留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis of mesoporous carbon materials from renewable plant polyphenols for environmental and energy applications

FENG You-you CHEN Yi-qing WANG Zheng WEI Jing

冯尤优, 陈颐清, 王政, 魏晶. 基于可再生植物多酚的介孔炭材料合成及其环境和能源应用. 新型炭材料(中英文), 2022, 37(1): 196-222. doi: 10.1016/S1872-5805(22)60577-8
引用本文: 冯尤优, 陈颐清, 王政, 魏晶. 基于可再生植物多酚的介孔炭材料合成及其环境和能源应用. 新型炭材料(中英文), 2022, 37(1): 196-222. doi: 10.1016/S1872-5805(22)60577-8
FENG You-you, CHEN Yi-qing, WANG Zheng, WEI Jing. Synthesis of mesoporous carbon materials from renewable plant polyphenols for environmental and energy applications. New Carbon Mater., 2022, 37(1): 196-222. doi: 10.1016/S1872-5805(22)60577-8
Citation: FENG You-you, CHEN Yi-qing, WANG Zheng, WEI Jing. Synthesis of mesoporous carbon materials from renewable plant polyphenols for environmental and energy applications. New Carbon Mater., 2022, 37(1): 196-222. doi: 10.1016/S1872-5805(22)60577-8

基于可再生植物多酚的介孔炭材料合成及其环境和能源应用

doi: 10.1016/S1872-5805(22)60577-8
基金项目: 国家自然科学基金(21701130);陕西省重点研发计划(2021GY-225);省部共建煤炭高效利用与绿色化工国家重点实验室开放课题资助(2020-KF-42)
详细信息
    通讯作者:

    魏 晶,教授. E-mail:jingwei@xjtu.edu.cn

  • 中图分类号: TQ127.1+1

Synthesis of mesoporous carbon materials from renewable plant polyphenols for environmental and energy applications

Funds: This work was financially supported by the National Natural Science Foundation of China (21701130), Key Research and Development Program of Shaanxi (2021GY-225) and the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2020-KF-42)
More Information
  • 摘要: 介孔炭材料具有高比表面积、可调的组成和孔结构、良好的化学稳定性和导电性,被广泛用于环境、催化、能源等领域。碳源是介孔炭合成的关键。植物多酚,作为一种生物质碳源,具有低价、无毒、可再生的优点。且植物多酚具有黏附性和金属络合能力,被广泛用于合成介孔炭复合材料。尽管该领域已取得巨大进展,但关于植物多酚衍生介孔炭的综述还很少。本文综述了以植物多酚为原料制备的各种介孔炭材料,包括多孔炭泡沫、有序介孔炭、介孔炭球、杂原子掺杂炭和金属/介孔炭复合材料。总结了上述炭材料在环境和能源等领域的应用。该综述将为植物多酚化学和纳米多孔炭材料的研究建立桥梁,促进更多的研究者利用植物多酚作为碳源制备功能介孔炭材料。
  • FIG. 1223.  FIG. 1223.

    FIG. 1223.. 

    Figure  1.  Advantages of plant polyphenols as a mesoporous carbon source.

    Figure  2.  Mesoporous carbon materials derived from plant polyphenols and their applications.

    Figure  3.  (a) The synthesis of tannin-based carbon foam. (b) SEM images of tannin-based carbon foam with low magnification. (c) SEM images of tannin-based carbon foam with high magnification (Reproduced with permission, Copyright 2009, Elsevier)[83].

    Figure  4.  (a) Synthesis of ordered mesoporous carbon materials. (b) TEM images of ordered mesoporous carbon materials. (c) N2 adsorption-desorption isotherms of different mesoporous carbon samples pyrolyzed at three temperatures (Reproduced with permission, Copyright 2016, Royal Society of Chemistry)[72].

    Figure  5.  (a) Synthesis of ordered mesoporous carbon material. (b) TEM images of OMC@F1270.8-800 sample (ratio of tannins and Pluronic F127 of 0.8, pyrolysis temperature of 800 °C). (c) TEM images of Ni-OMC@F1270.8-600 (ratio of tannins and F127 of 0.8, pyrolysis temperature of 600 °C) (Reproduced with permission, Copyright 2016, Nature)[40].

    Figure  6.  (a) Synthesis of RF resin spheres via the extended Stöber method. (b) TEM images of carbon spheres carbonized by the RF colloidal spheres. (c) Dynamic light scattering plot of carbon spheres carbonized by the RF colloidal spheres (Reproduced with permission, Copyright 2011, WILEY)[34].

    Figure  7.  (a) Synthesis of Co-TA crystals derived Co/N-doped carbon. (b) SEM images of Co/N-doped carbon (Reproduced with permission, Copyright 2016, WILEY)[38]. (c) Synthesis of zinc-ellagic acid mesocrystals and derived hierarchically porous carbon. (d) SEM image of EAZn2_2d_C carbon ( molar ratio for EA/Zn of 1∶2) (Reproduced with permission, Copyright 2015, American Chemical Society)[41].

    Figure  8.  (a) Synthesis of metal-phenolic coordination spheres. (b) SEM image of CoII-FeIII-TA spheres. (c) The coordination units of metal-TA with different kinds metal ions. (d) Reaction for the metal-TA coordination under acid conditions and the possible covalent connection for the Co-TA sphere after hydrothermal treatment (Reproduced with permission, Copyright 2018, WILEY)[39].

