留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Templating synthesis of porous carbons for energy-related applications: A review

GUAN Lu HU Han TENG Xiao-ling ZHU Yi-fan ZHANG Yun-long CHAO Hui-xia YANG Hao WANG Xiao-shan WU Ming-bo

关露, 胡涵, 滕晓玲, 朱一凡, 张云龙, 晁会霞, 杨浩, 王小珊, 吴明铂. 多孔炭的原位模板合成及其在能源领域应用. 新型炭材料(中英文), 2022, 37(1): 25-45. doi: 10.1016/S1872-5805(22)60574-2
引用本文: 关露, 胡涵, 滕晓玲, 朱一凡, 张云龙, 晁会霞, 杨浩, 王小珊, 吴明铂. 多孔炭的原位模板合成及其在能源领域应用. 新型炭材料(中英文), 2022, 37(1): 25-45. doi: 10.1016/S1872-5805(22)60574-2
GUAN Lu, HU Han, TENG Xiao-ling, ZHU Yi-fan, ZHANG Yun-long, CHAO Hui-xia, YANG Hao, WANG Xiao-shan, WU Ming-bo. Templating synthesis of porous carbons for energy-related applications: A review. New Carbon Mater., 2022, 37(1): 25-45. doi: 10.1016/S1872-5805(22)60574-2
Citation: GUAN Lu, HU Han, TENG Xiao-ling, ZHU Yi-fan, ZHANG Yun-long, CHAO Hui-xia, YANG Hao, WANG Xiao-shan, WU Ming-bo. Templating synthesis of porous carbons for energy-related applications: A review. New Carbon Mater., 2022, 37(1): 25-45. doi: 10.1016/S1872-5805(22)60574-2

多孔炭的原位模板合成及其在能源领域应用

doi: 10.1016/S1872-5805(22)60574-2
基金项目: 国家自然科学基金(22138013、22179145);山东省自然科学基金(ZR2020ZD08);中国石油大学(华东)启动经费
详细信息
    通讯作者:

    胡 涵,教授. E-mail:hhu@upc.edu.cn

    吴明铂,教授. E-mail:wumb@upc.edu.cn

  • 中图分类号: TQ127.1+1

Templating synthesis of porous carbons for energy-related applications: A review

Funds: This work was financially supported by National Natural Science Foundation of China (22138013, 22179145), Shandong Provincial Natural Science Foundation (ZR2020ZD08), and the startup support grant from China University of Petroleum (East China)
More Information
  • 摘要: 由于具有比表面积大、稳定性高、导电性好等优点,多孔炭材料在电化学能源存储和转换领域得到了广泛的应用。多孔炭材料的性能主要由其结构决定,这使得多孔炭的结构调控成为了该领域的研究前沿。除了硬模板法以外,原位模板合成策略被认为是精准调控多孔炭结构的另一种有效策略。鉴于此,本文总结了多孔炭材料的原位模板合成及其在电化学能量存储和转换领域的应用。首先,通过与传统硬模板法比较,概述了原位模板法合成多孔炭这种策略兴起的原因。随后,根据合成时模板的形成过程,将原位模板分为自上而下型、状态变化型以及自下而上型模板,并详细分析了相关实例。之后,介绍了这些材料在电化学能源存储和转换领域的应用,突出了原位模板合成的优势。最后,提出了这一领域进一步发展过程中可能面临的挑战和机遇。
  • FIG. 1214.  FIG. 1214.

    FIG. 1214.. 

    Figure  1.  SEM images of (a) 3DFC-700[36] and (b) interconnected carbon nanosheets of sample CK-850. Inset in (b) shows the photograph of a desert rose[37]. (c) Illustration of constructing NHCA using potassium citrate and petroleum asphalt as the precursors. (d) SEM image of NHCA. (e) The yield of carbon of HCA and NHCAs[38]. (f) Schematic drawing for the synthesis of hCNC via the method using MgO as the in-situ template. SEM images of the basic MgCO2 precursor (g), the MgO template obtained by decomposing the precursor (h), and hCNC obtained by depositing carbon on the template (i) 39]. (j) Schematic illustration of the synthesis process for porous lignin-derived carbon[40] (Reprinted with permission).

    Figure  2.  (a) Illustration of the formation process of the graphene prepared using an in-situ self-generating template route[44]. SEM images of the (b-d) shell and (e-g) the core of 3D few-layer graphene-like carbon[46] (Reprinted with permission).

    Figure  3.  (a) Schematic illustration of the synthesis of carbon materials through using the molten salt strategy[47]. (b) Schematic diagram of the evolution process of molten-salt carbons[52]. (c) Illustration of the formation mechanism of nitrogen doped slim carbon nanosheets[53] (Reprinted with permission).

    Figure  4.  (a) Synthesis process for the formation of LMPCs. (b) FTIR spectrum of powder obtained by calcining melamine at 550 oC. (c) Transmission electron microscopy (TEM) image of g-C3N4 (inset is TEM image of melamine). (d) SEM image of LMPC800-N2[66]. (e) Schematic diagram of the formation process of N-CNS[65]. (f) Synthesis process for the formation of SSUCo-900 [62] (Reprinted with permission).

