,7:eabg3626. doi: 10.1126/sciadv.abg3626
    [113] Chen X, Chen X R, Hou T Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Science Advances,2019,5:eaau7728. doi: 10.1126/sciadv.aau7728
    [114] Wu H, Zhang Y, Deng Y, et al. A lightweight carbon nanofiber-based 3D structured matrix with high nitrogen-doping level for lithium metal anodes[J]. Science China Materials,2019,62(1):87-94. doi: 10.1007/s40843-018-9298-x
    [115] Huang G, Han J, Zhang F, et al. Lithiophilic 3D nanoporous nitrogen-doped graphene for dendrite-free and ultrahigh-rate lithium-metal anodes[J]. Advanced Materials,2019,31(2):1805334. doi: 10.1002/adma.201805334
    [116] Zhai P, Wang T, Yang W, et al. Uniform lithium deposition assisted by single‐atom doping toward high‐performance lithium metal anodes[J]. Advanced Energy Materials,2019,9(18):1804019. doi: 10.1002/aenm.201804019
    [117] Liu L, Yin Y X, Li J Y, et al. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes[J]. Advanced Materials,2018,30(10):1706216. doi: 10.1002/adma.201706216
    [118] Liang F, Lin L, Feng Z, et al. Spatial separation of lithiophilic surface and superior conductivity for advanced Li metal anode: The case of acetylene black and N-doped carbon spheres[J]. Journal of Materials Chemistry A,2019,7(15):8765-8770. doi: 10.1039/C9TA00742C
    [119] Yang C, Yao Y, He S, et al. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode[J]. Advanced Materials,2017,29(38):1702714. doi: 10.1002/adma.201702714
    [120] Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule,2018,2(4):764-777. doi: 10.1016/j.joule.2018.02.001
    [121] Zuo T T, Wu X W, Yang C P, et al. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes[J]. Advanced Materials,2017,29(29):1700389. doi: 10.1002/adma.201700389
    [122] Kang T, Wang Y, Guo F, et al. Self-assembled monolayer enables slurry-coating of Li anode[J]. ACS Central Science,2019,5(3):468-476. doi: 10.1021/acscentsci.8b00845
    [123] Ji X, Liu D Y, Prendiville D G, et al. Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition[J]. Nano Today,2012,7(1):10-20. doi: 10.1016/j.nantod.2011.11.002
    [124] Lin D, Liu Y, Liang Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J]. Nature Nanotechnology,2016,11(7):626-632. doi: 10.1038/nnano.2016.32
    [125] Li X, Chen W, Qian Q, et al. Electrospinning‐based strategies for battery materials[J]. Advanced Energy Materials,2021,11(2):2000845. doi: 10.1002/aenm.202000845
    [126] Zhang L, Wei K, Yin J, et al. Chemical vapor deposition-assisted fabrication of self-assembled Co/MnO@C composite nanofibers as advanced anode materials for high-capacity Li-ion batteries[J]. Langmuir,2020,36(47):14342-14351. doi: 10.1021/acs.langmuir.0c02691
    [127] Bengtsson A, Hecht P, Sommertune J, et al. Carbon fibers from lignin–cellulose precursors: Effect of carbonization conditions[J]. ACS Sustainable Chemistry & Engineering,2020,8(17):6826-6833. doi: 10.1021/acssuschemeng.0c01734
    [128] Zhou L, Pan F, Zeng S, et al. Ionic liquid assisted fabrication of cellulose‐based conductive films for Li‐ion battery[J]. Journal of Applied Polymer Science,2020,137(35):49430. doi: 10.1002/app.49430
    [129] Ye X, Lin Z, Liang S, et al. Upcycling of electroplating sludge into ultrafine Sn@C nanorods with highly stable lithium storage performance[J]. Nano Letters,2019,19(3):1860-1866. doi: 10.1021/acs.nanolett.8b04944
    [130] Liang Z, Lin D, Zhao J, et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(11):2862-2867. doi: 10.1073/pnas.1518188113
    [131] Jin S, Ye Y, Niu Y, et al. Solid-solution-based metal alloy phase for highly reversible lithium metal anode[J]. Journal of the American Chemical Society,2020,142(19):8818-8826. doi: 10.1021/jacs.0c01811
    [132] Wang S H, Yue J, Dong W, et al. Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes[J]. Nature Communications,2019,10(1):4930. doi: 10.1038/s41467-019-12938-4
    [133] Ye H, Zheng Z J, Yao H R, et al. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries[J]. Angewandte Chemie International Edition,2019,58(4):1094-1099. doi: 10.1002/anie.201811955
