留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介孔炭材料应用于电化学催化的研究进展

梁振金 洪梓博 解明月 顾栋

梁振金, 洪梓博, 解明月, 顾栋. 介孔炭材料应用于电化学催化的研究进展. 新型炭材料(中英文), 2022, 37(1): 152-179. doi: 10.1016/S1872-5805(22)60575-4
引用本文: 梁振金, 洪梓博, 解明月, 顾栋. 介孔炭材料应用于电化学催化的研究进展. 新型炭材料(中英文), 2022, 37(1): 152-179. doi: 10.1016/S1872-5805(22)60575-4
LIANG Zhen-jin, HONG Zi-bo, XIE Ming-yue, GU Dong. Recent progress on mesoporous carbon materials used in electrochemical catalysis. New Carbon Mater., 2022, 37(1): 152-179. doi: 10.1016/S1872-5805(22)60575-4
Citation: LIANG Zhen-jin, HONG Zi-bo, XIE Ming-yue, GU Dong. Recent progress on mesoporous carbon materials used in electrochemical catalysis. New Carbon Mater., 2022, 37(1): 152-179. doi: 10.1016/S1872-5805(22)60575-4

介孔炭材料应用于电化学催化的研究进展

doi: 10.1016/S1872-5805(22)60575-4
基金项目: 国家科学技术部重点研发计划(2018YFE0201703)。
详细信息
    作者简介:

    梁振金,博士研究生. E-mail:2017206490024@whu.edu.cn

    通讯作者:

    顾 栋,博士,教授. E-mail:DGu@whu.edu.cn

  • 中图分类号: TQ127.1+1

Recent progress on mesoporous carbon materials used in electrochemical catalysis

Funds: National Key R&D Program of China (2018YFE0201703).
More Information
    Corresponding author: GU Dong, Ph. D, Professor. E-mail: DGu@whu.edu.cn
  • 摘要: 由于介孔炭材料具有高比表面、均一可调的孔径尺寸和形貌、良好的导电性和化学稳定性等优点,已被广泛应用到催化、吸附、分离和电化学储能等领域。近年来,多组分的掺杂与复合使介孔炭材料拥有可调变的功能性,已成为材料领域研究的一个热点。本文首先介绍介孔炭材料的合成,包括软模板法、硬模板法和无模板法等。接着论述介孔炭及其复合材料在电化学催化领域的应用,主要包括杂原子掺杂介孔炭材料以及介孔炭材料与金属化合物的复合材料在电化学催化氧还原(ORR)、析氧(OER)、析氢(HER)等领域的研究进展。此外还论述了此类材料在电催化有机合成上的应用。最后对介孔炭及其复合材料在电化学催化上的发展趋势进行了展望。
  • FIG. 1221.  FIG. 1221.

    FIG. 1221..  FIG. 1221.

    图  1  介孔炭及其复合材料的性质和电化学催化应用

    Figure  1.  Mesoporous carbon-based materials, their properties and applications in electrochemical catalysis.

    图  2  (a)软模板法和(b)硬模板法制备有序介孔炭材料的示意图

    Figure  2.  The synthesis procedure of mesoporous carbon materials by (a) soft-templating method. Reproduced with permission. Copyright 2005,[27] Wiley-VCH And (b) hard-templating method.

    图  3  纳米乳液法制备的枝晶状纳米炭球的(a-c)SEM和(d-f)TEM照片和梯度孔介孔炭纳米球的(g-i)SEM和(j-l)TEM照片

    Figure  3.  (a-c) Scanning Electron Microscope (SEM) and (d-f) Transmission Electron Microscope (TEM) images of dendritic carbon nanospheres prepared by nanoemulsion method (Reproduced with permission. Copyright 2019, ACS.[44]) and (g-i) SEM and (j-l) TEM images of gradient porous mesoporous carbon nanospheres. (Copyright 2021,[47] Wiley-VCH.

    图  4  (a)CMK-5的TEM照片;片状磷掺杂有序介孔炭材料的(b)SEM和(c)TEM照片;块状有序介孔炭材料的(d)光学照片、(e)SEM以及(f、g)TEM照片

    Figure  4.  (a) TEM image of CMK-5. Reproduced with permission. Copyright 2014,[64] Elsevier. (b) SEM image and (c) TEM image of phosphorus-doped plate-like mesoporous carbon. Reproduced with permission. Copyright 2014,[70] Elsevier. (d) Optical photograph, (e) SEM image and (f, g) TEM images of monolithic mesoporous carbon. Reproduced with permission. Copyright 2015[77] Elsevier.

    图  5  磷掺杂介孔炭材料的(a)合成示意图,(b)SEM照片和(c)TEM照片,(d)循环伏安曲线,(e)线性扫描伏安和(g)磷掺杂介孔炭材料在不同转速下的线性扫描伏安;(f)纯的介孔炭材料的循环伏安曲线

    Figure  5.  (a) Synthetic schematic diagram,(b) SEM image,(c) TEM image,(d) cyclic voltammetry for the ORR at 100 mV s−1, (e) linear scanning voltammograms and (g) linear scanning voltammograms at different speeds of phosphorus-doped mesoporous carbon materials (POMC); (f) cyclic voltammograms of pure mesoporous carbon materials (OMC). Reproduced with permission, Copyright 2012,[69] ACS.

    图  6  不同金属氮化物和氧化物的(a)线性扫描伏安,(b)10 mA cm−2电流密度下的过电势,(c)Tafel斜率以及(d)交流阻抗谱

    Figure  6.  (a) LSV curves, (b) overpotentials at the current density of 10 mA cm−2, (c) Tafel-plots, and (d) Nyquist plots of different metal nitrides and oxides. Reproduced with permission, Copyright 2019[59], Wiley-VCH.

    图  7  (a)钴、氮共掺杂有序大孔/介孔炭材料的TEM照片;Ni2P与钴、氮共掺杂有序大孔/介孔炭材料复合材料的(b)SEM照片,(c、d)TEM照片和(e、f)HRTEM照片

    Figure  7.  (a) TEM image of Co,N-doped ordered macroporous/mesoporous carbon material. (b) SEM and (c, d) TEM images, (e, f) HR-TEM images of Ni2P, Co, N-doped ordered macroporous/mesoporous carbon material. Reprinted with permission, copyright 2016[177], RSC.

    图  8  各样品的(a)线性扫描伏安曲线,(b)Tafel斜率和(c)10 mA cm-2和20 mA cm−2电流密度下的过电势;(d)Ni2P与钴、氮共掺杂有序大孔/介孔炭材料复合材料和其他材料性能对比图;(e)各样品的交流阻抗谱以及(f)Ni2P与钴、氮共掺杂有序大孔/介孔碳复合材料的稳定性曲线

    Figure  8.  (a) LSV curves, (b) Tafel plots, and (c) Over potentials (at j = 10 and 20 mA cm−2) and Tafel slopes of different samples. (d) Overpotential required at 10 mA cm−2 and Tafel slope of Ni2P/OMM-CoN-C in comparison with other high-performance HER electrocatalysts measured in acidic solutions. (e) AC impedance spectroscopy of different samples. (f) Stability curves of Ni2P co-doped with cobalt and nitrogen in ordered macroporous/mesoporous carbon composites. Reprinted with permission, copyright 2016[177], RSC.

    表  1  介孔炭材料及其复合材料的物理性质和电催化性能

    Table  1.   The physical properties and the electrochemical catalytic performance of mesoporous carbon materials and their composites.