    Figure  5.  (a) Pore size distributions of gels dried by some methods. (b) Adsorption and desorption isotherms of N2 on carbon aerogels and cryogels at 77 K [72] (Reprinted with permission).

    Figure  6.  (a) Schematic illustration of the synthetic process of carbon nanosheets. (b) Charge/discharge profiles of MSC. (c) Rate capability and (d) cycling performances of PAC and MSC[51]. (e) Rate capability and (f) charge/discharge profiles of PC-1100-based lithium-ion batteries at different current densities. (g) Long-term cycling performance of PC-1100 electrode at 10 A g−191 (Reprinted with permission).

    Figure  7.  (a) Illustration of the construction process of DHPCs. (b) and (c) charge/discharge profiles of S@NHPC and S@DHPC at 0.5 C. (d) Long cyclability of the S@DHPC cathode at 2 C[106]. (e) SEM and TEM images of the hCNC, as well as the schematic diagram of S@hCNC. (f) CV curves of S@hCNC at 0.2 mV s−1. (g) The charge/discharge profiles of S@hCNC at 0.2 A g−1. (h) Long-term cycling performance at different current densities[39] (Reprinted with permission).

    Figure  8.  Typical TEM images of (a) CNC670, (b) CNC700, (c) CNC800, and (d) CNC900 (after the removal of MgO template). (e) Typical CV curves of CNC700 at different scan rates. (f) Specific capacitances of CNCs at different current densities[117]. (g) Phase diagram of KCl/ZnCl2. (h) Effect of KCl content in the KCl/ZnCl2 mixture on the specific surface area, total and mesopore volume of the samples. (i) Specific capacitance and (j) areal capacitance of obtained samples[121]. (Reprinted with permission).

    Figure  9.  (a) Schematic illustration for the fabrication of ONC sheets. (b) LSV curves of ONC-560 at different rotation rates. (c) The performance of tolerance to methanol of ONC-560 and Pt/C[61]. (d) Synthetic procedures of nanocarbons. (e) LSV curves of Pt/C and other catalysts at a rotating speed of 1600 r min−1. (f) The methanol oxidation assessment of Pt/C, Co/N‐CLPC, and Co/N‐CMS[132]. (g) Schematic illustration of production procedure of FeNS/HPC. (h) SEM and (i) TEM images of FeNS/HPC. RDE curves of samples in O2-saturated (j) 0.1 mol L−1 KOH and (k) 0.1 mol L−1 HClO4 tested at 5 mV s−1 and 900 r min−1[129] (Reprinted with permission).

    Figure  10.  (a) Schematic illustration for the fabrication of Co9S8 nanoparticles (NPs) embedded in N, S co-doped mesoporous carbon. Tafel plots of the obtained samples in (b) acidic media, (c) neutral media, and (d) alkaline media[142] (Reprinted with permission).