    Figure  9.  (a) Snthesis of nanoporous carbon spheres carbonized from zinc-phenolic coordination polymers. (b) TEM image for Zn-TA-40% carbonized at 900 °C. (c) TEM image for Zn-TA-40% carbonized at 900 °C under high magnification. (d) N2 sorption isotherms for Zn-TA-40%-900, Zn-TA-50%-900 and Zn-TA-60%-900, respectively (Reproduced with permission, Copyright 2019, Elsevier)[62].

    Figure  10.  (a) Synthesis of magnetic mesoporous carbon nanospheres. (b) TEM image of magnetic mesoporous carbon nanospheres. (c) STEM and elemental mapping of magnetic mesoporous carbon nanospheres (Reproduced with permission, Copyright 2021, Elsevier)[53].

    Figure  11.  (a) Synthesis of PSTA-Co-1000 hollow carbon nanospheres. (b) TEM image of PSTA-Co-1000 nanospheres. (c) HAADF-STEM image of PSTA-Co-1000. Single cobalt atoms were marked with red circles (Reproduced with permission, Copyright 2020, WILEY)[42].

    Figure  12.  (a) Procedures for the preparation of iron carbide/Fe-N-carbon catalysts. (b) Optical photograph and SEM image of FP-Fe-TA-N-850 (Fe-TA coating on filter paper and carbonized at 850 °C). (c) TEM images of FP-Fe-TA-N-850. (d) N2 sorption isotherms for FP-Fe-TA-N-850 and FP-Fe-N-850 (Reproduced with permission, Copyright 2016, Wiley)[37].

    Figure  13.  (a) Synthesis of N, S co-doped porous carbon with Fe single atom nanoclusters (named N, S co-doped CPANI-TA-Fe Fe-SA-NC catalysts). (b) Cnnection of PANI and TA-Fe3+ in the 3D hydrogel. (c) N, S co-doped porous carbon inlaid with Fe-SA-NCs. (d) SEM image of N, S co-doped CPANI-TA-Fe Fe-SA-NC catalysts. (e) Low magnification TEM of N, S co-doped CPANI-TA-Fe Fe-SA-NC catalysts. (f) High magnification TEM of N, S co-doped CPANI-TA-Fe Fe-SA-NC catalysts (Reproduced with permission, Copyright 2020, Royal Society of Chemistry)[110].

    Figure  14.  (a) Ultraviolet and visible spectrophotometry of Rhodamine B (RhB) solutions with various products (inset is an optical photograph of Rhodamine B) (Reproduced with permission, Copyright 2015, American Chemical Society)[41]. (b) CO2 and N2 adsorption isotherms for tannin-based carbon with the Toth model (Reproduced with permission, Copyright 2020, Elsevier)[52]. (c) Adsorption kinetic plots of magnetic mesoporous carbon nanospheres. (d) Selectivity of adsorption capacity (Reproduced with permission, Copyright 2021, Elsevier)[53].

    Figure  15.  (a) LSV of commercial Pt/C, CoTA-700, Co-TA-800, Co-TA-900 and Fe-TA-800 for ORR. (b) LSV curves of Co-TA-800 under different rotating speeds. (c) Electron transfer numbers of Co-TA-800 (inset is the corresponding K-L plots). (d) LSV curves of Co-TA-800 for OER (inset is the corresponding Tafel plots). (Reproduced with permission, Copyright 2016, Wiley)[38].

    Figure  16.  Selective hydrogenation of alkene by Ni-based catalysts (Reproduced with permission, Copyright 2016, Nature)[40].

    Figure  17.  (a) Mechanism of BPA removal by Cu-Fe oxides loaded mesoporous carbon framework. (b) Removal of BPA by different catalysts. (c) Different dosages of Cu-Fe-TA-400 to BPA degradation (Reproduced with permission, Copyright 2021, Elsevier)[115].

    Figure  18.  (a) High electrochemical performance of highly N-, O-doped carbons. (b) Ragone plot calculated in the current density interval of 0.1-12 A g−1 with a two-electrode system in 1 mol L−1 H2SO4 electrolyte. (c) Cycling stability determined from galvanostatic charge-discharge tests at 0.5 A g−1 until 5000 cycles. (d) Nyquist plot of highly N-, O-doped carbons. (e) Frequency response plot of highly N-, O-doped carbons (Reproduced with permission, Copyright 2017, Royal Society of Chemistry)[57].

    Table  1.   Mesoporous carbon materials derived from plant polyphenols.

