留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属有机框架复合酚醛树脂基整体式亲水炭应用于空气水捕集

唐宋元 王永胜 原亚飞 巴雅琪 王立秋 郝广平 陆安慧

唐宋元, 王永胜, 原亚飞, 巴雅琪, 王立秋, 郝广平, 陆安慧. 金属有机框架复合酚醛树脂基整体式亲水炭应用于空气水捕集. 新型炭材料(中英文), 2022, 37(1): 237-244. doi: 10.1016/S1872-5805(22)60576-6
引用本文: 唐宋元, 王永胜, 原亚飞, 巴雅琪, 王立秋, 郝广平, 陆安慧. 金属有机框架复合酚醛树脂基整体式亲水炭应用于空气水捕集. 新型炭材料(中英文), 2022, 37(1): 237-244. doi: 10.1016/S1872-5805(22)60576-6
TANG Song-yuan, WANG Yong-sheng, YUAN Ya-fei, BA Ya-qi, WANG Li-qiu, HAO Guang-ping, LU An-hui. Hydrophilic carbon monoliths derived from metal-organic frameworks@resorcinol-formaldehyde resin for atmospheric water harvesting. New Carbon Mater., 2022, 37(1): 237-244. doi: 10.1016/S1872-5805(22)60576-6
Citation: TANG Song-yuan, WANG Yong-sheng, YUAN Ya-fei, BA Ya-qi, WANG Li-qiu, HAO Guang-ping, LU An-hui. Hydrophilic carbon monoliths derived from metal-organic frameworks@resorcinol-formaldehyde resin for atmospheric water harvesting. New Carbon Mater., 2022, 37(1): 237-244. doi: 10.1016/S1872-5805(22)60576-6

金属有机框架复合酚醛树脂基整体式亲水炭应用于空气水捕集

doi: 10.1016/S1872-5805(22)60576-6
基金项目: 国家自然科学基金项目(21975037);中央高校基本科研业务费资助(DUT18RC(3)075);辽宁省兴辽英才计划项目资助(XLYC1807205)。
详细信息
    作者简介:

    唐宋元,硕士研究生. E-mail:tsy141@mail.dlut.cn

    通讯作者:

    郝广平,博士,教授. E-mail:guangpinghao@dlut.edu.cn

    陆安慧,博士,教授. E-mail:anhuilu@dlut.edu.cn

  • 中图分类号: TQ028.2

Hydrophilic carbon monoliths derived from metal-organic frameworks@resorcinol-formaldehyde resin for atmospheric water harvesting

Funds: National Natural Science Foundation of China (21975037); Fundamental Research Funds for the Central Universities (DUT18RC(3)075); Liao Ning Revitalization Talents Program (XLYC1807205).
More Information
  • 摘要: 针对全球水资源短缺的问题,空气水捕集被认为是潜在的解决方案。吸附法空气水捕集技术具有装置结构简单、能量效率高、适用范围广等优点,受到广泛关注,其关键在于高性能多孔吸附剂的开发。多孔炭材料具有孔结构丰富、制备成本低等优点。但是常见炭材料的表面疏水,对于低浓度水汽吸附效果不显著。基于此,本文采用局部亲水强化的策略,通过在酚醛树脂交联骨架中穿插引入可衍生为极性位点的金属有机框架炭前驱体,制备了具有强亲水性的整体式多孔炭。进一步将其应用于“三明治”式空气水捕集装置,在40%~80%相对湿度环境中,吸附剂的水汽捕集质量分数可达约20%。这一调控策略也为制备整体式亲水炭材料应用于其他领域提供了新思路。
  • FIG. 1225.  FIG. 1225.

    FIG. 1225..  FIG. 1225.

    图  1  亲水炭材料的制备: (a) 制备示意图, (b) 前驱体和炭材料实物图

    Figure  1.  Fabrication of hydrophilic carbons: (a) Synthesis scheme and (b) digital photos of carbon precursors and products.