  • [1] Wang G, Yu M, Feng X. Carbon materials for ion-intercalation involved rechargeable battery technologies[J]. Chemical Society Reviews,2021,50(4):2388-2443. doi: 10.1039/D0CS00187B
    [2] Liu H, Liu X, Li W, et al. Porous carbon composites for next generation rechargeable lithium batteries[J]. Advanced Energy Materials,2017,7(24):1700283. doi: 10.1002/aenm.201700283
    [3] Dai L, Chang D W, Baek J B, et al. Carbon nanomaterials for advanced energy conversion and storage[J]. Small,2012,8(8):1130-1166. doi: 10.1002/smll.201101594
    [4] Yang Z, Ren J, Zhang Z, et al. Recent advancement of nanostructured carbon for energy applications[J]. Chemical Reviews,2015,115(11):5159-5223. doi: 10.1021/cr5006217
    [5] Jiang H, Lee P S, Li C. 3D carbon based nanostructures for advanced supercapacitors[J]. Energy & Environmental Science,2013,6(1):41-53 DOI: 10.1039/c2ee23284g .
    [6] Li X, Zheng S, Jin L, et al. Metal-organic framework-derived carbons for battery applications[J]. Advanced Energy Materials,2018,8(23):1800716. doi: 10.1002/aenm.201800716
    [7] Zhai Y, Dou Y, Zhao D, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials,2011,23(42):4828-4850. doi: 10.1002/adma.201100984
    [8] Liang C, Li Z, Dai S. Mesoporous carbon materials: Synthesis and modification[J]. Angewandte Chemie, International Edition in English,2008,47(20):3696-3717. doi: 10.1002/anie.200702046
    [9] Shao M, Li C, Li T, et al. Pushing the energy output and cycling lifespan of potassium‐ion capacitor to high level through metal–organic framework derived porous carbon microsheets anode[J]. Advanced Functional Materials,2020,30(51):2006561. doi: 10.1002/adfm.202006561
    [10] Wei F, Zhang H F, et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Materials,2019,34(2):132-139. doi: 10.1016/S1872-5805(19)60006-5
    [11] Shang M, Zhang J, Liu X, et al. N, S self-doped hollow-sphere porous carbon derived from puffball spores for high performance supercapacitors[J]. Applied Surface Science,2021,542(15):148697. doi: 10.1016/j.apsusc.2020.148697
    [12] Wang H G, Wu Z, Meng F L, et al. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries[J]. ChemSusChem,2013,6(1):56-60. doi: 10.1002/cssc.201200680
    [13] Wang J, Kaskel S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry,2012,22(45):23710. doi: 10.1039/c2jm34066f
    [14] Dutta S, Bhaumik A, Wu K C W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications[J]. Energy & Environmental Science,2014,7(11):3574-3592. doi: 10.1039/c4ee01075b
    [15] Kyotani T. Synthesis of various types of nano carbons using the template technique[J]. Bulletin of the Chemical Society of Japan,2006,79(9):1322-1337. doi: 10.1246/bcsj.79.1322
    [16] Nishihara H, Kyotani T. Templated nanocarbons for energy storage[J]. Advanced Materials,2012,24(33):4473-4498. doi: 10.1002/adma.201201715
    [17] Zeng S, Liu S, Qi Y, et al. Facile synthesis of hierarchically porous carbonaceous materials derived from olefin/aldehyde precursors using silica as templates[J]. RSC Advances,2018,8(21):11462-11468. doi: 10.1039/C8RA01270A
    [18] Liu J, Wickramaratne N P, Qiao S Z, et al. Molecular-based design and emerging applications of nanoporous carbon spheres[J]. Nature Materials,2015,14(8):763-774. doi: 10.1038/nmat4317
    [19] Jache B, Neumann C, Becker J, et al. Towards commercial products by nanocasting: Characterization and lithium insertion properties of carbons with a macroporous, interconnected pore structure[J]. Journal of Materials Chemistry,2012,22(21):10787. doi: 10.1039/c2jm30787a
    [20] Li H, Kang W, Yu Y, et al. Synthesis of bamboo-structured carbon nanotubes and honeycomb carbons with long-cycle Li-storage performance by in situ generated zinc oxide[J]. Carbon,2012,50(13):4787-4793. doi: 10.1016/j.carbon.2012.06.001
    [21] Lou X W, Archer L A, Yang Z. Hollow micro-/nanostructures: Synthesis and applications[J]. Advanced Materials,2008,20(21):3987-4019. doi: 10.1002/adma.200800854
    [22] Niu S Z, Wu S D, Lu W, et al. A one-step hard-templating method for the preparation of a hierarchical microporous-mesoporous carbon for lithium-sulfur batteries[J]. New Carbon Materials,2017,32(4):289-296. doi: 10.1016/S1872-5805(17)60123-9
    [23] Shi J, Lin N, Lin H B, et al. A N-doped rice husk-based porous carbon as an electrocatalyst for the oxygen reduction reaction[J]. New Carbon Materials,2020,35(4):401-409. doi: 10.1016/S1872-5805(20)60497-8
    [24] Zhang W, Cheng R R, Bi H H, et al. A review of porous carbons produced by template methods for supercapacitor applications[J]. New Carbon Materials,2021,36(1):69-81. doi: 10.1016/S1872-5805(21)60005-7
    [25] Petkovich N D, Stein A. Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating[J]. Chemical Society Reviews,2013,42(9):3721-3739. doi: 10.1039/C2CS35308C