    SamplesSynthesis
    method
    MorphologyComponent
    (except
    carbon)
    Specific
    surface
    area (m2 g−1)
    Pore
    size
    (nm)
    Type of
    plant
    polyphenol
    ApplicationRefs.
    FP-Fe-TA-N-850Coating method-Fe-N-C16-Tannic acidCatalysts for oxygen-reduction reaction[37]
    Co-TA-800Direct carbonization of mesocrystalsA core-shell Co@C structureCo-N-C1804.8Tannic acidCatalyst for the oxygen reduction and evolution reactions[38]
    Co-Fe-TA-C800Direct carbonization of mesocrystals-Fe-Co-N-C4494.8Tannic acidCatalysts for oxygen-reduction reaction[39]
    Ni-OMCSolid-state synthesisHexagonal cylindrical structuresNi10577.8-The selective hydrogenation of large biomolecules[40]
    EAZn2_7dDirect carbonization of mesocrystalsHierarchically porous carbon particlesZn8424Ellagic acidCO2 and Rhodamine B adsorption[41]
    PSTA-Co-1000Directly pyrolyzed to afford mesoporous hollow carbon nanospheresNanospheresCo-N-P411.600.7Tannic acidCatalysts for the oxygen reduction reaction[42]
    Pd@MC catalystsSoft templating strategyWorm-likePd33012Wattle tanninCatalyst for ligand-free Suzuki-Miyaura couplings[47]
    Co@OMCSolid-state synthesisHexagonal cylindrical structuresCo7004.4Mimosa tanninall-in-one deoxygenation of ketone into alkylbenzene[48]
    CP-Fe-NCoating methodA random pore structureFe-N--Tannic acidHighly reactive Fenton-like catalysts[49]
    N0.8A80F50Soft templating strategyWorm-likeN31516.3Chestnut tanninCO2 adsorption[50]
    TG-C700-4KSoft templating strategyIrregularly-shaped particles of various sizesK1192-Mimosa tanninCO2 adsorption[51]
    MC-Tyrosine-0.1A mechanochemical assembly through coordination polymerization-N6570.76-CO2 adsorption and high capacity for light hydrocarbon and priority for alkyne molecule[52]
    Magnetic mesoporous carbon nanospheresDirect carbonization of mesocrystalsNanospheresFe512.26.7Tannic acidCr(VI) adsorption[53]
    PNDC-2Microwave methodSimilar graphitic flakesN-P4793.29-Supercapacitor[54]
    SiPDC-2Microwave methodIrregular rock like structuresSi-P641.5120.17Quebracho tanninSupercapacitor[55]
    X11Hydrothermally treatedTypical granular structure of carbon gelsN1023.84Mimosa tanninSupercapacitor[56]
    TWHydrothermal carbonisationQuasi-spherical particlesN-O729-Pine tanninSupercapacitor[57]
    GaCHard-templating routeHexagonal cylindrical structuresO10459.16Gallic acidSupercapacitor[58]
    CT2P0W0_60Solid-state synthesisHexagonal cylindrical structures-829-Mimosa tanninCO2 adsorption and supercapacitor[59]
    C3/30Soft templating strategyHexagonal cylindrical structures-115211.93Mimosa tanninSupercapacitor[60]
    A120-CTPWSolid-state synthesisHexagonal cylindrical structures-12151.6Mimosa tanninSupercapacitor[61]
    Zn-TA-40%-900Direct carbonization of mesocrystalsNanoporous carbons spheresZn22215.3Tannic acidBiosensor[62]
    DM2CSolid-state synthesisA thick and homogeneous layer-3820.65Mimosa tanninBiosensor[63]
    A1-CPyrolysisParticles-4209.6Wattle tannin-[64]
    SFG6Solid-state synthesisCarbon foams---Mimosa tanninSeasonal thermal storage applications[65]
    TBC-K3.6PyrolysisDisordered structureK25541.26Pine tanninSupercapacitor[66]
    CH0S100T180_uHydrothermal conditionsSpherical particles-904-Mimosa tanninSupercapacitor[67]
    Tannin-based carbon xerogelsSol gel methodClusterS--Wattle tannin-[68]
    CH-AT1Hydrothermal carbonizationCarbon gel structureN547-Mimosa tanninSupercapacitor[69]
    CH100T180_4AgHydrothermal carbonizationMicrospheresAg618-Mimosa tannin-[70]
    CH-EATHydrothermal carbonizationSpherical particlesN400-Mimosa tannin-[71]
    PTW_2_900°CPyrolysis--7185.8Mimosa tannin-[72]
    ASFT5.5Sol gel methodFilamentous structure-40730Wattle tanninThe insulating properties[73]
    IS2M-1-400A self-assembly approachHexagonal cylindrical structures-5349.4Wattle tannin-[74]
    Carbon meringuesWhippingFoams-400-Mimosa tanninThermal insulators[75]
    CarboHIPEEmulsion-templatingSpherical-400-Mimosa tanninThermal insulators[76]
    OMCSurfactant-water-assisted mechanochemical mesostructurationHexagonal cylindrical structures-4876Mimosa tanninThe selective separation of di-branched C6 isomers[77]
    NCMHydrothermal carbonizationSpherical particlesN500-Wattle tannin-[78]
    OMCSoft templating strategyHexagonal cylindrical structures-7920.6Mimosa tanninTetracycline (TC) adsorption[79]
    CFAT-C---7230.7-Catalysts for oxygen-reduction reaction[80]
    下载: 导出CSV
  • [1] Li X H, Antonietti M. Metal nanoparticles at mesoporous n-doped carbons and carbon nitrides: Functional mott-schottky heterojunctions for catalysis[J]. Chemical Society Reviews,2013,42(16):6593-6604. doi: 10.1039/c3cs60067j
    [2] Ma T Y, Liu L, Yuan Z Y. Direct synthesis of ordered mesoporous carbons[J]. Chemical Society Reviews,2013,42(9):3977-4003. doi: 10.1039/C2CS35301F