    [134] Jin S, Xin S, Wang L, et al. Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li-S batteries[J]. Advanced Materials,2016,28(41):9094-9102. doi: 10.1002/adma.201602704
    [135] Yan K, Lu Z, Lee H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nature Energy,2016,1(3):16010. doi: 10.1038/nenergy.2016.10
    [136] Wang H, Li Y, Li Y, et al. Wrinkled graphene cages as hosts for high-capacity Li metal anodes shown by cryogenic electron microscopy[J]. Nano Letters,2019,19(2):1326-1335. doi: 10.1021/acs.nanolett.8b04906
    [137] Chen Y, Wang Z, Li X, et al. Li metal deposition and stripping in a solid-state battery via Coble creep[J]. Nature,2020,578(7794):251-255. doi: 10.1038/s41586-020-1972-y
    [138] Liu L, Yin Y X, Li J Y, et al. Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes[J]. Joule,2017,1(3):563-575. doi: 10.1016/j.joule.2017.06.004
    [139] Sun Y, Zheng G, Seh Zhi W, et al. Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries[J]. Chem,2016,1(2):287-297. doi: 10.1016/j.chempr.2016.07.009
    [140] Jin C, Liu T, Sheng O, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox[J]. Nature Energy,2021,6(4):378-387. doi: 10.1038/s41560-021-00789-7
    [141] Niu C, Pan H, Xu W, et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions[J]. Nature Nanotechnology,2019,14(6):594-601. doi: 10.1038/s41565-019-0427-9
    [142] Yuan H, Nai J, Tian H, et al. An ultrastable lithium metal anode enabled by designed metal fluoride spansules[J]. Science Advances,2020,6:eaaz3112. doi: 10.1126/sciadv.aaz3112
    [143] Xie J, Wang J, Lee H R, et al. Engineering stable interfaces for three-dimensional lithium metal anodes[J]. Science Advances,2018,4:eaat5168. doi: 10.1126/sciadv.aat5168
    [144] Zhang X Q, Cheng X B, Chen X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials,2017,27(10):1605989. doi: 10.1002/adfm.201605989
    [145] Jiang C, Jia Q, Tang M, et al. Regulating the solvation sheath of Li ions by using hydrogen bonds for highly stable lithium-metal anodes[J]. Angewandte Chemie International Edition,2021,60(19):10871-10879. doi: 10.1002/anie.202101976
    [146] Li T, Zhang X Q, Shi P, et al. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries[J]. Joule,2019,3(11):2647-2661. doi: 10.1016/j.joule.2019.09.022
    [147] Zhang X Q, Jin Q, Nan Y L, et al. Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium-sulfur batteries[J]. Angewandte Chemie International Edition,2021,60(28):15503-15509. doi: 10.1002/anie.202103470
    [148] Chen M, Zheng J, Liu Y, et al. Marrying ester group with lithium salt: Cellulose‐acetate‐enabled LiF‐enriched interface for stable lithium metal anodes[J]. Advanced Functional Materials,2021,31(36):2102228. doi: 10.1002/adfm.202102228
    [149] Tan Y H, Lu G X, Zheng J H, et al. Lithium fluoride in electrolyte for stable and safe lithium-metal batteries[J]. Advanced Materials,2021,33:2102134. doi: 10.1002/adma.202102134
    [150] Lin D, Liu Y, Li Y, et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism[J]. Nature Chemistry,2019,11(4):382-389. doi: 10.1038/s41557-018-0203-8
    [151] Boyle D T, Huang W, Wang H, et al. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins[J]. Nature Energy,2021,6(5):487-494. doi: 10.1038/s41560-021-00787-9
    [152] Jo H, Song D, Jeong Y C, et al. Study on dead-Li suppression mechanism of Li-hosting vapor-grown-carbon-nanofiber-based protective layer for Li metal anodes[J]. Journal of Power Sources,2019,409:132-138. doi: 10.1016/j.jpowsour.2018.09.059
    [153] Chen X R, Yan C, Ding J F, et al. New insights into “dead lithium” during stripping in lithium metal batteries[J]. Journal of Energy Chemistry,2021,62:289-294. doi: 10.1016/j.jechem.2021.03.048
    [154] Jin C B, Zhang X Q, Sheng O W, et al. Reclaiming inactive lithium with a triiodide/iodide redox couple for practical lithium metal batteries[J]. Angewandte Chemie International Edition,2021,60:22990-22995. doi: 10.1002/anie.202110589
    [155] Liu Y, Ju Z, Zhang B, et al. Visualizing the sensitive lithium with atomic precision: Cryogenic electron microscopy for batteries[J]. Accounts of Chemical Research,2021,54(9):2088-2099. doi: 10.1021/acs.accounts.1c00120