    [26] Schrettl S, Schulte B, Frauenrath H. Templating for hierarchical structure control in carbon materials[J]. Nanoscale,2016,8(45):18828-18848. doi: 10.1039/C6NR06695J
    [27] Drisko G L, Zelcer A, Caruso R A, et al. One-pot synthesis of silica monoliths with hierarchically porous structure[J]. Microporous and Mesoporous Materials,2012,148(1):137-144. doi: 10.1016/j.micromeso.2011.08.007
    [28] Bhandari N, Dua R, Estevez L, et al. A combined salt-hard templating approach for synthesis of multi-modal porous carbons used for probing the simultaneous effects of porosity and electrode engineering on EDLC performance[J]. Carbon,2015,87:29-43. doi: 10.1016/j.carbon.2015.01.039
    [29] Li M, Yu C, Hu C, et al. Template-free synthesis of interconnected carbon nanosheets via cross-linking coupled with annealing for high-efficiency triiodide reduction[J]. Green Chemistry,2018,20(1):250-254. doi: 10.1039/C7GC02701J
    [30] Shang S, Yang X, Tao X M. Easy synthesis of carbon nanotubes with polypyrrole nanotubes as the carbon precursor[J]. Polymer,2009,50(13):2815-2818. doi: 10.1016/j.polymer.2009.04.041
    [31] Li C, Yin X, Chen L, et al. Porous carbon nanofibers derived from conducting polymer: Synthesis and application in lithium-ion batteries with high-rate capability[J]. Journal of Physical Chemistry C,2009,113(30):13438-13442. doi: 10.1021/jp901968v
    [32] Kamiyama A, Kubota K, Igarashi D, et al. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery[J]. Angewandte Chemie-International Edition,2021,60(10):5114-5120. doi: 10.1002/anie.202013951
    [33] Zhu S, Zhao N, Li J, et al. Hard-template synthesis of three-dimensional interconnected carbon networks: Rational design, hybridization and energy-related applications[J]. Nano Today,2019,29:100796. doi: 10.1016/j.nantod.2019.100796
    [34] Platschek B, Keilbach A, Bein T. Mesoporous structures confined in anodic alumina membranes[J]. Advanced Materials,2011,23(21):2395-2412. doi: 10.1002/adma.201002828
    [35] Chen Y, Chen H, Zeng D, et al. Core/shell structured hollow mesoporous nanocapsules: A potential platform for simultaneous cell imaging and anticancer drug delivery[J]. ACS Nano,2010,4(10):6001-6013. doi: 10.1021/nn1015117
    [36] Yang B, Chen J, Lei S, et al. Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors[J]. Advanced Energy Materials,2018,8(10):1702409. doi: 10.1002/aenm.201702409
    [37] Sevilla M, Fuertes A B. Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors[J]. ACS Nano,2014,8(5):5069-5078. doi: 10.1021/nn501124h
    [38] Guan L, Pan L, Peng T, et al. Green and scalable synthesis of porous carbon nanosheet-assembled hierarchical architectures for robust capacitive energy harvesting[J]. Carbon,2019,152:537-544. doi: 10.1016/j.carbon.2019.06.059
    [39] Lyu Z, Xu D, Yang L, et al. Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium–sulfur batteries[J]. Nano Energy,2015,12:657-665. doi: 10.1016/j.nanoen.2015.01.033
    [40] Fu F, Yang D, Zhang W, et al. Green self-assembly synthesis of porous lignin-derived carbon quasi-nanosheets for high-performance supercapacitors[J]. Chemical Engineering Journal,2020,392:123721. doi: 10.1016/j.cej.2019.123721
    [41] Shao J, Ma F, Wu G, et al. In-situ Mgo (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials[J]. Chemical Engineering Journal,2017,321:301-313. doi: 10.1016/j.cej.2017.03.092
    [42] Banhart F, Grobert N, Terrones M, et al. Metal atoms in carbon nanotubes and related nanoparticles[J]. International Journal of Modern Physics B,2001,15(31):4037-4069. doi: 10.1142/S0217979201007944
    [43] Perez Mayoral E, Calvino Casilda V, Soriano E. Metal-supported carbon-based materials: Opportunities and challenges in the synthesis of valuable products[J]. Catalysis Science & Technology,2016,6(5):1265-1291. doi: 10.1039/c5cy01437a
    [44] Wang L, Tian C, Wang H, et al. Mass production of graphene via an in situ self-generating template route and its promoted activity as electrocatalytic support for methanol electroxidization[J]. Journal of Physical Chemistry C,2010,114(19):8727-8733. doi: 10.1021/jp911292p
    [45] Zhang L, Wang J N, Niu J J. Synthesis of nanoporous carbons by an in situ template approach[J]. Journal of Materials Science,2007,42(10):3692-3694. doi: 10.1007/s10853-007-1711-x
    [46] Zhao J, Jiang Y, Fan H, et al. Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship[J]. Advanced Materials,2017,29(11):1604569. doi: 10.1002/adma.201604569
    [47] Díez N, Fuertes A B, Sevilla M. Molten salt strategies towards carbon materials for energy storage and conversion[J]. Energy Storage Materials,2021,38:50-69. doi: 10.1016/j.ensm.2021.02.048
    [48] Long L, Jiang X, Liu J, et al. In situ template synthesis of hierarchical porous carbon used for high performance lithium–sulfur batteries[J]. RSC Advances,2018,8(9):4503-4513. doi: 10.1039/C7RA12978E