    [3] Deng Y H, Wei J, Sun Z K, et al. Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers[J]. Chemical Society Reviews,2013,42(9):4054-4070. doi: 10.1039/C2CS35426H
    [4] Li W, Liu J, Zhao D Y. Mesoporous materials for energy conversion and storage devices[J]. Nature Reviews Materials,2016,1(6):16023. doi: 10.1038/natrevmats.2016.23
    [5] Liu J, Qiao S Z, Hu Q H, et al. Magnetic nanocomposites with mesoporous structures: Synthesis and applications[J]. Small,2011,7(4):425-443. doi: 10.1002/smll.201001402
    [6] Zhou Z, Hartmann M. Progress in enzyme immobilization in ordered mesoporous materials and related applications[J]. Chemical Society Reviews,2013,42(9):3894-3912. doi: 10.1039/c3cs60059a
    [7] Chen Q, Tan X F, Liu Y G, et al. Biomass-derived porous graphitic carbon materials for energy and environmental applications[J]. Journal of Materials Chemistry A,2020,8(12):5773-5811. doi: 10.1039/C9TA11618D
    [8] Li C, Li Q, Kaneti Y V, et al. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems[J]. Chemical Society Reviews,2020,49(14):4681-4736. doi: 10.1039/D0CS00021C
    [9] Wang H, Shao Y, Mei S L, et al. Polymer-derived heteroatom-doped porous carbon materials[J]. Chemical Reviews,2020,120(17):9363-9419. doi: 10.1021/acs.chemrev.0c00080
    [10] Yin J, Zhang W, Alhebshi N A, et al. Synthesis strategies of porous carbon for supercapacitor applications[J]. Small Methods,2020,4(3):1900853. doi: 10.1002/smtd.201900853
    [11] Hu B, Wang K, Wu L H, et al. Engineering carbon materials from the hydrothermal carbonization process of biomass[J]. Advvanced Materials,2010,22(7):813-828. doi: 10.1002/adma.200902812
    [12] Braghiroli F L, Fierro V, Szczurek A, et al. Hydrothermal treatment of tannin: A route to porous metal oxides and metal/carbon hybrid materials[J]. Inorganics,2017,5(1):7. doi: 10.3390/inorganics5010007
    [13] Roberts A D, Li X, Zhang H F. Porous carbon spheres and monoliths: Morphology control, pore size tuning and their applications as Li-ion battery anode materials[J]. Chemical Society Reviews,2014,43(13):4341-4356. doi: 10.1039/C4CS00071D
    [14] Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials[J]. Advanced Materials,2006,18(16):2073-2094. doi: 10.1002/adma.200501576
    [15] Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J]. Nature,2001,412(6843):169-172. doi: 10.1038/35084046
    [16] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. Journal of Physical Chemistry B,1999,103(37):7743-7746. doi: 10.1021/jp991673a
    [17] Liang C D, Li Z J, Dai S. Mesoporous carbon materials: Synthesis and modification[J]. Angewandte Chemie-International Edition,2008,47(20):3696-3717. doi: 10.1002/anie.200702046
    [18] Liang C D, Hong K L, Guiochon G A, et al. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers[J]. Angewandte Chemie-International Edition,2004,43(43):5785-5789. doi: 10.1002/anie.200461051
    [19] Meng Y, Gu D, Zhang F Q, et al. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation[J]. Angewandte Chemie-International Edition,2005,44(43):7053-7059. doi: 10.1002/anie.200501561
    [20] Zhang F Q, Meng Y, Gu D, et al. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia $ \stackrel{-}{3} $d bicontinuous cubic structure[J]. Journal of the American Chemical Society,2005,127(39):13508-13509. doi: 10.1021/ja0545721
    [21] Wei J, Zhou D D, Sun Z K, et al. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors[J]. Advanced Functional Materials,2013,23(18):2322-2328. doi: 10.1002/adfm.201202764
    [22] Cai Z X, Wang Z L, Kim J, et al. Hollow functional materials derived from metal-organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications[J]. Advanced Materials,2019,31(11):1804903. doi: 10.1002/adma.201804903
    [23] Yu L, Wu H B, Lou X W D. Self-templated formation of hollow structures for electrochemical energy applications[J]. Accounts of Chemical Research,2017,50(2):293-301. doi: 10.1021/acs.accounts.6b00480
    [24] Yu Y F, Shi Y M, Zhang B. Synergetic transformation of solid inorganic-organic hybrids into advanced nanomaterials for catalytic water splitting[J]. Accounts of Chemical Research,2018,51(7):1711-1721. doi: 10.1021/acs.accounts.8b00193
    [25] Li W, Zhang F, Dou Y Q, et al. A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes[J]. Advanced Energy Materials,2011,1(3):382-386. doi: 10.1002/aenm.201000096
    [26] Dang S, Zhu Q L, Xu Q. Nanomaterials derived from metal-organic frameworks[J]. Nature Reviews Materials,2018,3(1):17075. doi: 10.1038/natrevmats.2017.75
    [27] Wang C H, Kim J H, Tang J, et al. New strategies for novel MOF-derived carbon materials based on nanoarchitectures[J]. Chem,2020,6(1):19-40. doi: 10.1016/j.chempr.2019.09.005
    [28] Deng J, Li M M, Wang Y. Biomass-derived carbon: Synthesis and applications in energy storage and conversion[J]. Green Chemistry,2016,18(18):4824-4854. doi: 10.1039/C6GC01172A