    SampleSBET (m2 g−1) [a]Pore size (nm)TemplatePrecursorApplicatio−Refs.
    OMC[b] 680 4.9 SBA-15 C60 ORR E1/2=0.75 V vs. RHE[c], 0.1 mol L−1 KOH [218]
    3D ordered macro-/
    mesoporous carbo−
    550-740 9.7-13.5 F127/Opal Resol, DCD[d] ORR E1/2=0.83 V vs. RHE, 0.1 mol L−1 KOH [219]
    N-OMC[e] 1100-1720 2.4-4.1 SBA-15 Resol, Cyanamide [f] [72]
    N-OMC 200-480 8.2-9.1 Fe3O4 Acrylonitrile [220]
    N-OMC 660-890 3.7-5.8 SBA-15 Pyrrole ORR [221]
    N-OMC 1150-1650 1.6-4.7 Monolithic SBA-15 Furfuryl alcohol ORR Eonset=−0.16 V vs. SCE,
    0.1 mol L−1 KOH[g]
    [77]
    N-OMC 1500-2470 3.5 SBA-15 Furfuryl alcohol,DCD ORR [222]
    N-OMC 1510-1550 3.0-3.5 SBA-15 Resol, Phthalocyanine ORR E1/2=0.02 V vs.
    Ag/AgCl, 0.1 mol L−1 KOH
    [223]
    N-OMC 700-1400 4.3-10.0 SBA-15 Amino acid ORR Eonset=−0.06 V vs.
    Ag/AgCl, 0.1 mol L−1 KOH
    [224]
    P-OMC[h] 810-1180 3.4 SBA-15 TPP[i] [69]
    N, S-OMC[j] 600 6.2 SBA-15 Thiophene, Pyrrole ORR [120]
    N, S-OMC 666 3.9 SBA-15 Ionic liquid ORR E1/2=−0.155 V vs.
    Ag/AgCl, 0.1 mol L−1 KOH
    [73]
    N, P-OMC 774 4.0 SBA-15 Sucrose,TPP,DCD ORR Eonset=0.88 V vs. RHE, 0.1 mol L−1 KOH [225]
    N, S-MC[k] 576 3.0;30 SiO2 nanospheres Melamine HER η10=310 mV[l], 0.5 mol L−1 H2SO4 [165]
    N, S-MC 762-1320 90-260 Porous nickel Thiophene, Pyrrole HER η10=276 mV, 0.5 mol L−1 H2SO4 [164]
    Ru@OMGCs[n] KIT-6 Methane HER η10=34 mV, 1 mol L−1 KOH [22]
    Pd@S-OMC[m] SBA-15 4,4’-thiobisbenzenethiol, PTSA[o] HER η10=240 mV, 0.1 mol L−1 HClO4 [173]
    Pd@OMC SBA-15 Phenanthrene HER η10=167 mV, 0.1 mol L−1 HClO4 [173]
    N-OMC 520-1230 12.1-14.2 SBA-15 Tobacco, DCD OER E10=0.76 V vs. Ag/AgCl, 0.1 mol L−1 KOH [148]
    N-MC 795 6 SBA-15 Ethylenediamine OER η10=590 mV, 0.8 mol L−1 KHCO3 [149]
    N, S-MC 576 3.0;30 SiO2 nanospheres Melamine OER η10=330 mV, 0.1 mol L−1 KOH [165]
    OMC film 40 PS-P4VP[p] Resorcinol, formaldehyde [26]
    C-FDU-16 778 3.7 F127 Resol [27]
    OMC spheres 894-1134 2.6-3.0 F127 Resol [5]
    OMC 674 5.0 F127 Lignin, Phloroglucinol [226]
    N-MC spheres 791 6.7;4.5 F127 Melamine resin [17]
    N-MC spheres 414-686 7.0-24 F127 Dopamine [47]
    N-MC spheres 343-363 5.4-16.0 PS-b-PEO[q] Dopamine ORR Eonset=−0.11V vs. Ag/AgCl, 0.1 mol L−1 KOH [46]
    N-MC spheres 218-636 5-37 F127 Dopamine ORR Eonset=−0.11 V vs.
    Ag/AgCl, 0.1 mol L−1 KOH
    [44]
    N-MC spheres 150 3-50 F127/P123 Dopamine [43]
    N, P-MC spheres 940 4.3 F127 Resol, Pyrrole [227]
    CoO@CMK-3 250-290 3.4-3.8 SBA-15 Furfuryl alcohol ORR Eonset=−0.13V vs. Ag/AgCl, 0.1 mol L−1 KOH [127]
    FeOx@N-OMC 650 3.4 SBA-15 Sucrose ORR E1/2=0.81V vs. RHE, 0.1 mol L−1 NaOH [123]
    Fe2O3@OMC 671 3.8 SBA-15 Sucrose ORR Eonset=0.9 V vs. RHE, 0.1 mol L−1 KOH [130]
    Fe2O3@NOMC 411–506 5.6 SBA-15 Ionic liquid ORR E1/2=0V vs. Hg/HgO, 0.1 mol L−1 NaOH [56]
    NiCo2O4@CMK-3 SBA-15 Sucrose ORR E1/2=-0.18V vs. Ag/AgCl, 0.1 mol L−1 KOH [228]
    CoFe2O4@CMK-3 150 3.4;19.1 SBA-15 Furfuryl alcohol ORR E1/2=−0.18V vs. Ag/AgCl, 0.1 mol L−1 KOH [132]
    NiSx/N-OMC 20-110 3.5-4.0 SBA-15 1,10-Phenanthroline ORR Eonset=0.89 V vs. RHE, 0.1 mol L−1 KOH [154]
    MoC/N-CMK-3 132 3.0;6.5 SBA-15 Ionic liquid HER η10=110 mV, 0.5 mol L−1 H2SO4 [185]
    MoC@OMC 473-706 5.5-6.4 F127 Resol, HER η10=160 mV, 0.5 mol L−1 H2SO4 [179]
    CoP@CMK-3 SBA-15 Sucrose HER η10=112 mV, 0.5 mol L−1 H2SO4 [13]
    Co0.25Fe0.75S2@OMC/CC[r] 7 F127 Resol, HER η10=92 mV, 0.5 mol L−1 H2SO4 [192]
    Ni2P@OMMC 590 9.6 Opal, F127 Resol, DCD HER η10=127 mV, 0.5 mol L−1 H2SO4 [177]
    FeP@OMC/CC 6 F127 Resol HER η10=51 mV, 0.5 mol L−1 H2SO4 [190]
    Co3O4/N-CMK-3 SBA-15 Sucrose OER η10=365 mV, 1 mol L−1 KOH [124]
    NiCo2O3@OMC 440-530 4.1 SBA-15 Sucrose OER η10=281 mV, 1 mol L−1 KOH [153]
    NiSx/N-OMC 20-110 3.5-4.0 SBA-15 1,10-Phenanthroline OER η10=340 mV, 1 mol L−1 KOH [154]
    Notes: [a] Specific surface area calculated based on the Brunauer–Emmett–Teller (BET) model; [b] Ordered mesoporous carbon; [c] E1/2 means half wave potential; RHE means reversible hydrogen electrode; [d] Dicyandiamide; [e] Nitrogen doped ordered mesoporous carbon; [f] Unknown; [g] Eonset means onset potential, SCE means saturated calomel electrode ; [h] phosphorus doped ordered mesoporous carbon; [i]Triphenylphosphine; [j] MC means mesoporous carbon; [k] Nitrogen, sulfur co-doped ordered mesoporous carbon; [l] η10 means overpotential at the current density of 10 mA cm; [n] OMGCs means graphitic ordered mesoporous carbon; [m] S-OMC means sulfur doped ordered mesoporous carbon; [o] p-toluenesulfonic acid; [p] polystyrene-block-poly(4-vinylpyridine); [q] polystyrene-block-poly(ethylene oxide); [r] ordered mesoporous carbon coated on carbon clothes.
    下载: 导出CSV
  • [1] Li W, Liu J, Zhao D Y. Mesoporous materials for energy conversion and storage devices[J]. Nature Reviews Materials,2016,1(6):16023. doi: 10.1038/natrevmats.2016.23
    [2] Li C, Li Q, Kaneti Y V, et al. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems[J]. Chemical Society Review,2020,49(14):4681-4736. doi: 10.1039/D0CS00021C
    [3] Chen L L, Xu X L, Yang W X, et al. Recent advances in carbon-based electrocatalysts for oxygen reduction reaction[J]. Chinese Chemical Letters,2020,31(3):626-634. doi: 10.1016/j.cclet.2019.08.008
    [4] Shin Y S, Fryxell G, Um W Y, et al. Sulfur-functionalized mesoporous carbon[J]. Advanced Functional Materials,2007,17(15):2897-2901. doi: 10.1002/adfm.200601230
    [5] Fang Y, Gu D, Zou Y, Wu Z X, et al. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size[J]. Angewandte Chemie International Edition,2010,49(43):7987-7991. doi: 10.1002/anie.201002849
    [6] Ouyang D D, Hu L B, W B Gang, et al. A review of biomass-derived graphene and graphene-like carbons for electrochemical energy storage and conversion[J]. New Carbon Materials,2021,36(2):350-372. doi: 10.1016/S1872-5805(21)60024-0
    [7] Zhang Y T, Wu Y, Su Y Q, et al. In situ dynthesis of CuN4/mesoporous N-doped carbon for selective oxidative cross-coupling of terminal alkynes under mild conditions[J]. Small, 2021, DOI: 10.1002/smll.202105178.
    [8] Lee S H, Kim J, Chung D Y, et al. Design principle of Fe-N-C electrocatalysts: how to optimize multimodal porous dtructures?[J]. Journal of the American Chemical Society,2019,141(5):2035-2045. doi: 10.1021/jacs.8b11129
    [9] Liang H W, Wei W, Wu Z S, et al. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction[J]. Journal of the American Chemical Society,2013,135(43):16002-16005. doi: 10.1021/ja407552k
    [10] Woo J, Sa Y J, Kim J H, et al. Impact of textural properties of mesoporous porphyrinic carbon electrocatalysts on oxygen reduction reaction activity[J]. ChemElectroChem,2018,5(14):1928-1936. doi: 10.1002/celc.201800183
    [11] Sachse R, Bernsmeier D, Schmack R, et al. Colloidal bimetallic platinum-ruthenium nanoparticles in ordered mesoporous carbon films as highly active electrocatalysts for the hydrogen evolution reaction[J]. Catalysis Science & Technology,2020,10(7):2057-2068.
    [12] Kou Z K, Wang T T, Cai Y, et al. Ultrafine molybdenum carbide nanocrystals confined in carbon foams via a colloid-confinement route for efficient hydrogen production[J]. Small Methods,2018,2(4):1928-1936.
    [13] Li M, Liu X T, Xiong Y P, et al. Facile synthesis of various highly dispersive CoP nanocrystal embedded carbon matrices as efficient electrocatalysts for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A,2015,3(8):4255-4265. doi: 10.1039/C4TA06630H
    [14] Kuang P, Wang Y, Zhu B, et al. Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity[J]. Advanced Materials,2021,33(18):2008599. doi: 10.1002/adma.202008599
    [15] Zheng Y, Jiao Y, Li L H, et al. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution[J]. ACS Nano,2014,8(5):5290-5296. doi: 10.1021/nn501434a
    [16] An K L, Cui X L, Xu X X, et al. Mo based electrocatalyst with N, P co-doped mesoporous carbon as matrix for overall water splitting H2 production[J]. Journal of Porous Materials,2019,26(4):1035-1042. doi: 10.1007/s10934-018-0703-3