    [49] Hu H, Wu M. Heavy oil-derived carbon for energy storage applications[J]. Journal of Materials Chemistry A,2020,8(15):7066-7082. doi: 10.1039/D0TA00095G
    [50] Gao Y, Zhang Y, Li A, et al. Facile synthesis of high-surface area mesoporous biochar for energy storage via in-situ template strategy[J]. Materials Letters,2018,230:183-186. doi: 10.1016/j.matlet.2018.07.106
    [51] Wang Y, Wang Y, Liu J, et al. Preparation of carbon nanosheets from petroleum asphalt via recyclable molten-salt method for superior lithium and sodium storage[J]. Carbon,2017,122:344-351. doi: 10.1016/j.carbon.2017.06.086
    [52] Wang Y, Tian W, Wang L, et al. A tunable molten-salt route for scalable synthesis of ultrathin amorphous carbon nanosheets as high-performance anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(6):5577-5585. doi: 10.1021/acsami.7b18313
    [53] Peng T, Tan Z, Zhang M, et al. Facile and cost-effective manipulation of hierarchical carbon nanosheets for pseudocapacitive lithium/potassium storage[J]. Carbon,2020,165:296-305. doi: 10.1016/j.carbon.2020.04.034
    [54] Liu X, Giordano C, Antonietti M. A facile molten-salt route to graphene synthesis[J]. Small,2014,10(1):193-200. doi: 10.1002/smll.201300812
    [55] Xue P, Wu H, Lu Y, et al. Recent progress in molten salt synthesis of low-dimensional perovskite oxide nanostructures, structural characterization, properties, and functional applications: A review[J]. Journal of Materials Science & Technology,2018,34(6):914-930. doi: 10.1016/j.jmst.2017.10.005
    [56] Fechler N, Fellinger T P, Antonietti M. "Salt templating": A simple and sustainable pathway toward highly porous functional carbons from ionic liquids[J]. Advanced Materials,2013,25(1):75-79. doi: 10.1002/adma.201203422
    [57] Elumeeva K, Ren J, Antonietti M, et al. High surface iron/cobalt-containing nitrogen-doped carbon aerogels as non-precious advanced electrocatalysts for oxygen reduction[J]. ChemElectroChem,2015,2(4):584-591. doi: 10.1002/celc.201402364
    [58] Pang Z, Li G, Xiong X, et al. Molten salt synthesis of porous carbon and its application in supercapacitors: A review[J]. Journal of Energy Chemistry,2021,61:622-640. doi: 10.1016/j.jechem.2021.02.020
    [59] Schipper F, Vizintin A, Ren J, et al. Biomass-derived heteroatom-doped carbon aerogels from a salt melt sol-gel synthesis and their performance in Li-S batteries[J]. Chemsuschem,2015,8(18):3077-3083. doi: 10.1002/cssc.201500832
    [60] Liu X, Fechler N, Antonietti M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures[J]. Chemical Society Reviews,2013,42(21):8237-8265. doi: 10.1039/C3CS60159E
    [61] Li Q, Xu D, Ou X, et al. Nitrogen-doped graphitic porous carbon nanosheets derived from in situ formed g-C3N4 templates for the oxygen reduction reaction[J]. Chemistry-An Asian Journal,2017,12(14):1816-1823. doi: 10.1002/asia.201700586
    [62] Zhang G, Wang P, Lu W T, et al. Co nanoparticles/Co, N, S tri-doped graphene templated from in-situ-formed Co, S co-doped g-C3N4 as an active bifunctional electrocatalyst for overall water splitting[J]. ACS Applied Materials & Interfaces,2017,9(34):28566-28576. doi: 10.1021/acsami.7b08138
    [63] Zhang J, Chen X, Takanabe K, et al. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization[J]. Angewandte Chemie, International Edition in English,2010,49(2):441-444. doi: 10.1002/anie.200903886
    [64] Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability[J]. Chemical Reviews,2016,116(12):7159-7329. doi: 10.1021/acs.chemrev.6b00075
    [65] Wang D, Wang Y, Chen Y, et al. Coal tar pitch derived N-doped porous carbon nanosheets by the in-situ formed g-C3N4 as a template for supercapacitor electrodes[J]. Electrochimica Acta,2018,283:132-140. doi: 10.1016/j.electacta.2018.06.151
    [66] Xie X, He X, Shao X, et al. Synthesis of layered microporous carbons from coal tar by directing, space-confinement and self-sacrificed template strategy for supercapacitors[J]. Electrochimica Acta,2017,246:634-642. doi: 10.1016/j.electacta.2017.06.092
    [67] Su Q, Su Z, Xie W, et al. Preparation of 2D nitrogen-doped magnetic Fe3C/C by in-situ self-assembled double-template method for enhanced removal of Cr(VI)[J]. Environmental Pollution,2020,263:114374. doi: 10.1016/j.envpol.2020.114374
    [68] Liu H H, Zhang H L, Xu H B, et al. In situ self-sacrificed template synthesis of vanadium nitride/nitrogen-doped graphene nanocomposites for electrochemical capacitors[J]. Nanoscale,2018,10(11):5246-5253. doi: 10.1039/C7NR08985F
    [69] Yamamoto T, Sugimoto T, Suzuki T, et al. Preparation and characterization of carbon cryogel microspheres[J]. Carbon,2002,40(8):1345-1351. doi: 10.1016/S0008-6223(01)00294-9
    [70] Yamamoto T, Nishimura T, Suzuki T, et al. Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying[J]. Journal of Non-Crystalline Solids,2001,288:46-55. doi: 10.1016/S0022-3093(01)00619-6