    [29] Matsagar B M, Yang R X, Dutta S, et al. Recent progress in the development of biomass-derived nitrogen-doped porous carbon[J]. Journal of Materials Chemistry A,2021,9(7):3703-3728. doi: 10.1039/D0TA09706C
    [30] Singh G, Lakhi K S, Sil S, et al. Biomass derived porous carbon for CO2 capture[J]. Carbon,2019,148:164-186. doi: 10.1016/j.carbon.2019.03.050
    [31] Han Y Y, Lin Z X, Zhou J J, et al. Polyphenol-mediated assembly of proteins for engineering functional materials[J]. Angewandte Chemie-International Edition,2020,59(36):15618-15625. doi: 10.1002/anie.202002089
    [32] Quideau S, Deffieux D, Douat-Casassus C, et al. Plant polyphenols: Chemical properties, biological activities, and synthesis[J]. Angewandte Chemie-International Edition,2011,50(3):586-621. doi: 10.1002/anie.201000044
    [33] Fang Y, Gu D, Zou Y, et al. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size[J]. Angewandte Chemie-International Edition,2010,49(43):7987-7991. doi: 10.1002/anie.201002849
    [34] Liu J, Qiao S Z, Liu H, et al. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres[J]. Angewandte Chemie-International Edition,2011,50(26):5947-5951. doi: 10.1002/anie.201102011
    [35] Liu J, Yang T Y, Wang D W, et al. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres[J]. Nature Communications,2013,4:2798. doi: 10.1038/ncomms3798
    [36] Rahim M A, Kristufek S L, Pan S J, et al. Phenolic building blocks for the assembly of functional materials[J]. Angewandte Chemie-International Edition,2019,58(7):1904-1927. doi: 10.1002/anie.201807804
    [37] Wei J, Liang Y, Hu Y X, et al. A versatile iron-tannin-framework ink coating strategy to fabricate biomass-derived iron carbide/Fe-N-carbon catalysts for efficient oxygen reduction[J]. Angewandte Chemie-International Edition,2016,55(4):1355-1359. doi: 10.1002/anie.201509024
    [38] Wei J, Liang Y, Hu Y X, et al. Hydrothermal synthesis of metal-polyphenol coordination crystals and their derived metal/N-doped carbon composites for oxygen electrocatalysis[J]. Angewandte Chemie-International Edition,2016,55(40):12470-12474. doi: 10.1002/anie.201606327
    [39] Wei J, Wang G, Chen F, et al. Sol-gel synthesis of metal-phenolic coordination spheres and their derived carbon composites[J]. Angewandte Chemie-International Edition,2018,57(31):9838-9843. doi: 10.1002/anie.201805781
    [40] Zhang P F, Wang L, Yang S Z, et al. Solid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly through coordination cross-linking[J]. Nature Communications,2017,8:15020. doi: 10.1038/ncomms15020
    [41] Yang S J, Antonietti M, Fechler N. Self-assembly of metal phenolic mesocrystals and morphosynthetic transformation toward hierarchically porous carbons[J]. Journal of the American Chemical Society,2015,137(25):8269-8673. doi: 10.1021/jacs.5b04500
    [42] Wei X, Zheng D, Zhao M, et al. Cross-linked polyphosphazene hollow nanosphere-derived N/P-doped porous carbon with single nonprecious metal atoms for the oxygen reduction reaction[J]. Angewandte Chemie-International Edition,2020,59(34):14639-14646. doi: 10.1002/anie.202006175
    [43] Zhai Y P, Dou Y Q, Zhao D Y, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials,2011,23(42):4828-4850. doi: 10.1002/adma.201100984
    [44] Dutta S, Bhaumik A, Wu K C W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications[J]. Energy & Environmental Science,2014,7(11):3574-3592.
    [45] Liu Z H, Du Y, Zhang P F, et al. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon[J]. Matter,2021,4(10):3161-3194. doi: 10.1016/j.matt.2021.07.019
    [46] Zhang J, Zhang N, Tack F M G, et al. Modification of ordered mesoporous carbon for removal of environmental contaminants from aqueous phase: A review[J]. Journal of Hazardous Materials,2021,418:126266. doi: 10.1016/j.jhazmat.2021.126266
    [47] Peter C, Derible A, Becht J M, et al. Biosourced mesoporous carbon with embedded palladium nanoparticles by a one pot soft-template synthesis: Application to suzuki reactions[J]. Journal of Materials Chemistry A,2015,3(23):12297-12306. doi: 10.1039/C4TA06478J
    [48] Zhang P F, Chen N Q, Chen D, et al. Ultra-stable and high-cobalt-loaded cobalt@ordered mesoporous carbon catalysts: All-in-one deoxygenation of ketone into alkylbenzene[J]. ChemCatChem,2018,10(15):3299-3304. doi: 10.1002/cctc.201800358
    [49] Yao Y J, Yu M J, Yin H Y, et al. Tannic acid-Fe coordination derived Fe/N-doped carbon hybrids for catalytic oxidation processes[J]. Applied Surface Science,2019,489:44-54. doi: 10.1016/j.apsusc.2019.05.275
    [50] Nelson K M, Mahurin S M, Mayes R T, et al. Preparation and CO2 adsorption properties of soft-templated mesoporous carbons derived from chestnut tannin precursors[J]. Microporous and Mesoporous Materials,2016,222:94-103. doi: 10.1016/j.micromeso.2015.09.050