    [17] Guo D Y, Fu Y B, Bu F X, et al. Monodisperse ultrahigh nitrogen‐containing mesoporous carbon nanospheres from melamine‐formaldehyde resin[J]. Small Methods,2021,5(5):2001137. doi: 10.1002/smtd.202001137
    [18] Ania C O, Gomis-Berenguer A, Dentzer J, et al. Nanoconfinement of glucose oxidase on mesoporous carbon electrodes with tunable pore sizes[J]. Journal of Electroanalytical Chemistry,2018,808:372-379. doi: 10.1016/j.jelechem.2017.09.009
    [19] Dou S, Wang X, Wang S Y. Rational design of transition metal-based materials for highly efficient electrocatalysis[J]. Small Methods,2019,3(1):1800211. doi: 10.1002/smtd.201800211
    [20] Wu Z X, Song M, Wang J, et al. Recent progress in nitrogen-doped metal-free electrocatalysts for oxygen reduction reaction[J]. Catalysts,2018,8(5):196. doi: 10.3390/catal8050196
    [21] Zhang L P, Xia Z H. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells[J]. Journal of Physical Chemistry C,2011,115(22):11170-11176. doi: 10.1021/jp201991j
    [22] Baek D S, Lee K A, Park J, et al. Ordered mesoporous carbons with graphitic tubular frameworks by dual templating for efficient electrocatalysis and energy storage[J]. Angewandte Chemie International Edition,2021,60(3):1441-1449. doi: 10.1002/anie.202012936
    [23] Huang X X, Shen T, Zhang T, et al. Efficient oxygen reduction catalysts of porous carbon nanostructures decorated with transition metal species[J]. Advanced Energy Materials,2019,10(11):1900375.
    [24] Liu C C, Yan X J, Hu F, et al. Toward superior capacitive energy storage: recent advances in pore engineering for dense electrodes[J]. Advanced Materials,2018,30(17):1705713. doi: 10.1002/adma.201705713
    [25] Guo N N, Zhang S, Wang L X, et al. Application of plant-based porous carbon for supercapacitors[J]. Acta Physico-Chimica Sinica,2020,36(2):1903055. doi: 10.3866/PKU.WHXB201903055
    [26] Liang C D, Hong K L, Guiochon G A, et al. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers[J]. Angewandte Chemie International Edition,2004,43(43):5785-5789. doi: 10.1002/anie.200461051
    [27] Meng Y, Gu D, Zhang F Q, et al. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation[J]. Angewandte Chemie International Edition,2005,44(43):7053-7059. doi: 10.1002/anie.200501561
    [28] Deng Y H, Yu T, Wan Y, et al. Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene[J]. Journal of the American Chemical Society,2007,129(6):1690-1697. doi: 10.1021/ja067379v
    [29] Meng Y, Gu D, Zhang F, et al. A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly[J]. Chemical Materials,2006,18(18):4447-4464. doi: 10.1021/cm060921u
    [30] Huang Y, Cai H Q, Yu T, et al. Formation of mesoporous carbon with a face-centered-cubic Fdm structure and bimodal architectural pores from the reverse amphiphilic triblock copolymer PPO-PEO-PPO[J]. Angewandte Chemie International Edition,2007,46(7):1089-1093. doi: 10.1002/anie.200603665
    [31] Yan Y, Wei J, Zhang F Q, et al. The pore structure evolution and stability of mesoporous carbon FDU-15 under CO2, O2 or water vapor atmospheres[J]. Microporous and Mesoporous Materials,2008,113(1-3):305-314. doi: 10.1016/j.micromeso.2007.11.028
    [32] Lv Y Y, Zhang F, Dou Y Q, et al. A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application[J]. Journal of Materials Chemistry,2012,22(1):93-99. doi: 10.1039/C1JM12742J
    [33] Liu R L, Shi Y F, Wan Y, et al. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas[J]. Journal of the American Chemical Society,2006,128(35):11652-11662. doi: 10.1021/ja0633518
    [34] Gu D, Bongard H, Deng Y H, et al. An aqueous emulsion route to synthesize mesoporous carbon vesicles and their nanocomposites[J]. Advanced Materials,2010,22(7):833-837. doi: 10.1002/adma.200902550
    [35] Gu D, Zhang F Q, Shi Y F, et al. A "teardown" method to create large mesotunnels on the pore walls of ordered mesoporous silica[J]. Journal of Colloid and Interface Science,2008,328(2):338-343. doi: 10.1016/j.jcis.2008.09.043
    [36] Xue C F, Tu B, Zhao D Y. Evaporation-induced coating and self-assembly of ordered mesoporous carbon-silica composite monoliths with macroporous architecture on polyurethane foams[J]. Advanced Functional Materials,2008,18(24):3914-3921. doi: 10.1002/adfm.200800708
    [37] Li H Q, Liu R L, Zhao D Y, et al. Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly[J]. Carbon,2007,45(13):2628-2635. doi: 10.1016/j.carbon.2007.08.005
    [38] Liu R L, Ren Y, Shi Y F, et al. Controlled synthesis of ordered mesoporous C-TiO2 nanocomposites with crystalline titania frameworks from organic-inorganic-amphiphilic coassembly[J]. Chemistry of Materials,2008,20(3):1140-1146. doi: 10.1021/cm071470w
    [39] Yu T, Deng Y H, Wang L, et al. Ordered mesoporous nanocrystalline titanium-carbide/carbon composites from in situ carbothermal reduction[J]. Advanced Materials,2007,19(17):2301-2306. doi: 10.1002/adma.200700667
    [40] Chen S J, Fu H B, Zhang L, et al. Nanospherical mesoporous carbon-supported gold as an efficient heterogeneous catalyst in the elimination of mass transport limitations[J]. Applied Catalysis B:Environmental,2019,248:22-30. doi: 10.1016/j.apcatb.2019.02.006
    [41] Li H, Shen H, Pei C, et al. A self‐assembly process for the immobilization of N‐modified Au nanoparticles in ordered mesoporous carbon with large pores[J]. ChemCatChem,2019,11(16):3882-3891. doi: 10.1002/cctc.201900626
    [42] Gu D, Bongard H, Meng Y, et al. Growth of single-crystal mesoporous carbons with Imm symmetry[J]. Chemistry of Materials,2010,22(16):4828-4833. doi: 10.1021/cm101648y
    [43] Guan B Y, Zhang S L, Lou X W. Realization of walnut-shaped particles with macro-/mesoporous open channels through pore architecture manipulation and their use in electrocatalytic oxygen reduction[J]. Angewandte Chemie International Edition,2018,57(21):6176-6180. doi: 10.1002/anie.201801876
    [44] Peng L, Hung C T, Wang S W, et al. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures[J]. Journal of the American Chemical Society,2019,141(17):7073-7080. doi: 10.1021/jacs.9b02091
    [45] Qiu P P, Ma B, Hung C T, et al. Spherical mesoporous materials from dingle to multilevel srchitectures[J]. Accounts of Chemical Research,2019,52(10):2928-2938. doi: 10.1021/acs.accounts.9b00357
    [46] Tang J, Liu J, Li C, et al. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles[J]. Angewandte Chemie International Edition,2015,54(2):588-593.
    [47] Peng L, Peng H R, Hung C T, et al. Programmable synthesis of radially gradient-structured mesoporous carbon nanospheres with tunable core-shell architectures[J]. Chem,2021,7(4):1020-1032. doi: 10.1016/j.chempr.2021.01.001
    [48] Zhang F Q, Meng Y, Gu D, et al. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Iad bicontinuous cubic structure[J]. Journal of the American Chemical Society,2005,127(39):13508-13509. doi: 10.1021/ja0545721
    [49] Zhang F Q, Gu D, Yu T, et al. Mesoporous carbon single-crystals from organic-organic self-assembly[J]. Journal of the American Chemical Society,2007,129(25):7746-7747. doi: 10.1021/ja072316d
    [50] Liu L L, Yang X Y, Xie Y J, et al. A universal lab-on-dalt-particle approach to 2D single-layer ordered mesoporous materials[J]. Advanced Materials,2020,32(10):1906653. doi: 10.1002/adma.201906653
    [51] Lan K, Wei Q L, Wang R C, et al. Two-dimensional mesoporous heterostructure delivering superior pseudocapacitive sodium storage via bottom-up monomicelle assembly[J]. Journal of the American Chemical Society,2019,141(42):16755-16762. doi: 10.1021/jacs.9b06962
    [52] Wang R C, Lan K, Lin R F, et al. Precisely controlled vertical alignment in mesostructured carbon thin films for efficient electrochemical sensing[J]. ACS Nano,2021,15(4):7713-7721. doi: 10.1021/acsnano.1c01367
    [53] Fang Y, Prominski A, Rotenberg M Y, et al. Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces[J]. Nature Nanotechnology,2021,16(2):206-213. doi: 10.1038/s41565-020-00805-z