    [71] Tamon H, Lshizaka H, Yamamoto T, et al. Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors[J]. Carbon,2000,38:1099-1105. doi: 10.1016/S0008-6223(99)00235-3
    [72] Tamon H, Lshizaka H, Yamamoto T, et al. Preparation of mesoporous carbon by freeze drying[J]. Carbon,1999,37:2049-2055. doi: 10.1016/S0008-6223(99)00089-5
    [73] Qiu L, Liu J Z, Chang S L Y, et al. Biomimetic superelastic graphene-based cellular monoliths[J]. Nature Communications,2012,3:1241. doi: 10.1038/ncomms2251
    [74] Hu H, Zhao Z, Wan W, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials,2013,25(15):2219-2223. doi: 10.1002/adma.201204530
    [75] Chen W, Huang Y X, Li D B, et al. Preparation of a macroporous flexible three dimensional graphene sponge using an ice-template as the anode material for microbial fuel cells[J]. RSC Advances,2014,4(41):21619-21624. doi: 10.1039/C4RA00914B
    [76] Liao S, Zhai T, Xia H. Highly adsorptive graphene aerogel microspheres with center-diverging microchannel structures[J]. Journal of Materials Chemistry A,2016,4(3):1068-1077. doi: 10.1039/C5TA09540A
    [77] Barg S, Perez F M, Ni N, et al. Mesoscale assembly of chemically modified graphene into complex cellular networks[J]. Nature Communications,2014,5:4328. doi: 10.1038/ncomms5328
    [78] Lu Y, Yu L, Lou X W. Nanostructured conversion-type anode materials for advanced lithium-ion batteries[J]. Chem,2018,4(5):972-996. doi: 10.1016/j.chempr.2018.01.003
    [79] Xu H, Zhao L, Liu X, et al. Metal‐organic‐framework derived core‐shell N‐doped carbon nanocages embedded with cobalt nanoparticles as high‐performance anode materials for lithium‐ion batteries[J]. Advanced Functional Materials,2020,30(50):2006188. doi: 10.1002/adfm.202006188
    [80] Li C, Chen T, Xu W, et al. Mesoporous nanostructured Co3O4 derived from MOF template: A high-performance anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A,2015,3(10):5585-5591. doi: 10.1039/C4TA06914E
    [81] Wang L, Wang Z, Xie L, et al. ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2019,11(18):16619-16628. doi: 10.1021/acsami.9b03365
    [82] Xu X, Qiu Y, Wu J, et al. Porous nitrogen-enriched hollow carbon nanofibers as freestanding electrode for enhanced lithium storage[J]. Chinese Journal of Chemical Engineering,2021,32:416-422. doi: 10.1016/j.cjche.2020.09.055
    [83] Roberts A D, Li X, Zhang H. Porous carbon spheres and monoliths: Morphology control, pore size tuning and their applications as Li-ion battery anode materials[J]. Chemical Society Reviews,2014,43(13):4341-4356. doi: 10.1039/C4CS00071D
    [84] Qie L, Chen W M, Wang Z H, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability[J]. Advanced Materials,2012,24(15):2047-2050. doi: 10.1002/adma.201104634
    [85] Vatamanu J, Vatamanu M, Bedrov D. Non-faradaic energy storage by room temperature ionic liquids in nanoporous electrodes[J]. ACS Nano,2015,9(6):5999-6017. doi: 10.1021/acsnano.5b00945
    [86] Uchaker E, Cao G. The role of intentionally introduced defects on electrode materials for alkali-ion batteries[J]. Chemistry-an Asian Journal,2015,10(8):1608-1617. doi: 10.1002/asia.201500401
    [87] Datta D, Li J, Koratkar N, et al. Enhanced lithiation in defective graphene[J]. Carbon,2014,80:305-310. doi: 10.1016/j.carbon.2014.08.068
    [88] Mukherjee R, Thomas A V, Datta D, et al. Defect-induced plating of lithium metal within porous graphene networks[J]. Nature Communications,2014,5:3710. doi: 10.1038/ncomms4710
    [89] Wang Q, Yan J, Fan Z. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities[J]. Energy & Environmental Science,2016,9(3):729-762. doi: 10.1039/c5ee03109e
    [90] Simon P, Gogotsi Y. Capacitive energy storage in nanostructured carbon–electrolyte systems[J], Accounts of Chemical Research, 2013, 46: 1094-1103 DOI: 10.1021/ar200306b
    [91] Niu J, Shao R, Liang J, et al. Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors[J]. Nano Energy,2017,36:322-330. doi: 10.1016/j.nanoen.2017.04.042
    [92] Wang Y, Zhang R, Chen J, et al. Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering[J]. Advanced Energy Materials,2019,9(24):1900953. doi: 10.1002/aenm.201900953
    [93] Cheng F, Liang J, Tao Z, et al. Functional materials for rechargeable batteries[J]. Advanced Materials,2011,23(15):1695-1715. doi: 10.1002/adma.201003587
    [94] Yu M, Wang Z, Wang Y, et al. Freestanding flexible Li2S paper electrode with high mass and capacity loading for high-energy Li-S batteries[J]. Advanced Energy Materials,2017,7(17):1700018. doi: 10.1002/aenm.201700018
    [95] Ye C, Chao D, Shan J, et al. Unveiling the advances of 2D materials for Li/Na-S batteries experimentally and theoretically[J]. Matter,2020,2(2):323-344. doi: 10.1016/j.matt.2019.12.020