    [51] Phuriragpitikhon J, Ghimire P, Jaroniec M. Tannin-derived micro-mesoporous carbons prepared by one-step activation with potassium oxalate and CO2[J]. Journal of Colloid and Interface Science,2020,558:55-67. doi: 10.1016/j.jcis.2019.09.071
    [52] Zhao J H, Shan W D, Zhang P F, et al. Solvent-free and mechanochemical synthesis of N-doped mesoporous carbon from tannin and related gas sorption property[J]. Chemical Engineering Journal,2020,381:122579. doi: 10.1016/j.cej.2019.122579
    [53] Wang G, Gao G, Yang S J, et al. Magnetic mesoporous carbon nanospheres from renewable plant phenol for efficient hexavalent chromium removal[J]. Microporous and Mesoporous Materials,2021,310:110623. doi: 10.1016/j.micromeso.2020.110623
    [54] Nasini U B, Bairi V G, Ramasahayam S K, et al. Phosphorous and nitrogen dual heteroatom doped mesoporous carbon synthesized via microwave method for supercapacitor application[J]. Journal of Power Sources,2014,250:257-265. doi: 10.1016/j.jpowsour.2013.11.014
    [55] Ramasahayam S K, Nasini U B, Shaikh A U, et al. Novel tannin-based Si, P co-doped carbon for supercapacitor applications[J]. Journal of Power Sources,2015,275:835-844. doi: 10.1016/j.jpowsour.2014.11.020
    [56] Braghiroli F L, Fierro V, Szczurek A, et al. Hydrothermally treated aminated tannin as precursor of N-doped carbon gels for supercapacitors[J]. Carbon,2015,90:63-74. doi: 10.1016/j.carbon.2015.03.038
    [57] Sanchez-Sanchez A, Izquierdo M T, Mathieu S, et al. Outstanding electrochemical performance of highly N- and O-doped carbons derived from pine tannin[J]. Green Chemistry,2017,19(11):2653-2665. doi: 10.1039/C7GC00491E
    [58] Sanchez-Sanchez A, Izquierdo M T, Ghanbaja J, et al. Excellent electrochemical performances of nanocast ordered mesoporous carbons based on tannin-related polyphenols as supercapacitor electrodes[J]. Journal of Power Sources,2017,344:15-24. doi: 10.1016/j.jpowsour.2017.01.099
    [59] Castro-Gutiérrez J, Sanchez-Sanchez A, Ghanbaja J, et al. Synthesis of perfectly ordered mesoporous carbons by water-assisted mechanochemical self-assembly of tannin[J]. Green Chemistry,2018,20(22):5123-5132. doi: 10.1039/C8GC02295J
    [60] Sanchez-Sanchez A, Izquierdo M T, Medjahdi G, et al. Ordered mesoporous carbons obtained by soft-templating of tannin in mild conditions[J]. Microporous and Mesoporous Materials,2018,270:127-139. doi: 10.1016/j.micromeso.2018.05.017
    [61] Castro-Gutiérrez J, Díez N, Sevilla M, et al. High-rate capability of supercapacitors based on tannin-derived ordered mesoporous carbons[J]. ACS Sustainable Chemistry & Engineering,2019,7(21):17627-17635.
    [62] Wang G, Qin J, Zhao Y X, et al. Nanoporous carbon spheres derived from metal-phenolic coordination polymers for supercapacitor and biosensor[J]. Journal of Colloid and Interface Science,2019,544:241-248. doi: 10.1016/j.jcis.2019.03.001
    [63] El Mohajir A, Castro-Gutiérrez J, Canevesi R L S, et al. Novel porous carbon material for the detection of traces of volatile organic compounds in indoor air[J]. ACS Applied Materials & Interfaces,2021,13(33):40088-40097.
    [64] Kraiwattanawong K, Mukai S R, Tamon H, et al. Preparation of carbon cryogels from wattle tannin and furfural[J]. Microporous and Mesoporous Materials,2007,98(1-3):258-266. doi: 10.1016/j.micromeso.2006.09.007
    [65] Jana P, Fierro V, Pizzi A, et al. Thermal conductivity improvement of composite carbon foams based on tannin-based disordered carbon matrix and graphite fillers[J]. Materials & Design,2015,83:635-643.
    [66] Perez-Rodriguez S, Pinto O, Izquierdo M T, et al. Upgrading of pine tannin biochars as electrochemical capacitor electrodes[J]. Journal of Colloid and Interface Science,2021,601:863-876. doi: 10.1016/j.jcis.2021.05.162
    [67] Sanchez-Sanchez A, Braghiroli F L, Izquierdo M T, et al. Synthesis and properties of carbon microspheres based on tannin-sucrose mixtures treated in hydrothermal conditions[J]. Industrial Crops and Products,2020,154:112564. doi: 10.1016/j.indcrop.2020.112564
    [68] Rey-Raap N, Szczurek A, Fierro V, et al. Advances in tailoring the porosity of tannin-based carbon xerogels[J]. Industrial Crops and Products,2016,82:100-106. doi: 10.1016/j.indcrop.2015.12.001
    [69] Braghiroli F L, Fierro V, Szczurek A, et al. Electrochemical performances of hydrothermal tannin-based carbons doped with nitrogen[J]. Industrial Crops and Products,2015,70:332-340. doi: 10.1016/j.indcrop.2015.03.046
    [70] Braghiroli F L, Fierro V, Parmentier J, et al. Hydrothermal carbons produced from tannin by modification of the reaction medium: Addition of H+ and Ag+[J]. Industrial Crops and Products,2015,77:364-374. doi: 10.1016/j.indcrop.2015.09.010
    [71] Braghiroli F L, Fierro V, Izquierdo M T, et al. High surface - highly N-doped carbons from hydrothermally treated tannin[J]. Industrial Crops and Products,2015,66:282-290. doi: 10.1016/j.indcrop.2014.11.022