    [54] Lan K, Liu Y, Zhang W, et al. Uniform ordered two-dimensional mesoporous TiO2 nanosheets from hydrothermal-induced solvent-confined monomicelle assembly[J]. Journal of the American Chemical Society,2018,140(11):4135-4143. doi: 10.1021/jacs.8b00909
    [55] Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J]. Nature,2001,412(6843):169-172. doi: 10.1038/35084046
    [56] Li Z L, Li G L, Jiang L H, et al. Ionic liquids as precursors for efficient mesoporous iron-nitrogen-doped oxygen reduction electrocatalysts[J]. Angewandte Chemie International Edition,2015,54(5):1494-1498. doi: 10.1002/anie.201409579
    [57] Gu D, Schmidt W, Pichler C M, et al. Surface-casting synthesis of mesoporous zirconia with a CMK-5-like structure and high surface area[J]. Angewandte Chemie International Edition,2017,56(37):11222-11225. doi: 10.1002/anie.201705042
    [58] Wei H L, Tan A D, Hu S Z, et al. Efficient spinel iron-cobalt oxide/nitrogen-doped ordered mesoporous carbon catalyst for rechargeable zinc-air batteries[J]. Chinese Journal of Catalysis,2021,42(9):1451-1458. doi: 10.1016/S1872-2067(20)63752-4
    [59] Saad A, Cheng Z X, Zhang X Y, et al. Ordered mesoporous cobalt–nickel nitride prepared by nanocasting for oxygen evolution reaction electrocatalysis[J]. Advanced Materials Interfaces,2019,6(20):1900960. doi: 10.1002/admi.201900960
    [60] Zhang X, Weng W, Gu H, et al. A versatile preparation of mesoporous single layered transition metal sulfide/carbon composites for enhanced sodium storage[J]. Advanced Materials, 2021,DOI: 10.1002/adma.202104427.
    [61] Cao Y, Wu Y, Zhang Y T, et al. Highly ordered mesoporous cobalt oxide as heterogeneous catalyst for aerobic oxidative aromatization of N-heterocycles[J]. ChemCatChem,2021,13(16):3679-3686. doi: 10.1002/cctc.202100644
    [62] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. Journal of Physical Chemistry B,1999,103(37):7743-7746. doi: 10.1021/jp991673a
    [63] Karuppiah C, Wei C N, Karikalan N, et al. Graphene nanosheet-wrapped mesoporous La0.8Ce0.2Fe0.5Mn0.5O3 perovskite oxide composite for improved oxygen reaction electro-kinetics and Li-O2 battery application[J]. Nanomaterials,2021,11(4):1025. doi: 10.3390/nano11041025
    [64] Kim N I, Cheon J Y, Kim J H, et al. Impact of framework structure of ordered mesoporous carbons on the performance of supported Pt catalysts for oxygen reduction reaction[J]. Carbon,2014,72:354-364. doi: 10.1016/j.carbon.2014.02.023
    [65] Kim T W, Park I S, Ryoo R. A synthetic route to ordered mesoporous carbon materials with graphitic pore walls[J]. Angewandte Chemie International Edition.,2003,42(36):4375-4379. doi: 10.1002/anie.200352224
    [66] Xia Y, Mokaya R. Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials with graphitic pore walls via a simple chemical vapor deposition method[J]. Advanced Materials,2004,16(17):1553-1558. doi: 10.1002/adma.200400391
    [67] Lin T Q, Chen I W, Liu F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. science,2015,350(6267):1508-1513. doi: 10.1126/science.aab3798
    [68] Liu G, Li X G, Ganesan P, et al. Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon[J]. Applied Catalysis B:Environmental,2009,93(1-2):156-165. doi: 10.1016/j.apcatb.2009.09.025
    [69] Yang D S, Bhattacharjya D, Inamdar S, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. Journal of the American Chemical Society,2012,134(39):16127-16130. doi: 10.1021/ja306376s
    [70] Yang D S, Bhattacharjya D, Song M Y, et al. Highly efficient metal-free phosphorus-doped platelet ordered mesoporous carbon for electrocatalytic oxygen reduction[J]. Carbon,2014,67:736-743. doi: 10.1016/j.carbon.2013.10.065
    [71] Panja T, Bhattacharjya D, Yu J S. Nitrogen and phosphorus co-doped cubic ordered mesoporous carbon as a supercapacitor electrode material with extraordinary cyclic stability[J]. Journal of Materials Chemistry A,2015,3(35):18001-18009. doi: 10.1039/C5TA04169D
    [72] Shi Q, Zhang R Y, Lu Y Y, et al. Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor[J]. Carbon,2015,84:335-346. doi: 10.1016/j.carbon.2014.12.013
    [73] Yang W X, Yue X Y, Liu X J, et al. IL-derived N, S co-doped ordered mesoporous carbon for high-performance oxygen reduction[J]. Nanoscale,2015,7(28):11956-11961. doi: 10.1039/C5NR02497H
    [74] Hua Y Q, Jiang T T, Wang K, et al. Efficient Pt-free electrocatalyst for oxygen reduction reaction: Highly ordered mesoporous N and S co-doped carbon with saccharin as single-source molecular precursor[J]. Applied Catalysis B:Environmental,2016,194:202-208. doi: 10.1016/j.apcatb.2016.04.056
    [75] Qiu Y, Huo J J, Jia F, et al. N- and S-doped mesoporous carbon as metal-free cathode catalysts for direct biorenewable alcohol fuel cells[J]. Journal of Materials Chemistry A,2016,4(1):83-95. doi: 10.1039/C5TA06039G
    [76] Wang H, Bo X J, Zhang Y F, et al. Sulfur-doped ordered mesoporous carbon with high electrocatalytic activity for oxygen reduction[J]. Electrochimica Acta,2013,108:404-411. doi: 10.1016/j.electacta.2013.06.133
    [77] Wang J C, Ma R G, Zhou Y, et al. A facile nanocasting strategy to nitrogen-doped porous carbon monolith by treatment with ammonia for efficient oxygen reduction[J]. Journal of Materials Chemistry A,2015,3(24):12836-12844. doi: 10.1039/C5TA01679G
    [78] Zhu H, Luo W, Ciesielski P N, et al. Wood-derived materials for green electronics, biological devices, and energy applications[J]. Chemical Reviews,2016,116(16):9305-9374. doi: 10.1021/acs.chemrev.6b00225
    [79] Saha D, Van Bramer S E, Orkoulas G, et al. CO2 capture in lignin-derived and nitrogen-doped hierarchical porous carbons[J]. Carbon,2017,121:257-266. doi: 10.1016/j.carbon.2017.05.088
    [80] Zhang W L, Lin H B, Lin Z Q, et al. 3 D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method[J]. ChemSusChem,2015,8(12):2114-2122. doi: 10.1002/cssc.201403486
    [81] Olejniczak A, Lezanska M, Wloch J, et al. Novel nitrogen-containing mesoporous carbons prepared from chitosan[J]. Journal of Materials Chemistry A,2013,1(31):8961-8967. doi: 10.1039/c3ta11337j
    [82] Marrakchi F, Ahmed M J, Khanday W A, et al. Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue[J]. International Journal of Biological Macromolecules,2017,98:233-239. doi: 10.1016/j.ijbiomac.2017.01.119
    [83] Zhang W, Cheng R R, Bi H H, et al. A review of porous carbons produced by template methods for supercapacitor applications[J]. New Carbon Materials,2021,36(1):69-81. doi: 10.1016/S1872-5805(21)60005-7
    [84] Schneidermann C, Jackel N, Oswald S, et al. Solvent-free mechanochemical dynthesis of nitrogen-doped nanoporous carbon for electrochemical energy storage[J]. ChemSusChem,2017,10(11):2416-2424. doi: 10.1002/cssc.201700459
    [85] Ma Z S, Zhang H Y, Yang Z Z, et al. Mesoporous nitrogen-doped carbons with high nitrogen contents and ultrahigh surface areas: synthesis and applications in catalysis[J]. Green Chemistry,2016,18(7):1976-1982. doi: 10.1039/C5GC01920F
    [86] Hu S X, Hsieh Y L. Ultrafine microporous and mesoporous activated carbon fibers from alkali lignin[J]. Journal of Materials Chemistry A,2013,1(37):11279-11288. doi: 10.1039/c3ta12538f
    [87] Jeon J W, Zhang L, Lutkenhaus J L, et al. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications[J]. ChemSusChem,2015,8(3):428-432. doi: 10.1002/cssc.201402621
    [88] Pang J, Zhang W F, Zhang J L, et al. Facile and sustainable synthesis of sodium lignosulfonate derived hierarchical porous carbons for supercapacitors with high volumetric energy densities[J]. Green Chemistry,2017,19(16):3916-3926. doi: 10.1039/C7GC01434A
    [89] Li S Q, Zhang X D, Huang Y M. Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water[J]. Journal of Hazardous Materials,2017,321:711-719. doi: 10.1016/j.jhazmat.2016.09.065