    [96] Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries[J]. Nature Materials,2009,8(6):500-506. doi: 10.1038/nmat2460
    [97] Strubel P, Thieme S, Biemelt T, et al. ZnO hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium-sulfur battery[J]. Advanced Functional Materials,2015,25(2):287-297. doi: 10.1002/adfm.201402768
    [98] Ye X, Ma J, Hu Y S, et al. MWCNT porous microspheres with an efficient 3D conductive network for high performance lithium–sulfur batteries[J]. Journal of Materials Chemistry A,2016,4(3):775-780. doi: 10.1039/C5TA08991C
    [99] Zhou G, Li L, Ma C, et al. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries[J]. Nano Energy,2015,11:356-365. doi: 10.1016/j.nanoen.2014.11.025
    [100] Pang Q, Kundu D, Cuisinier M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications,2014,5:4759. doi: 10.1038/ncomms5759
    [101] Zhang Q, Wang Y, Seh Z W, et al. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries[J]. Nano Letters,2015,15(6):3780-3786. doi: 10.1021/acs.nanolett.5b00367
    [102] Peng H J, Zhang G, Chen X, et al. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries[J]. Angewandte Chemie, International Edition in English,2016,55(42):12990-12995. doi: 10.1002/anie.201605676
    [103] Pang Q, Shyamsunder A, Narayanan B, et al. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries[J]. Nature Energy,2018,3(9):783-791. doi: 10.1038/s41560-018-0214-0
    [104] Jia Y, Zhang L, Du A, et al. Defect graphene as a trifunctional catalyst for electrochemical reactions[J]. Advanced Materials,2016,28(43):9532-9538. doi: 10.1002/adma.201602912
    [105] Zhao X, Zou X, Yan X, et al. Defect-driven oxygen reduction reaction (ORR) of carbon without any element doping[J]. Inorganic Chemistry Frontiers,2016,3(3):417-421. doi: 10.1039/C5QI00236B
    [106] Guan L, Hu H, Li L, et al. Intrinsic defect-rich hierarchically porous carbon architectures enabling enhanced capture and catalytic conversion of polysulfides[J]. ACS Nano,2020,14(5):6222-6231. doi: 10.1021/acsnano.0c02294
    [107] Wu Q, Yang L, Wang X, et al. Carbon-based nanocages: A new platform for advanced energy storage and conversion[J]. Advanced Materials,2020,32(27):1904177. doi: 10.1002/adma.201904177
    [108] Bonaccorso F, Colombo L, Yu G, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science,2015,347(6217):1246501. doi: 10.1126/science.1246501
    [109] Beidaghi M, Gogotsi Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors[J]. Energy & Environmental Science,2014,7(3):867-884. doi: 10.1039/c3ee43526a
    [110] Liu C, Li F, Ma L P, et al. Advanced materials for energy storage[J]. Advanced Materials,2010,22(8):28-62. doi: 10.1002/adma.200903328
    [111] Yan J, Wang Q, Wei T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials,2014,4(4):1300816. doi: 10.1002/aenm.201300816
    [112] Zheng X, Luo J, Lv W, et al. Two-dimensional porous carbon: Synthesis and ion-transport properties[J]. Advanced Materials,2015,27(36):5388-5395. doi: 10.1002/adma.201501452
    [113] Hao G P, Mondin G, Zheng Z, et al. Unusual ultra-hydrophilic, porous carbon cuboids for atmospheric-water capture[J]. Angewandte Chemie, International Edition in English,2015,54(6):1941-1945. doi: 10.1002/anie.201409439
    [114] Xu F, Zhai Y, Zhang E, et al. Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched N-doped porous carbon nanosheets[J]. Angewandte Chemie-International Edition,2020,59(44):19460-19467. doi: 10.1002/anie.202005118
    [115] Huettner C, Xu F, Paasch S, et al. Ultra-hydrophilic porous carbons and their supercapacitor performance using pure water as electrolyte[J]. Carbon,2021,178:540-551. doi: 10.1016/j.carbon.2021.03.013
    [116] Zhao J, Lai H, Lyu Z, et al. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance[J]. Advanced Materials,2015,27(23):3541-3545. doi: 10.1002/adma.201500945
    [117] Xie K, Qin X, Wang X, et al. Carbon nanocages as supercapacitor electrode materials[J]. Advanced Materials,2012,24(3):347-352. doi: 10.1002/adma.201103872
    [118] Wei X, Wan S, Gao S. Self-assembly-template engineering nitrogen-doped carbon aerogels for high-rate supercapacitors[J]. Nano Energy,2016,28:206-215. doi: 10.1016/j.nanoen.2016.08.023
    [119] Zhao J, Liu C, Xiang K, et al. In-situ template formation strategy for the preparation of nitrogen doped carbon nanocage with graphitic shell as electrode material for supercapacitor[J]. Journal of Nanoscience and Nanotechnology,2018,18(10):6949-6956. doi: 10.1166/jnn.2018.15454
    [120] Ma  J, Dong  Y Z, Wang L, et al. In-situ molten salt template strategy for hierarchical 3D porous carbon from palm shells as advanced electrochemical supercapacitors[J]. ChemistrySelect,2016,1(10):2167-2173. doi: 10.1002/slct.201600250
    [121] Pampel J, Denton C, Fellinger T P. Glucose derived ionothermal carbons with tailor-made porosity[J]. Carbon,2016,107:288-296. doi: 10.1016/j.carbon.2016.06.009