    [72] Braghiroli F L, Fierro V, Parmentier J, et al. Easy and eco-friendly synthesis of ordered mesoporous carbons by self-assembly of tannin with a block copolymer[J]. Green Chemistry,2016,18(11):3265-3271. doi: 10.1039/C5GC02788H
    [73] Amaral-Labat G, Grishechko L, Szczurek A, et al. Highly mesoporous organic aerogels derived from soy and tannin[J]. Green Chemistry,2012,14(11):3099-3106. doi: 10.1039/c2gc36263e
    [74] Schlienger S, Graff A-L, Celzard A, et al. Direct synthesis of ordered mesoporous polymer and carbon materials by a biosourced precursor[J]. Green Chemistry,2012,14(2):313-316. doi: 10.1039/C2GC16160E
    [75] Szczurek A, Fierro V, Pizzi A, et al. Carbon meringues derived from flavonoid tannins[J]. Carbon,2013,65:214-227. doi: 10.1016/j.carbon.2013.08.017
    [76] Szczurek A, Fierro V, Pizzi A, et al. Emulsion-templated porous carbon monoliths derived from tannins[J]. Carbon,2014,74:352-362. doi: 10.1016/j.carbon.2014.03.047
    [77] Castro-Gutiérrez J, Jardim E D, Canevesi R L S, et al. Molecular sieving of linear and branched C6 alkanes by tannin-derived carbons[J]. Carbon,2021,174:413-422. doi: 10.1016/j.carbon.2020.12.061
    [78] Braghiroli F L, Fierro V, Izquierdo M T, et al. Nitrogen-doped carbon materials produced from hydrothermally treated tannin[J]. Carbon,2012,50(15):5411-5420. doi: 10.1016/j.carbon.2012.07.027
    [79] Canevesi R L S, Sanchez-Sanchez A, Gadonneix P, et al. Hierarchical tannin-derived carbons as efficient tetracycline adsorbents[J]. Applied Surface Science,2020,533:147428. doi: 10.1016/j.apsusc.2020.147428
    [80] Seredych M, Szczurek A, Fierro V, et al. Electrochemical reduction of oxygen on hydrophobic ultramicroporous polyhipe carbon[J]. ACS Catalysis,2016,6(8):5618-5628. doi: 10.1021/acscatal.6b01497
    [81] Wang G, Yang S J, Cao L, et al. Engineering mesoporous semiconducting metal oxides from metal-organic frameworks for gas sensing[J]. Coordination Chemistry Reviews,2021,445:214086. doi: 10.1016/j.ccr.2021.214086
    [82] Wei J, Sun Z K, Luo W, et al. New insight into the synthesis of large-pore ordered mesoporous materials[J]. Journal of the American Chemical Society,2017,139(5):1706-1713. doi: 10.1021/jacs.6b11411
    [83] Tondi G, Fierro V, Pizzi A, et al. Tannin-based carbon foams[J]. Carbon,2009,47(6):1480-1492. doi: 10.1016/j.carbon.2009.01.041
    [84] Celzard A, Tondi G, Lacroix D, et al. Radiative properties of tannin-based, glasslike, carbon foams[J]. Carbon,2012,50(11):4102-4113. doi: 10.1016/j.carbon.2012.04.058
    [85] Jana P, Fierro V, Pizzi A, et al. Biomass-derived, thermally conducting, carbon foams for seasonal thermal storage[J]. Biomass & Bioenergy,2014,67:312-318.
    [86] Letellier M, Macutkevic J, Paddubskaya A, et al. Microwave dielectric properties of tannin-based carbon foams[J]. Ferroelectrics,2015,479(1):119-126. doi: 10.1080/00150193.2015.1012036
    [87] Li X, Basso M C, Braghiroli F L, et al. Tailoring the structure of cellular vitreous carbon foams[J]. Carbon,2012,50(5):2026-2036. doi: 10.1016/j.carbon.2012.01.004
    [88] Grishechko L I, Amaral-Labat G, Fierro V, et al. Biosourced, highly porous, carbon xerogel microspheres[J]. RSC Advances,2016,6(70):65698-65708. doi: 10.1039/C6RA09462G
    [89] Kraiwattanawong K, Mukai S R, Tamon H, et al. Control of mesoporous properties of carbon cryogels prepared from wattle tannin and furfural[J]. Journal of Porous Materials,2007,15(6):695-703.
    [90] Arenillas A, Angel Menendez J, Reichenauer G, et al. Organic and Carbon Gels Derived from Biosourced Polyphenols [M]. In: Organic and Carbon Gels. Springer, Cham. 2019: 27-85.
    [91] Amaral-Labat G, Szczurek A, Fierro V, et al. Pore structure and electrochemical performances of tannin-based carbon cryogels[J]. Biomass & Bioenergy,2012,39:274-282.
    [92] Szczurek A, Amaral-Labat G, Fierro V, et al. The use of tannin to prepare carbon gels. Part i: Carbon aerogels[J]. Carbon,2011,49(8):2773-2784. doi: 10.1016/j.carbon.2011.03.007
    [93] Szczurek A, Amaral-Labat G, Fierro V, et al. The use of tannin to prepare carbon gels. Part ii. Carbon cryogels[J]. Carbon,2011,49(8):2785-2794. doi: 10.1016/j.carbon.2011.03.005
    [94] Szczurek A, Amaral-Labat G, Fierro V, et al. New families of carbon gels based on natural resources [C]. Journal of Physics Conference Series, 2013, 416: 012022.
    [95] Wei J, Hu Y X, Liang Y, et al. Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: Synthesis and application for efficient oxygen reduction[J]. Advanced Functional Materials,2015,25(36):5768-5777. doi: 10.1002/adfm.201502311
    [96] Wang L, Zhao J H, Zhang P F, et al. Mechanochemical synthesis of ruthenium cluster@ordered mesoporous carbon catalysts by synergetic dual templates[J]. Chemistry,2019,25(36):8494-8498. doi: 10.1002/chem.201901714