    [90] Cai Z X, Wang Z L, Kim J, et al. Hollow functional materials derived from metal-organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications[J]. Advanced Materials,2019,31(11):1804903. doi: 10.1002/adma.201804903
    [91] Chaikittisilp W, Ariga K, Yamauchi Y. A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications[J]. Journal of Materials Chemistry A,2013,1(1):14-19. doi: 10.1039/C2TA00278G
    [92] Li X Q, Chang L, Zhao S L, et al. Research on carbon-based electrode materials for supercapacitors[J]. Acta Physico-Chimica Sinica,2017,33(1):130-148. doi: 10.3866/PKU.WHXB201609012
    [93] Wang Q Q, Liu D J, He X Q. Metal-organic framework-derived Fe-N-C nanohybrids as highly-efficient oxygen reduction catalysts[J]. Acta Physico-Chimica Sinica,2019,35(7):740-748. doi: 10.3866/PKU.WHXB201809003
    [94] Yan D Q, Zhang L, Chen Z P, et al. Nickel-based metal-organic framework-derived bifunctional electrocatalysts for hydrogen and oxygen evolution reactions[J]. Acta Physico-Chimica Sinica,2021,37(7):12961-12968.
    [95] Jeon J W, Sharma R, Meduri P, et al. In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces,2014,6(10):7214-7222.
    [96] Yang H, Bradley S J, Chan A, et al. Catalytically active bimetallic nanoparticles supported on porous carbon capsules derived from metal-organic framework composites[J]. Journal of the American Chemical Society,2016,138(36):11872-11881. doi: 10.1021/jacs.6b06736
    [97] Albo J, Vallejo D, Beobide G, et al. Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols[J]. ChemSusChem,2017,10(6):1100-1109. doi: 10.1002/cssc.201600693
    [98] Xu X D, Cao R G, Jeong S K, et al. Spindle-like mesoporous alpha-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries[J]. Nano Letters,2012,12(9):4988-4991. doi: 10.1021/nl302618s
    [99] Wang X X, Cullen D A, Pan Y T, et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells[J]. Advanced Materials,2018,30(11):1706758. doi: 10.1002/adma.201706758
    [100] Ren Q, Wang H, Lu X F, et al. Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction[J]. Advanced Science,2018,5(3):1700515. doi: 10.1002/advs.201700515
    [101] Li M, Bi X X, Wang R Y, et al. Relating catalysis between fuel cell and metal-air batteries[J]. Matter,2020,2(1):32-49. doi: 10.1016/j.matt.2019.10.007
    [102] Siahrostami S, Verdaguer-Casadevall A, Karamad M, et al. Enabling direct H2O2 production through rational electrocatalyst design[J]. Nature Materials,2013,12(12):1137-1143. doi: 10.1038/nmat3795
    [103] Chang Q, Zhang P, Mostaghimi A H B, et al. Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon[J]. Nature Communications,2020,11(1):2178. doi: 10.1038/s41467-020-15843-3
    [104] Zhao Z P, Hossain M D, Xu C C, et al. Tailoring a three-phase microenvironment for high-performance oxygen reduction reaction in proton exchange membrane fuel cells[J]. Matter,2020,3(5):1774-1790. doi: 10.1016/j.matt.2020.09.025
    [105] Pizzutilo E, Knossalla J, Geiger S, et al. The space confinement approach using hollow graphitic spheres to unveil activity and stability of Pt-Co nanocatalysts for PEMFC[J]. Advanced Energy Materials,2017,7(20):1700835. doi: 10.1002/aenm.201700835
    [106] Baldizzone C, Mezzavilla S, Carvalho H W, et al. Confined-space alloying of nanoparticles for the synthesis of efficient PtNi fuel-cell catalysts[J]. Angewandte Chemie International Edition,2014,53(51):14250-14254. doi: 10.1002/anie.201406812
    [107] Lin L X, Miao N H, Wallace G G, et al. Engineering carbon materials for electrochemical oxygen reduction reactions[J]. Advanced Energy Materials,2021,11(32):2100695. doi: 10.1002/aenm.202100695
    [108] Silva R, Voiry D, Chhowalla M, et al. Efficient metal-free electrocatalysts for oxygen reduction: polyaniline-derived N- and O-doped mesoporous carbons[J]. Journal of the American Chemical Society,2013,135(21):7823-7826. doi: 10.1021/ja402450a
    [109] Zhao Y, Yang L J, Chen S, et al. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes?[J]. Journal of the American Chemical Society,2013,135(4):1201-1204. doi: 10.1021/ja310566z
    [110] Hu C, Dai L M. Carbon-based metal-free catalysts for electrocatalysis beyond the ORR[J]. Angewandte Chemie International Edition,2016,55(39):11736-11758. doi: 10.1002/anie.201509982
    [111] Li J L, Li Z L, Tong J H, et al. Nitrogen-doped ordered mesoporous carbon sphere with short channel as an efficient metal-free catalyst for oxygen reduction reaction[J]. RSC Advances,2015,5(86):70010-70016. doi: 10.1039/C5RA10484J
    [112] Sun Y Y, Li S, Jovanov Z P, et al. Structure, activity, and faradaic efficiency of nitrogen-doped porous carbon catalysts for direct electrochemical hydrogen peroxide production[J]. ChemSusChem,2018,11(19):3388-3395. doi: 10.1002/cssc.201801583
    [113] Liu X X, Li S H, Liu L M, et al. Facile pyrolysis approach of folic acid-derived high graphite N-doped porous carbon materials for the oxygen reduction reaction[J]. New Journal of Chemistry,2021,45(13):5949-5957. doi: 10.1039/D0NJ06174C
    [114] Liang S, Wang Z D, Guo Z F, et al. N-doped porous biocarbon materials derived from soya peptone as efficient electrocatalysts for the ORR[J]. New Journal of Chemistry,2021,45(8):3947-3953. doi: 10.1039/D0NJ06080A
    [115] Yang L J, Jiang S J, Zhao Y, et al. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition,2011,50(31):7132-7135. doi: 10.1002/anie.201101287
    [116] Liu S, Li G Z, Gao Y Y, et al. Doping carbon nanotubes with N, S, and B for electrocatalytic oxygen reduction: a systematic investigation on single, double, and triple doped modes[J]. Catalysis Science & Technology,2017,7(18):4007-4016.
    [117] Zhang L, Xu Q Q, Wang X, et al. N, S co-doped hierarchical porous carbon from Chinese herbal residues for high-performance supercapacitors and oxygen reduction reaction[J]. RSC Advances,2020,10(68):41532-41541. doi: 10.1039/D0RA06780F
    [118] Shi Q Q, Peng F, Liao S X, et al. Sulfur and nitrogen co-doped carbon nanotubes for enhancing electrochemical oxygen reduction activity in acidic and alkaline media[J]. Journal of Materials Chemistry A,2013,1(47):14853-14857. doi: 10.1039/c3ta12647a
    [119] Zhang Z, Sun J, Dou M, et al. Nitrogen and phosphorus codoped mesoporous carbon derived from polypyrrole as superior metal-free electrocatalyst toward the oxygen reduction reaction[J]. ACS Applied Materials & Interfaces,2017,9(19):16236-16242.
    [120] Jiang T T, Wang Y, Wang K, et al. A novel sulfur-nitrogen dual doped ordered mesoporous carbon electrocatalyst for efficient oxygen reduction reaction[J]. Applied Catalysis B: Environmental,2016,189:1-11. doi: 10.1016/j.apcatb.2016.02.009
    [121] Zeng K, Su J M, Cao X C, et al. N Co-doped ordered mesoporous carbon with enhanced electrocatalytic activity for the oxygen reduction reaction[J]. Journal of Alloys and Compounds,2020,824:153908. doi: 10.1016/j.jallcom.2020.153908
    [122] Wang H T, Wang W, Gui M X, et al. Uniform Fe3O4/nitrogen-doped mesoporous carbon spheres derived from ferric citrate-bonded melamine resin as an efficient synergistic catalyst for oxygen reduction[J]. ACS Applied Materials & Interfaces,2017,9(1):335-344.
    [123] Wang K, Chen H X, Zhang X F, et al. Iron oxide@graphitic carbon core-shell nanoparticles embedded in ordered mesoporous N-doped carbon matrix as an efficient cathode catalyst for PEMFC[J]. Applied Catalysis B:Environmental,2020:264.
    [124] Wang J, Zhang S W, Zhong H H, et al. Nitrogen-doped ordered mesoporous carbons supported Co3O4 composite as a bifunctional oxygen electrode catalyst[J]. Surfaces,2019,2(2):229-240. doi: 10.3390/surfaces2020018
    [125] Yu M H, Wang Z K, Hou C, et al. Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries[J]. Advanced Materials,2017,29(15):1602868. doi: 10.1002/adma.201602868
    [126] Wang X J, Li Y, Jin T, et al. Electrospun thin-walled CuCo2O4@C nanotubes as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries[J]. Nano Letters,2017,17(12):7989-7994. doi: 10.1021/acs.nanolett.7b04502