    [122] Hu L, Zhu Q, Wu Q, et al. Natural biomass-derived hierarchical porous carbon synthesized by an in situ hard template coupled with NaOH activation for ultrahigh rate supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2018,6(11):13949-13959. doi: 10.1021/acssuschemeng.8b02299
    [123] Wang M, Liu H, Zhai D D, et al. In-situ synthesis of highly nitrogen, sulfur co-doped carbon nanosheets from melamine-formaldehyde-thiourea resin with improved cycling stability and energy density for supercapacitors[J]. Journal of Power Sources,2019,416:79-88. doi: 10.1016/j.jpowsour.2019.01.092
    [124] Nie Y, Li L, Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chemical Society Reviews,2015,44(8):2168-2201. doi: 10.1039/C4CS00484A
    [125] Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied Catalysis B:Environmental,2005,56(1):9-35. doi: 10.1016/j.apcatb.2004.06.021
    [126] Shao M, Chang Q, Dodelet J P, et al. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chemical Reviews,2016,116(6):3594-3657. doi: 10.1021/acs.chemrev.5b00462
    [127] Zhou M, Wang H L, Guo S. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials[J]. Chemical Society Reviews,2016,45(5):1273-1307. doi: 10.1039/C5CS00414D
    [128] Zhu C, Li H, Fu S, et al. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures[J]. Chemical Society Reviews,2016,45(3):517-531. doi: 10.1039/C5CS00670H
    [129] Zeng H, Wang W, Li J, et al. In situ generated dual-template method for Fe/N/S co-doped hierarchically porous honeycomb carbon for high-performance oxygen reduction[J]. ACS Applied Materials & Interfaces,2018,10(10):8721-8729 DOI: 10.1021/acsami.7b19645.
    [130] Li Y, Zhang H, Wang Y, et al. A self-sponsored doping approach for controllable synthesis of S and N co-doped trimodal-porous structured graphitic carbon electrocatalysts[J]. Energy & Environmental Science,2014,7(11):3720-3726 DOI: 10.1039/c4ee01779j .
    [131] Zamani P, Higgins D C, Hassan F M, et al. Highly active and porous graphene encapsulating carbon nanotubes as a non-precious oxygen reduction electrocatalyst for hydrogen-air fuel cells[J]. Nano Energy,2016,26:267-275. doi: 10.1016/j.nanoen.2016.05.035
    [132] Liu Y, Yu L, Jiang X, et al. In situ self-template synthesis of cobalt/nitrogen-doped nanocarbons with controllable shapes for oxygen reduction reaction and supercapacitors[J]. International Journal of Energy Research,2019,43(9):4217-4228. doi: 10.1002/er.4546
    [133] Bockris J O M. The origin of ideas on a hydrogen economy and its solution to the decay of the environment[J]. International Journal of Hydrogen Energy,2002,27(7-8):731-740. doi: 10.1016/S0360-3199(01)00154-9
    [134] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials,2009,8(1):76-80. doi: 10.1038/nmat2317
    [135] Lewis N S, Nocera D G. Powering the planet: Chemical challenges in solar energy utilization[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(43):15729-15735. doi: 10.1073/pnas.0603395103
    [136] Thoi V S, Sun Y, Long J R, et al. Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions[J]. Chemical Society Reviews,2013,42(6):2388-2400. doi: 10.1039/C2CS35272A
    [137] Mckone J R, Marinescu S C, Brunschwig B S, et al. Earth-abundant hydrogen evolution electrocatalysts[J]. Chemical Science,2014,5(3):865-878. doi: 10.1039/C3SC51711J
    [138] Zhuo J, Wang T, Zhang G, et al. Salts of C60(OH)8 electrodeposited onto a glassy carbon electrode: Surprising catalytic performance in the hydrogen evolution reaction[J]. Angewandte Chemie, International Edition in English,2013,52(41):10867-10870. doi: 10.1002/anie.201305328
    [139] Du P, Eisenberg R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges[J]. Energy & Environmental Science,2012,5(3):6012-6021. doi: 10.1039/c2ee03250c
    [140] Cobo S, Heidkamp J, Jacques P A, et al. A janus cobalt-based catalytic material for electro-splitting of water[J]. Nature Materials,2012,11(9):802-807. doi: 10.1038/nmat3385
    [141] Jaramillo T F, Jorgensen K P, Bonde J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science,2007,317(5834):100-102. doi: 10.1126/science.1141483
    [142] Yu H, Sun X, Tang D, et al. Molten salt strategy to synthesize alkali metal-doped Co9S8 nanoparticles embedded, N, S, Co-doped mesoporous carbon as hydrogen evolution electrocatalyst[J]. International Journal of Hydrogen Energy,2020,45(11):6006-6014. doi: 10.1016/j.ijhydene.2019.12.115
    [143] Zheng Y, Jiao Y, Zhu Y, et al. Hydrogen evolution by a metal-free electrocatalyst[J]. Nature Communications,2014,5:3783. doi: 10.1038/ncomms4783
  • 加载中
图(11)
计量
  • 文章访问数:  909
  • HTML全文浏览量:  418
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-26
  • 修回日期:  2021-11-23
  • 网络出版日期:  2021-12-17
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回