    图  2  (a) 炭前驱体和 (b) 炭材料酸洗前后的XRD谱图, (c) N2和 (d) CO2吸脱附等温线(嵌图为对应的孔径分布图), (e) CuBR4的SEM照片,(f) 水蒸汽吸脱附等温线, (g) CuBR1-700与CuBR1-700-AW随时间沉降效果对比图

    Figure  2.  (a) XRD patterns of precursors and (b) carbon materials before and after pickling, (c) Nitrogen and (d) Carbon dioxide adsorption/desorption isotherms (Inset: the corresponding pore size distribution of samples), (e) SEM image of sample CuBR4, (f) Water vapor adsorption/desorption isotherms, (g) Settlement comparison of samples CuBR1-700 and CuBR1-700-AW.

    图  3  不同热解温度与不同MOF含量样品的 (a, c) N2吸脱附等温线和 (b, d) 水蒸汽吸附等温线

    Figure  3.  (a, c) Nitrogen adsorption/desorption isotherms and (b, d) water vapor adsorption for samples of different pyrolysis temperatures and different MOF ratios.

    图  4  不同条件制备的炭材料样品的水蒸汽吸附等温线

    Figure  4.  Water vapor adsorption isotherms of different carbon samples.

    图  5  太阳光照下空气水捕集: (a) 装置结构示意图, (b) 装置实物图,(c) 实验过程中吸附剂层红外图像, (d) 冷凝器处收集的水,(e) 实验中装置不同区域温度变化

    Figure  5.  AWH under sunlight irradiation: (a) Scheme for the structure of AWH apparatus, (b) Digital photo of AWH apparatus, (c) Infrared photo of adsorbent, (d) Collected water on the condenser, (e) Temperature change of parts of AWH apparatus.

    表  1  代表性样品的孔结构参数

    Table  1.   Textural parameters for typical samples.

    Sample IDSBET a/m2·g−1Vtol b/cm3·g−1Smic c/m2·g−1Vmic d/cm3·g−1
    CuBR1-7008261.406530.262
    CuBR1-500-AW6120.634630.195
    CuBR1-700-AW7051.245290.215
    CuBR1-900-AW9461.007490.300
    CuBR2-700-AW7551.205480.221
    CuBR4-700-AW6830.965620.227
    Note: a SBET: Apparent surface area was calculated by multipoint BET method at the relative pressure range of 0.05–0.30; b Vtol: The total pore volume was estimated from the adsorbed amount at a relative pressure p/p0 of 0.98; c Smic: Micropore surface area was calculated by t-Plot method; d Vmic: The micropore volume was calculated using the t-plot method.
    下载: 导出CSV
  • [1] LaPotin A, Zhong Y, Zhang L, et al. Dual-stage atmospheric water harvesting device for scalable solar-driven water production[J]. Joule,2021,5(1):166-182. doi: 10.1016/j.joule.2020.09.008
    [2] Park K, Kim P, Grinthal A, et al. Condensation on slippery asymmetric bumps[J]. Nature,2016,531:78-82. doi: 10.1038/nature16956
    [3] Bagheri F. Performance investigation of atmospheric water harvesting systems[J]. Water Resources and Industry,2018,20:23-28. doi: 10.1016/j.wri.2018.08.001
    [4] Kim H, Rao S R, LaPotin A, et al. Thermodynamic analysis and optimization of adsorption-based atmospheric water harvesting[J]. International Journal of Heat and Mass Transfer,2020,161:120253. doi: 10.1016/j.ijheatmasstransfer.2020.120253
    [5] Kim H, Rao S R, Kapustin E A, et al. Adsorption-based atmospheric water harvesting device for arid climates[J]. Nature Communications,2018,9:1191. doi: 10.1038/s41467-018-03162-7
    [6] Hanikel N, Prevot M S, Yaghi O M. MOF water harvesters[J]. Nature Nanotechnology,2020,15:348-355. doi: 10.1038/s41565-020-0673-x
    [7] 王雯雯, 葛天舒, 代彦军, 等. 太阳能吸附式空气取水研究现状[J]. 太阳能,2020,01:33-46. doi: 10.3969/j.issn.1003-0417.2020.01.005