    [127] Li P X, Ma R G, Zhou Y, et al. The direct growth of highly dispersed CoO nanoparticles on mesoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction[J]. RSC Advances,2016,6(75):70763-70769. doi: 10.1039/C6RA14394F
    [128] Chin C C, Yang H K, Chen J S. Investigation of MnO2 and ordered mesoporous carbon composites as electrocatalysts for Li-O2 battery applications[J]. Nanomaterials,2016,6(1):21. doi: 10.3390/nano6010021
    [129] Zhang T W, Li Z F, Wang L K, et al. Spinel MnCo2O4 nanoparticles supported on three-dimensional graphene with enhanced mass transfer as an efficient electrocatalyst for the oxygen reduction reaction[J]. ChemSusChem,2018,11(16):2730-2736. doi: 10.1002/cssc.201801070
    [130] He J, Li B, Mao J, et al. Four-electron oxygen reduction from mesoporous carbon modified with Fe2O3 nanocrystals[J]. Journal of Materials Science,2017,52(18):10938-10947. doi: 10.1007/s10853-017-1192-5
    [131] Gan L, Wang M R, Hu L T, et al. Nanosheets/mesopore structured Co3O4@CMK-3 composite as an electrocatalyst for the oxygen reduction reaction[J]. ChemCatChem,2018,10(6):1321-1329. doi: 10.1002/cctc.201701822
    [132] Li P X, Ma R G, Zhou Y, et al. In situ growth of spinel CoFe2O4 nanoparticles on rod-like ordered mesoporous carbon for bifunctional electrocatalysis of both oxygen reduction and oxygen evolution[J]. Journal of Materials Chemistry A,2015,3(30):15598-15606. doi: 10.1039/C5TA02625C
    [133] Hu F, Yang H, Wang C, et al. Co-N-doped mesoporous carbon hollow spheres as highly efficient electrocatalysts for oxygen reduction reaction[J]. Small,2017,13(3):1602507. doi: 10.1002/smll.201602507
    [134] Wang M, Yang Y S, Liu X B, et al. The role of iron nitrides in the Fe-N-C catalysis system towards the oxygen reduction reaction[J]. Nanoscale,2017,9(22):7641-7649. doi: 10.1039/C7NR01925D
    [135] Shen H J, Gracia-Espino E, Ma J Y, et al. Atomically FeN2 moieties dispersed on mesoporous carbon: A new atomic catalyst for efficient oxygen reduction catalysis[J]. Nano Energy,2017,35:9-16. doi: 10.1016/j.nanoen.2017.03.027
    [136] Gong M, Dai H J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts[J]. Nano Research,2015,8(1):23-39. doi: 10.1007/s12274-014-0591-z
    [137] Sa Y J, Kwon K, Cheon J Y, et al. Ordered mesoporous Co3O4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts[J]. Journal of Materials Chemistry A,2013,1(34):9992-10001. doi: 10.1039/c3ta11917c
    [138] Osgood H, Devaguptapu S V, Xu H, et al. Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media[J]. Nano Today,2016,11(5):601-625. doi: 10.1016/j.nantod.2016.09.001
    [139] Guo Y N, Park T, Yi J W, et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting[J]. Advanced Materials,2019,31:1807134. doi: 10.1002/adma.201807134
    [140] Zhang J, Xia Z, Dai L M. Carbon-based electrocatalysts for advanced energy conversion and storage[J]. Science Advances,2015,1(7):1500564. doi: 10.1126/sciadv.1500564
    [141] Wu Z P, Lu X F, Zang S Q, et al. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction[J]. Advanced Functional Materials,2020,30(15):190274.
    [142] Zhang C L, Wang B W, Shen X C, et al. A nitrogen-doped ordered mesoporous carbon/graphene framework as bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Nano Energy,2016,30:503-510. doi: 10.1016/j.nanoen.2016.10.051
    [143] Fu S F, Zhu C Z, Song J H, et al. Highly ordered mesoporous bimetallic phosphides as efficient oxygen evolution electrocatalysts[J]. ACS Energy Letters,2016,1(4):792-796. doi: 10.1021/acsenergylett.6b00408
    [144] Wang B, Liu B W, Dai L M. Non‐N‐doped carbons as metal‐free electrocatalysts[J]. Advanced Sustainable Systems,2020,5(1):2000134.
    [145] Zhang Z Y, Yi Z R, Wang J, et al. Nitrogen-enriched polydopamine analogue-derived defect-rich porous carbon as a bifunctional metal-free electrocatalyst for highly efficient overall water splitting[J]. Journal of Materials Chemistry A,2017,5(32):17064-17072. doi: 10.1039/C7TA03999A
    [146] Ede S R, Luo Z P. Tuning the intrinsic catalytic activities of oxygen-evolution catalysts by doping: a comprehensive review[J]. Journal of Materials Chemistry A,2021,9(36):20131-20163. doi: 10.1039/D1TA04032D
    [147] Wahab M A, Joseph J, Atanda L, et al. Nanoconfined synthesis of nitrogen-rich metal-free mesoporous carbon nitride electrocatalyst for the oxygen evolution reaction[J]. ACS Applied Energy Materials,2020,3(2):1439-1447. doi: 10.1021/acsaem.9b01876
    [148] Li M, Liu Z W, Wang F, et al. The influence of the type of N dopping on the performance of bifunctional N-doped ordered mesoporous carbon electrocatalysts in oxygen reduction and evolution reaction[J]. Journal of Energy Chemistry,2017,26(3):422-427. doi: 10.1016/j.jechem.2017.01.004
    [149] Gao S S, Liu Y F, Xie Z Y, et al. Metal-free bifunctional ordered mesoporous carbon for reversible Zn-CO2 batteries[J]. Small Methods,2021,5(4):2001039. doi: 10.1002/smtd.202001039
    [150] Xu M, Huang L, Fang Y X, et al. The unified ordered mesoporous carbons supported Co-based electrocatalysts for full water splitting[J]. Electrochimica Acta,2018,261:412-420. doi: 10.1016/j.electacta.2017.12.152
    [151] Farid S, Qiu W W, Zhao J L, et al. Cobalt-pyrazolate-derived N-doped porous carbon with embedded cobalt oxides for enhanced oxygen evolution reaction[J]. Electrocatalysis,2019,11(1):46-58.
    [152] Wang P X, Shao L, Zhang N Q, et al. Mesoporous CuCo2O4 nanoparticles as an efficient cathode catalyst for Li-O2 batteries[J]. Journal of Power Sources,2016,325:506-512. doi: 10.1016/j.jpowsour.2016.06.065
    [153] Zhang Y, Wang X X, Luo F Q, et al. Rock salt type NiCo2O3 supported on ordered mesoporous carbon as a highly efficient electrocatalyst for oxygen evolution reaction[J]. Applied Catalysis B:Environmental,2019,256:117852. doi: 10.1016/j.apcatb.2019.117852
    [154] Wan K, Luo J S, Zhang X, et al. A template-directed bifunctional NiSx/nitrogen-doped mesoporous carbon electrocatalyst for rechargeable Zn-air batteries[J]. Journal of Materials Chemistry A,2019,7(34):19889-19897. doi: 10.1039/C9TA06446J
    [155] Saad A, Shen H J, Cheng Z X, et al. Mesoporous ternary nitrides of earth-abundant metals as oxygen evolution electrocatalyst[J]. Nano-Micro Letters,2020,12(1):79. doi: 10.1007/s40820-020-0412-8
    [156] Wang Z L, Xu D, Xu J J, et al. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes[J]. Chemical Society Review,2014,43(22):7746-7786. doi: 10.1039/C3CS60248F
    [157] Wang J, Cui W, Liu Q, et al. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting[J]. Advanced Materials,2016,28(2):215-230. doi: 10.1002/adma.201502696
    [158] Wang S, Lu A, Zhong C J. Hydrogen production from water electrolysis: role of catalysts[J]. Nano Convergence,2021,8(1):4. doi: 10.1186/s40580-021-00254-x
    [159] Yan Y, Xia B Y, Zhao B, et al. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting[J]. Journal of Materials Chemistry A,2016,4(45):17587-17603. doi: 10.1039/C6TA08075H
    [160] Li D, Shi J Y, Li C. Transition-metal-based electrocatalysts as cocatalysts for photoelectrochemical water splitting: a mini review[J]. Small,2018,14(23):1704179. doi: 10.1002/smll.201704179
    [161] Zhao S L, Wang D W, Amal R, et al. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage[J]. Advanced Materials,2019,31(9):1801526. doi: 10.1002/adma.201801526
    [162] Sideri I K, Tagmatarchis N. Noble-metal-free doped carbon nanomaterial electrocatalysts[J]. Chemistry,2020,26(67):15397-15415. doi: 10.1002/chem.202003613
    [163] Zhou W J, Jia J, Lu J, et al. Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction[J]. Nano Energy,2016,28:29-43. doi: 10.1016/j.nanoen.2016.08.027
    [164] Ito Y, Cong W T, Fujita T, et al. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction[J]. Angewandte Chemie International Edition,2015,54(7):2131-2136. doi: 10.1002/anie.201410050
    [165] Hu C G, Dai L M. Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution[J]. Advanced Materials,2017,29(9):5189-5196.