    [156] Chen H, Yang Y, Boyle D T, et al. Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries[J]. Nature Energy,2021,6:790-798. doi: 10.1038/s41560-021-00833-6
    [157] Kim M S, Ryu J H, Deepika, et al. Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries[J]. Nature Energy,2018,3(10):889-898. doi: 10.1038/s41560-018-0237-6
    [158] Yue X Y, Zhou Q Y, Bao J, et al. In situ construction of lithium silicide host with unhindered lithium spread for dendrite‐free lithium metal anode[J]. Advanced Functional Materials,2021,31(9):2008786. doi: 10.1002/adfm.202008786
    [159] Ju Z, Jin C, Yuan H, et al. A fast-ion conducting interface enabled by aluminum silicate fibers for stable Li metal batteries[J]. Chemical Engineering Journal,2021,408:128016. doi: 10.1016/j.cej.2020.128016
    [160] Chi S S, Liu Y, Song W L, et al. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode[J]. Advanced Functional Materials,2017,27(24):1700348. doi: 10.1002/adfm.201700348
    [161] Yue X Y, Li X L, Wang W W, et al. Wettable carbon felt framework for high loading Li-metal composite anode[J]. Nano Energy,2019,60:257-266. doi: 10.1016/j.nanoen.2019.03.057
    [162] Yue X Y, Bao J, Qiu Q Q, et al. Copper decorated ultralight 3D carbon skeleton derived from soybean oil for dendrite-free Li metal anode[J]. Chemical Engineering Journal,2020,391:123516. doi: 10.1016/j.cej.2019.123516
    [163] Go W, Kim M H, Park J, et al. Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes[J]. Nano Letters,2019,19(3):1504-1511. doi: 10.1021/acs.nanolett.8b04106
    [164] Heine J, Krüger S, Hartnig C, et al. Coated lithium powder (CLiP) electrodes for lithium-metal batteries[J]. Advanced Energy Materials,2014,4(5):1300815. doi: 10.1002/aenm.201300815
    [165] Kolesnikov A, Zhou D, Kolek M, et al. Lithium-powder based electrodes modified with ZnI2 for enhanced electrochemical performance of lithium-metal batteries[J]. Journal of The Electrochemical Society,2019,166(8):A1400-A1407. doi: 10.1149/2.0401908jes
    [166] Lee J H, Lee J K, Yoon W Y. Electrochemical analysis of the effect of Cr coating the LiV3O8 cathode in a lithium ion battery with a lithium powder anode[J]. ACS Applied Materials & Interfaces,2013,5(15):7058-7064. doi: 10.1021/am401334b
    [167] Ai G, Wang Z, Zhao H, et al. Scalable process for application of stabilized lithium metal powder in Li-ion batteries[J]. Journal of Power Sources,2016,309:33-41. doi: 10.1016/j.jpowsour.2016.01.061
    [168] Li S, Wang H, Cuthbert J, et al. A semiliquid lithium metal anode[J]. Joule,2019,3(7):1637-1646. doi: 10.1016/j.joule.2019.05.022
    [169] Liang Z, Yan K, Zhou G, et al. Composite lithium electrode with mesoscale skeleton via simple mechanical deformation[J]. Science Advances,2019,5:eaau5655. doi: 10.1126/sciadv.aau5655
    [170] Chen Y, Yue M, Liu C, et al. Long cycle life lithium metal batteries enabled with upright lithium anode[J]. Advanced Functional Materials,2019,29(15):1806752. doi: 10.1002/adfm.201806752
    [171] Wan M, Kang S, Wang L, et al. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode[J]. Nature Communications,2020,11(1):829. doi: 10.1038/s41467-020-14550-3
    [172] Guo F, Kang T, Liu Z, et al. Advanced lithium metal-carbon nanotube composite anode for high-performance lithium-oxygen batteries[J]. Nano Letters,2019,19(9):6377-6384. doi: 10.1021/acs.nanolett.9b02560
    [173] Lee Y G, Fujiki S, Jung C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes[J]. Nature Energy,2020,5(4):299-308. doi: 10.1038/s41560-020-0575-z
    [174] Cui J, Yao S, Ihsan-Ul-Haq M, et al. Correlation between Li plating behavior and surface characteristics of carbon matrix toward stable Li metal anodes[J]. Advanced Energy Materials,2019,9(1):1802777. doi: 10.1002/aenm.201802777
    [175] Fan L, Zhuang H L, Zhang W, et al. Stable lithium electrodeposition at ultra-high current densities enabled by 3D PMF/Li composite anode[J]. Advanced Energy Materials,2018,8(15):1703360. doi: 10.1002/aenm.201703360