    Wang W, Ge T, Dai Y, et al. Status of solar-driven sorption-based atmosphere water harvesting[J]. Solar Energy,2020,01:33-46. doi: 10.3969/j.issn.1003-0417.2020.01.005
    [8] Kim H, Yang S, Rao S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight[J]. Science,2017,356:430-434. doi: 10.1126/science.aam8743
    [9] Zhao J, Lai H, Lyu Z, et al. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance[J]. Advanced Materials,2015,27:3541. doi: 10.1002/adma.201500945
    [10] Wang T, Huang H, Li H, et al. Carbon materials for solar-powered seawater desalination[J]. New Carbon Materials,2021,36(4):683-701. doi: 10.1016/S1872-5805(21)60066-5
    [11] Tuo Y, Liu X, Shi L, et al. Searching for efficient defect types in carbon nanofibers to promote supported Pt catalytic activity for dehydrogenation reaction[J]. Catalysis Today,2020,347:87-95. doi: 10.1016/j.cattod.2018.05.055
    [12] Du S, Wang X, Huang J, et al. Ultramicroporous carbons featuring sub-Ångstrom tunable apertures for the selective separation of light hydrocarbon[J]. AlChE Journal,2021,67(9):17285.
    [13] Liu Y, Zhao C, Li Z, et al. Adsorption and desorption of gaseous naphthalene on carbonaceous sorbents: Insights into advantageous pore sizes and morphologies[J]. Journal of Cleaner Production,2021,314:127905. doi: 10.1016/j.jclepro.2021.127905
    [14] Hou Z, Luo M, Yang Y, et al. Algae-based carbons: Design, preparation and recent advances in their use in energy storage, catalysis and adsorption[J]. New Carbon Materials,2021,36(2):278-303. doi: 10.1016/S1872-5805(21)60020-3
    [15] Yuan Y, Wang Y, Zhang X, et al. Wiggling mesopores kinetically amplify the adsorptive separation of propylene/propane[J]. Angewandte Chemie International Edition,2021,60(35):19063-19067. doi: 10.1002/anie.202106523
    [16] Hao G, Zhang Q, Sin M, et al. Design of hierarchically porous carbons with interlinked hydrophilic and hydrophobic surface and their capacitive behavior chemistry of materials[J]. Chemistry of Materials,2016,28:8715. doi: 10.1021/acs.chemmater.6b03964
    [17] 胡友仁, 董晓玲, 侯璐, 等. 二维B、N掺杂炭片的电化学氧化及其赝电容性能[J]. 新型炭材料,2021,36(6):1109-1117. doi: 10.1016/S1872-5805(21)60084-7

    Hu Y, Dong X, Hou L, et al. Electrochemical oxidation of 2D B, N-doped carbon nanosheets for pseudocapacitance property[J]. New Carbon Materials,2021,36(6):1109-1117. doi: 10.1016/S1872-5805(21)60084-7
    [18] Liu W, Jiang H, Yu H. Development of biochar-based functional materials: toward a sustainable platform carbon material[J]. Chemical Reviews,2015,115:12251. doi: 10.1021/acs.chemrev.5b00195
    [19] Hao G, Mondin G, Zheng Z, et al. Unusual ultra-hydrophilic, porous carbon cuboids for atmospheric-water capture[J]. Angewandte Chemie International Edition,2015,54:1941-1945. doi: 10.1002/anie.201409439
    [20] Hao G, Tang C, Zhang E, et al. Thermal exfoliation of layered metal–organic frameworks into ultrahydrophilic graphene stacks and their applications in Li–S batteries[J]. Advanced Materials,2017,29(37):1702829. doi: 10.1002/adma.201702829
    [21] Wang Y, Wu Y, Xu W, et al. Highly efficient and stable bicomponent cobalt oxide-copper catalysts for dehydrogenation[J]. Catalysis Communications,2020,142:106043. doi: 10.1016/j.catcom.2020.106043
    [22] Wang Y, Zhu H, Duan Z, et al. Study on the structure of Cu/ZrO2 catalyst and the formation mechanism of disodium iminodiacetate and sodium glycine[J]. Catalysis Letters,2020,150(4):1111-1120. doi: 10.1007/s10562-019-02989-z
  • 20210265-支撑材料.pdf
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  479
  • HTML全文浏览量:  187
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 修回日期:  2021-12-08
  • 网络出版日期:  2021-12-17
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回