    [166] Liu X J, Yu J R, Song H H, et al. Nitrogen and sulfur-codoped porous carbon derived from a BSA/ionic liquid polymer complex: multifunctional electrode materials for water splitting and supercapacitors[J]. RSC Advances,2019,9(9):5189-5196. doi: 10.1039/C8RA09700C
    [167] Wei L, Karahan H E, Goh K, et al. A high-performance metal-free hydrogen-evolution reaction electrocatalyst from bacterium derived carbon[J]. Journal of Materials Chemistry A,2015,3(14):7210-7214. doi: 10.1039/C5TA00966A
    [168] Dong X S, Liu X W, Chen H, et al. Hard template-assisted N, P-doped multifunctional mesoporous carbon for supercapacitors and hydrogen evolution reaction[J]. Journal of Materials Science,2021,56(3):2385-2398. doi: 10.1007/s10853-020-05303-0
    [169] Dinh K N, Zhang Y, Zhu J, et al. Phosphorene-based electrocatalysts[J]. Chemistry,2020,26(29):6437-6446. doi: 10.1002/chem.202000211
    [170] Pei Z X, Zhao J X, Huang Y, et al. Toward enhanced activity of a graphitic carbon nitride-based electrocatalyst in oxygen reduction and hydrogen evolution reactions via atomic sulfur doping[J]. Journal of Materials Chemistry A,2016,4(31):12205-12211. doi: 10.1039/C6TA03588D
    [171] Martinez-Loyola J C, Alonso-Lemus I L, Sanchez-Castro M E, et al. Surface functionalization of ordered mesoporous hollow carbon spheres with Ru organometallic compounds as supports of low-Pt content nanocatalysts for alkaline hydrogen and oxygen evolution reactions[J]. MRS Advances,2020,5(57-58):2973-2989. doi: 10.1557/adv.2020.367
    [172] Yin Y Q, Liu T T, Liu D, et al. Confining nano-sized platinum in nitrogen doped ordered mesoporous carbon: An effective approach toward efficient and robust hydrogen evolution electrocatalyst[J]. Journal of Colloid and Interface Science,2018,530:595-602. doi: 10.1016/j.jcis.2018.06.096
    [173] Kim J G, Lee B, Pham N N T, et al. Relationship between hydrogen binding energy and activity for hydrogen evolution reaction by palladium supported on sulfur-doped ordered mesoporous carbon[J]. Journal of Industrial and Engineering Chemistry,2020,89:361-367. doi: 10.1016/j.jiec.2020.06.003
    [174] Yu Y H, Liu P D, Dou M L, et al. Promotion of hydrogen evolution catalysis by ordered hierarchically porous electrodes[J]. Catalysis Science & Technology,2021,11(9):2997-3001.
    [175] He Y H, Xu J M, Wang F N, et al. In-situ carbonization approach for the binder-free Ir-dispersed ordered mesoporous carbon hydrogen evolution electrode[J]. Journal of Energy Chemistry,2017,26(6):1140-1146. doi: 10.1016/j.jechem.2017.05.004
    [176] Zhang C, Xia M S, Liu Z P, et al. Self-assembly mesoporous FeP film with high porosity for efficient hydrogen evolution reaction[J]. ChemCatChem,2020,12(9):2589-2594. doi: 10.1002/cctc.202000123
    [177] Sun T T, Dong J, Huang Y, et al. Highly active and stable electrocatalyst of Ni2P nanoparticles supported on 3D ordered macro-/mesoporous Co-N-doped carbon for acidic hydrogen evolution reaction[J]. Journal of Materials Chemistry A,2018,6(26):12751-12758. doi: 10.1039/C8TA03672A
    [178] Li W, Liu J, Guo P F, et al. Co/CoP heterojunction on hierarchically ordered porous carbon as a highly efficient electrocatalyst for hydrogen and oxygen evolution[J]. Advanced Energy Materials,2021,11(42):2102134. doi: 10.1002/aenm.202102134
    [179] Wang J Y, Wang W W, Ji L, et al. Highly Dispersed Mo2C Nanoparticles Embedded in Ordered Mesoporous Carbon for Efficient Hydrogen Evolution[J]. ACS Applied Energy Materials,2018,1(2):736-743. doi: 10.1021/acsaem.7b00191
    [180] Fan M H, Zheng Y N, Li A, et al. Sprout-like Growth of Mesoporous Mo2C/NC Nanonetworks as Efficient Electrocatalysts for Hydrogen Evolution[J]. ChemCatChem,2018,10(3):625-631. doi: 10.1002/cctc.201701417
    [181] Meng T, Zheng L R, Qin J W, et al. A three-dimensional hierarchically porous Mo2C architecture: salt-template synthesis of a robust electrocatalyst and anode material towards the hydrogen evolution reaction and lithium storage[J]. Journal of Materials Chemistry A,2017,5(38):20228-20238. doi: 10.1039/C7TA05946A
    [182] Lv C C, Huang Z P, Yang Q P, et al. W-Doped MoO2/MoC Hybrids Encapsulated by P-Doped Carbon Shells for Enhanced Electrocatalytic Hydrogen Evolution[J]. Energy Technology,2018,6(9):1707-1714. doi: 10.1002/ente.201700851
    [183] Liu R, Du Q Q, Zhao R H, et al. Ultrafine Mo2C Nanoparticles Confined in 2D Meshlike Carbon Nanolayers for Effective Hydrogen Evolution[J]. ChemCatChem,2020,12(12):3195-3201. doi: 10.1002/cctc.202000277
    [184] Kumar R, Ahmed Z, Kumar R, et al. In situmodulation of silica-supported MoO2/Mo2C heterojunction for enhanced hydrogen evolution reaction[J]. Catalysis Science & Technology,2020,10(14):4776-4785.
    [185] Zhang Y, Li C, Chen Z, et al. Ionic liquid-derived MoC nanocomposites with ordered mesoporosity as efficient Pt-free electrocatalyst for hydrogen evolution and oxygen reduction[J]. Catalysis Letters,2017,147(1):253-260. doi: 10.1007/s10562-016-1914-3
    [186] Zhang H B, Ma Z J, Liu G G, et al. Highly active nonprecious metal hydrogen evolution electrocatalyst: ultrafine molybdenum carbide nanoparticles embedded into a 3D nitrogen-implanted carbon matrix[J]. NPG Asia Materials,2016,8:293. doi: 10.1038/am.2016.102
    [187] Jeoung S, Seo B, Hwang J M, et al. Direct conversion of coordination compounds into Ni2P nanoparticles entrapped in 3D mesoporous graphene for an efficient hydrogen evolution reaction[J]. Materials Chemistry Frontiers,2017,1(5):973-978. doi: 10.1039/C6QM00269B
    [188] Li X, Wang X L, Zhou J, et al. Ternary hybrids as efficient bifunctional electrocatalysts derived from bimetallic metal-organic-frameworks for overall water splitting[J]. Journal of Materials Chemistry A,2018,6(14):5789-5796. doi: 10.1039/C7TA10558D
    [189] Liu Z P, Gao Z C, Luo F, et al. Three-dimensional cathode constructed through confined-growth of FeP nanocrystals in ordered mesoporous carbon film coated on carbon cloth for efficient hydrogen production[J]. ChemCatChem,2018,10(16):3441-3446. doi: 10.1002/cctc.201800034
    [190] Sun T T, Shan N N, Xu L B, et al. General synthesis of 3D ordered macro-/mesoporous materials by templating mesoporous silica confined in opals[J]. Chemistry of Materials,2018,30(5):1617-1624. doi: 10.1021/acs.chemmater.7b04829
    [191] Xiao Y, Pei Y, Hu Y F, et al. Co2P@P-doped 3D porous carbon for bifunctional oxygen electrocatalysis[J]. Acta Physico-Chimica Sinica,2021,37(7):2009051.
    [192] Huang G Q, Xu S N, Liu Z P, et al. Ultrafine cobalt‐doped iron disulfide nanoparticles in ordered mesoporous carbon for efficient hydrogen evolution[J]. ChemCatChem,2019,12(3):788-794.
    [193] Ding J T, Ji S, Wang H, et al. Mesoporous CoS/N-doped carbon as HER and ORR bifunctional electrocatalyst for water electrolyzers and zinc-air batteries[J]. ChemCatChem,2019,11(3):1026-1032. doi: 10.1002/cctc.201801618
    [194] Han W Q, Liu Z H, Pan Y B, et al. Designing champion nanostructures of tungsten dichalcogenides for electrocatalytic hydrogen evolution[J]. Advanced Materials,2020,32(28):2002584. doi: 10.1002/adma.202002584
    [195] Viji P, Bharkavi S, Vijayan P, et al. Strategy for enhancing the hydrogen evolution reaction properties of MoS2 by utilizing the ordered mesoporous carbon as support and modification with nickel[J]. Bulletin of Materials Science,2020,43(1):145. doi: 10.1007/s12034-020-02133-3
    [196] Francke R, Little R D. Redox catalysis in organic electrosynthesis: basic principles and recent developments[J]. Chemical Society Review,2014,43(8):2492-2521. doi: 10.1039/c3cs60464k
    [197] Horn E J, Rosen B R, Baran P S. Synthetic organic electrochemistry: an enabling and innately sustainable method[J]. ACS Central Science,2016,2(5):302-308. doi: 10.1021/acscentsci.6b00091
    [198] Yang N J, Waldvogel S R, Jiang X. Electrochemistry of carbon dioxide on carbon electrodes[J]. ACS Applied Materials & Interfaces,2016,8(42):28357-28371.