    [176] Zhao C, Xiong S, Li H, et al. A dendrite-free composite Li metal anode enabled by lithiophilic Co, N codoped porous carbon nanofibers[J]. Journal of Power Sources,2021,483:229188. doi: 10.1016/j.jpowsour.2020.229188
    [177] Xu Z, Xu L, Xu Z, et al. N, O‐codoped carbon nanosheet array enabling stable lithium metal anode[J]. Advanced Functional Materials,2021,31:2102354. doi: 10.1002/adfm.202102354
    [178] Jiang Z, Zeng Z, Yang C, et al. Nitrofullerene, a C60-based bifunctional additive with smoothing and protecting effects for stable lithium metal anode[J]. Nano Letters,2019,19(12):8780-8786. doi: 10.1021/acs.nanolett.9b03562
    [179] Cheng X B, Zhao M Q, Chen C, et al. Nanodiamonds suppress the growth of lithium dendrites[J]. Nature Communications,2017,8(1):336. doi: 10.1038/s41467-017-00519-2
    [180] Li S, Luo Z, Tu H, et al. N, S-codoped carbon dots as deposition regulating electrolyte additive for stable lithium metal anode[J]. Energy Storage Materials,2021,42:679-686. doi: 10.1016/j.ensm.2021.08.008
    [181] Yan C, Jiang L L, Yao Y X, et al. Nucleation and growth mechanism of anion-derived solid electrolyte interphase in rechargeable batteries[J]. Angewandte Chemie International Edition,2021,60(15):8521-8525. doi: 10.1002/anie.202100494
    [182] Ding J F, Xu R, Yao N, et al. Non‐solvating and low‐dielectricity cosolvent for anion‐derived solid electrolyte interphases in lithium metal batteries[J]. Angewandte Chemie International Edition,2021,60(20):11442-11447. doi: 10.1002/anie.202101627
    [183] Wang X M, Zhang X Q, Shi P, et al. Glycolide additives enrich organic components in the solid electrolyte interphase enabling stable ultrathin lithium metal anodes[J]. Materials Chemistry Frontiers,2021,5(6):2791-2797. doi: 10.1039/D0QM01134G
    [184] Lee S H, Hwang J Y, Ming J, et al. Long-lasting solid electrolyte interphase for stable Li-metal batteries[J]. ACS Energy Letters,2021,6(6):2153-2161. doi: 10.1021/acsenergylett.1c00661
    [185] Zheng J, Engelhard M H, Mei D, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy,2017,2(3):17012. doi: 10.1038/nenergy.2017.12
    [186] Niu C, Liu D, Lochala J A, et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries[J]. Nature Energy,2021,6(7):723-732. doi: 10.1038/s41560-021-00852-3
    [187] Louli A J, Eldesoky A, Weber R, et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis[J]. Nature Energy,2020,5(9):693-702. doi: 10.1038/s41560-020-0668-8
    [188] Xiao J, Li Q, Bi Y, et al. Understanding and applying coulombic efficiency in lithium metal batteries[J]. Nature Energy,2020,5(8):561-568. doi: 10.1038/s41560-020-0648-z
    [189] Zheng G, Lee S W, Liang Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes[J]. Nature Nanotechnology,2014,9(8):618-623. doi: 10.1038/nnano.2014.152
    [190] Liu Y, Liu Q, Xin L, et al. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction[J]. Nature Energy,2017,2(7):17083. doi: 10.1038/nenergy.2017.83
    [191] Ma Y, Qi P, Ma J, et al. Wax-transferred hydrophobic CVD graphene enables water-resistant and dendrite-free lithium anode toward long cycle Li-air battery[J]. Advanced Science,2021,8(16):2100488. doi: 10.1002/advs.202100488
    [192] Liu Y, Tzeng Y K, Lin D, et al. An ultrastrong double-layer nanodiamond interface for stable lithium metal anodes[J]. Joule,2018,2(8):1595-1609. doi: 10.1016/j.joule.2018.05.007
    [193] Li Z, Peng M, Zhou X, et al. In situ chemical lithiation transforms diamond-like carbon into an ultrastrong ion conductor for dendrite-free lithium-metal anodes[J]. Advanced Materials,2021,33:2100793. doi: 10.1002/adma.202100793
    [194] Arie A A, Lee J K. Electrochemical characteristics of lithium metal anodes with diamond like carbon film coating layer[J]. Diamond and Related Materials,2011,20(3):403-408. doi: 10.1016/j.diamond.2011.01.040
  • 加载中
图(9)
计量
  • 文章访问数:  1931
  • HTML全文浏览量:  968
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-06
  • 修回日期:  2021-11-22
  • 网络出版日期:  2021-12-17
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回