    [97] Fang Y, Lv Y Y, Che R C, et al. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: Synthesis and efficient lithium ion storage[J]. Journal of the American Chemical Society,2013,135(4):1524-1530. doi: 10.1021/ja310849c
    [98] Fang Y, Lv Y Y, Gong F, et al. Interface tension-induced synthesis of monodispersed mesoporous carbon hemispheres[J]. Journal of the American Chemical Society,2015,137(8):2808-2811. doi: 10.1021/jacs.5b01522
    [99] Fang Y, Lv Y Y, Tang J, et al. Growth of single-layered two-dimensional mesoporous polymer/carbon films by self-assembly of monomicelles at the interfaces of various substrates[J]. Angewandte Chemie-International Edition,2015,54(29):8425-8429. doi: 10.1002/anie.201502845
    [100] Gu D, Bongard H, Deng Y H, et al. An aqueous emulsion route to synthesize mesoporous carbon vesicles and their nanocomposites[J]. Advanced Materials,2010,22(7):833-837. doi: 10.1002/adma.200902550
    [101] Zhang P F, Qiao Z A, Dai S. Recent advances in carbon nanospheres: Synthetic routes and applications[J]. Chemical Communication,2015,51(45):9246-9256. doi: 10.1039/C5CC01759A
    [102] Du J, Liu L, Hu Z P, et al. Order mesoporous carbon spheres with precise tunable large pore size by encapsulated self-activation strategy[J]. Advanced Functional Materials,2018,28(33):1802332. doi: 10.1002/adfm.201802332
    [103] Du J, Liu L, Yu Y F, et al. Confined pyrolysis for direct conversion of solid resin spheres into yolk-shell carbon spheres for supercapacitor[J]. Journal of Materials Chemistry A,2019,7(3):1038-1044. doi: 10.1039/C8TA10266J
    [104] Ai K L, Liu Y L, Ruan C P, et al. Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: A versatile platform for highly efficient oxygen-reduction catalysts[J]. Advanced Materials,2013,25(7):998-1003. doi: 10.1002/adma.201203923
    [105] Ejima H, Richardson J J, Caruso F. Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces[J]. Nano Today,2017,12:136-148. doi: 10.1016/j.nantod.2016.12.012
    [106] Rahim M A, Bjornmalm M, Bertleff-Zieschang N, et al. Multiligand metal-phenolic assembly from green tea infusions[J]. ACS Applied Materials & Interfaces,2018,10(9):7632-7639.
    [107] Ejima H, Richardson J J, Liang K, et al. One-step assembly of coordination complexes for versatile film and particle engineering[J]. Science,2013,341(6142):154-157. doi: 10.1126/science.1237265
    [108] Guo J L, Ping Y, Ejima H, et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks[J]. Angewandte Chemie-International Edition,2014,53(22):5546-5551. doi: 10.1002/anie.201311136
    [109] Hao L, Liu W H, Wang C, et al. Novel porous Fe3O4@C nanocomposite from magnetic metal-phenolic networks for the extraction of chlorophenols from environmental samples[J]. Talanta,2019,194:673-679. doi: 10.1016/j.talanta.2018.10.096
    [110] Li H, Du K, Xiang C S, et al. Controlled chelation between tannic acid and Fe precursors to obtain N, S co-doped carbon with high density Fe-single atom-nanoclusters for highly efficient oxygen reduction reaction in Zn-air batteries[J]. Journal of Materials Chemistry A,2020,8(33):17136-17149. doi: 10.1039/D0TA04210B
    [111] Wu Z X, Zhao D Y. Ordered mesoporous materials as adsorbents[J]. Chemical Communications,2011,47(12):3332-3338. doi: 10.1039/c0cc04909c
    [112] Borghei M, Lehtonen J, Liu L, et al. Advanced biomass-derived electrocatalysts for the oxygen reduction reaction[J]. Advanced Materials,2018,30(24):1703691. doi: 10.1002/adma.201703691
    [113] Bairi V G, Nasini U B, Ramasahayam S K, et al. Electrocatalytic and supercapacitor performance of phosphorous and nitrogen co-doped porous carbons synthesized from aminated tannins[J]. Electrochimica Acta,2015,182:987-994. doi: 10.1016/j.electacta.2015.10.011
    [114] Peter C, Derible A, Parmentier J, et al. A green direct preparation of a magnetic ordered mesoporous carbon catalyst containing Fe-Pd alloys: Application to Suzuki-Miyaura reactions in propane-1, 2-diol[J]. New Journal of Chemistry,2017,41(12):4931-4936. doi: 10.1039/C7NJ00030H
    [115] Wang G, An W D, Zhang Y, et al. Mesoporous carbon framework supported cu-fe oxides as efficient peroxymonosulfate catalyst for sustained water remediation[J]. Chemical Engineering Journal,2022,430:133060. doi: 10.1016/j.cej.2021.133060
    [116] Wang J, Nie P, Ding B, et al. Biomass derived carbon for energy storage devices[J]. Journal of Materials Chemistry A,2017,5(6):2411-2428. doi: 10.1039/C6TA08742F
    [117] Castro-Gutiérrez J, Celzard A, Fierro V. Energy storage in supercapacitors: Focus on tannin-derived carbon electrodes[J]. Frontiers in Materials,2020,7:217. doi: 10.3389/fmats.2020.00217
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  1774
  • HTML全文浏览量:  902
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-25
  • 修回日期:  2021-12-17
  • 网络出版日期:  2021-12-20
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回