    [199] Xia Y D, Yang Z X, Mokaya R. Templated nanoscale porous carbons[J]. Nanoscale,2010,2(5):639-659. doi: 10.1039/b9nr00207c
    [200] Stein A, Wang Z Y, Fierke M A. Functionalization of porous carbon materials with designed pore srchitecture[J]. Advanced Materials,2009,21(3):265-293. doi: 10.1002/adma.200801492
    [201] McGrath T J, Ball A S, Clarke B O. Critical review of soil contamination by polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs); concentrations, sources and congener profiles[J]. Environmental Pollution,2017,230:741-757. doi: 10.1016/j.envpol.2017.07.009
    [202] Zhang M, Shi Q, Song X Z, et al. Recent electrochemical methods in electrochemical degradation of halogenated organics: a review[J]. Environmental Science and Pollution Research,2019,26(11):10457-10486. doi: 10.1007/s11356-019-04533-3
    [203] Cui C Y, Quan X, Yu H T, et al. Electrocatalytic hydrodehalogenation of pentachlorophenol at palladized multiwalled carbon nanotubes electrode[J]. Applied Catalysis B:Environmental,2008,80(1-2):122-128. doi: 10.1016/j.apcatb.2007.11.019
    [204] Chen S, Qin Z L, Quan X, et al. Electrocatalytic dechlorination of 2, 4, 5-trichlorobiphenyl using an aligned carbon nanotubes electrode deposited with palladium nanoparticles[J]. Chinese Science Bulletin,2010,55(4-5):358-364. doi: 10.1007/s11434-010-0003-z
    [205] Gan G Q, Li X Y, Fan S Y, et al. Ultrathin Fe-Nx-C single-atom catalysts with bifunctional active site for simultaneous production of ethylene and aromatic chlorides[J]. Nano Energy,2021,80:105532. doi: 10.1016/j.nanoen.2020.105532
    [206] Deng J, Hu X M, Gao E L, et al. Electrochemical reductive remediation of trichloroethylene contaminated groundwater using biomimetic iron-nitrogen-doped carbon[J]. Journal of Hazardous Materials,2021,419:126458. doi: 10.1016/j.jhazmat.2021.126458
    [207] Cirtiu C M, Brisach-Wittmeyer A, Menard H. Comparative study of catalytic and electrocatalytic hydrogenation of benzophenone[J]. Catalysis Communications,2007,8(5):751-754. doi: 10.1016/j.catcom.2006.09.014
    [208] Vago M, Williams F J, Calvo E J. Enantioselective electrocatalytic hydrogenation of ethyl pyruvate on carbon supported Pd electrodes[J]. Electrochemistry Communications,2007,9(11):2725-2728. doi: 10.1016/j.elecom.2007.09.005
    [209] Cirtiu C M, Brisach-Wittmeyer A, Menard H. Electrocatalysis over Pd catalysts: A very efficient alternative to catalytic hydrogenation of cyclohexanone[J]. Journal of Catalysis,2007,245(1):191-197. doi: 10.1016/j.jcat.2006.10.010
    [210] Mulero C M, Saez A, Iniesta J, et al. An alternative to hydrogenation processes. Electrocatalytic hydrogenation of benzophenone[J]. Beilstein Journal of Organic Chemistry,2018,14:537-546. doi: 10.3762/bjoc.14.40
    [211] Xiao P, Wang S, Xu X L, et al. In-situ template formation method to synthesize hierarchically porous carbon for electrocatalytic reduction of 4-nitrophenol[J]. Carbon,2021,184:596-608. doi: 10.1016/j.carbon.2021.08.057
    [212] Sheng X, Wouters B, Breugelmans T, et al. Cu/CuxO and Pt nanoparticles supported on multi-walled carbon nanotubes as electrocatalysts for the reduction of nitrobenzene[J]. Applied Catalysis B:Environmental,2014,147:330-339. doi: 10.1016/j.apcatb.2013.09.006
    [213] Zhang Y F, Bo X J, Nsabimana A, et al. Electrocatalytically active cobalt-based metal-organic framework with incorporated macroporous carbon composite for electrochemical applications[J]. Journal of Materials Chemistry A,2015,3(2):732-738. doi: 10.1039/C4TA04411H
    [214] Mika L T, Csefalvay E, Nemeth A. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability[J]. Chemical Reviews,2018,118(2):505-613. doi: 10.1021/acs.chemrev.7b00395
    [215] Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicals[J]. Energy Conversion and Management,2001,42(11):1357-1378. doi: 10.1016/S0196-8904(00)00137-0
    [216] Yang G C, Jiao Y Q, Yan H J, et al. Electronic structure modulation of non-noble-metal-based catalysts for biomass electrooxidation reactions[J]. Small Structures,2021,2(10):2100095. doi: 10.1002/sstr.202100095
    [217] Kisszekelyi P, Hardian R, Vovusha H, et al. Selective electrocatalytic oxidation of biomass-derived 5-hydroxymethylfurfural to 2, 5-diformylfuran: from mechanistic investigations to catalyst recovery[J]. ChemSusChem,2020,13(12):3060. doi: 10.1002/cssc.202001276
    [218] Benzigar M R, Joseph S, Ilbeygi H, et al. Highly crystalline mesoporous C60 with ordered pores: a Class of nanomaterials for energy applications[J]. Angewandte Chemie International Edition,2018,57(2):569-573. doi: 10.1002/anie.201710888
    [219] Sun T T, Xu L B, Li S Y, et al. Cobalt-nitrogen-doped ordered macro-/mesoporous carbon for highly efficient oxygen reduction reaction[J]. Applied Catalysis B:Environmental,2016,193:1-8. doi: 10.1016/j.apcatb.2016.04.006
    [220] Jeong U, Kim H, Ramesh S, et al. Rapid access to ordered mesoporous carbons for chemical hydrogen storage[J]. Angewandte Chemie International Edition,2021,60(41):22478-22486. doi: 10.1002/anie.202109215
    [221] Wan K, Long G F, Liu M Y, et al. Nitrogen-doped ordered mesoporous carbon: synthesis and active sites for electrocatalysis of oxygen reduction reaction[J]. Applied Catalysis B:Environmental,2015,165:566-571. doi: 10.1016/j.apcatb.2014.10.054
    [222] Tao G J, Zhang L X, Chen L S, et al. N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction[J]. Carbon,2015,86:108-117. doi: 10.1016/j.carbon.2014.12.102
    [223] Yang D S, Song M Y, Singh K P, et al. The role of iron in the preparation and oxygen reduction reaction activity of nitrogen-doped carbon[J]. Chemical Communications,2015,51(12):2450-2453. doi: 10.1039/C4CC08592B
    [224] Gao X, Chen Z, Yao Y, et al. Direct heating amino acids with silica: a universal solvent-free assembly approach to highly nitrogen-doped mesoporous carbon materials[J]. Advanced Functional Materials,2016,26(36):6649-6661. doi: 10.1002/adfm.201601640
    [225] Zhao G, Shi L, Xu J B, et al. Role of phosphorus in nitrogen, phosphorus dual-doped ordered mesoporous carbon electrocatalyst for oxygen reduction reaction in alkaline media[J]. International Journal of Hydrogen Energy,2018,43(3):1470-1478. doi: 10.1016/j.ijhydene.2017.11.165
    [226] Wang X Q, Qiu M, Smith R L, et al. Ferromagnetic lignin-derived ordered mesoporous carbon for catalytic hydrogenation of furfural to furfuryl alcohol[J]. ACS Sustainable Chemistry & Engineering,2020,8(49):18157-18166.
    [227] Xin X P, Kang H Q, Feng J G, et al. A novel sol-gel strategy for N, P dual-doped mesoporous carbon with high specific capacitance and energy density for advanced supercapacitors[J]. Chemical Engineering Journal,2020,393:124710. doi: 10.1016/j.cej.2020.124710
    [228] Bo X J, Zhang Y F, Li M A, et al. NiCo2O4 spinel/ordered mesoporous carbons as noble-metal free electrocatalysts for oxygen reduction reaction and the influence of structure of catalyst support on the electrochemical activity of NiCo2O4[J]. Journal of Power Sources,2015,288:1-8. doi: 10.1016/j.jpowsour.2015.04.110
    [229] Zhang B, Zhang J, Zhong Z P. Low-energy mild electrocatalytic hydrogenation of bio-oil using ruthenium anchored in ordered mesoporous carbon[J]. ACS Applied Energy Materials,2018,1(12):6758-6763. doi: 10.1021/acsaem.8b01718
    [230] Serrano-Ruiz J C, Luque R, Sepulveda-Escribano A. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing[J]. Chemical Society Reviews,2011,40(11):5266-5281. doi: 10.1039/c1cs15131b
    [231] Zhou Y L, Gao Y J, Zhong X, et al. Electrocatalytic upgrading of lignin-derived bio-oil based on surface-engineered PtNiB nanostructure[J]. Advanced Functional Materials,2019,29(10):1807651. doi: 10.1002/adfm.201807651
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1854
  • HTML全文浏览量:  1695
  • PDF下载量:  282
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-03
  • 修回日期:  2021-12-07
  • 网络出版日期:  2021-12-17
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回