留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Porous carbons for use in electro-Fenton and Fenton-like reactions

PAN Zhe-lun QIAN Xu-fang

潘哲伦, 钱旭芳. 多孔炭:一种在电芬顿与类芬顿反应中受青睐的材料. 新型炭材料(中英文), 2022, 37(1): 180-195. doi: 10.1016/S1872-5805(22)60578-X
引用本文: 潘哲伦, 钱旭芳. 多孔炭:一种在电芬顿与类芬顿反应中受青睐的材料. 新型炭材料(中英文), 2022, 37(1): 180-195. doi: 10.1016/S1872-5805(22)60578-X
PAN Zhe-lun, QIAN Xu-fang. Porous carbons for use in electro-Fenton and Fenton-like reactions. New Carbon Mater., 2022, 37(1): 180-195. doi: 10.1016/S1872-5805(22)60578-X
Citation: PAN Zhe-lun, QIAN Xu-fang. Porous carbons for use in electro-Fenton and Fenton-like reactions. New Carbon Mater., 2022, 37(1): 180-195. doi: 10.1016/S1872-5805(22)60578-X

多孔炭:一种在电芬顿与类芬顿反应中受青睐的材料

doi: 10.1016/S1872-5805(22)60578-X
基金项目: 国家自然科学基金(21777097);国家科技部基金(2018YFC1802001)
详细信息
    通讯作者:

    钱旭芳,副教授. E-mail:qianxufang@sjtu.edu.cn

  • 中图分类号: TQ127.1+1

Porous carbons for use in electro-Fenton and Fenton-like reactions

Funds: This work was supported by Natural Science Foundation of China (21777097), the Ministry of Science and Technology of China (2018YFC1802001), IJLRC-Ministry of Education
More Information
  • 摘要: 类芬顿反应,因其能够克服传统芬顿反应工作pH范围较窄,易产生大量铁泥的局限而受到了大量关注。尽管炭材料在无驱动力时,同过氧化氢的反应活性不佳,多孔炭材料在类芬顿反应中依然得到了广泛应用。在各种研究中,这些多孔炭材料扮演了多种不同角色,诸如吸附剂、金属材料载体、以及过氧化氢选择性电合成的催化剂。本综述中,讨论了近年里多孔材料在上述情况的研究进展。由于成熟的合成工艺,很高的化学及热稳定性以及多样的功能,多孔炭材料已成为一种应用广泛的材料。在类芬顿过程中,更是有助于电子与物质的转移,防止金属泄露,并较大地提升了反应效率。
  • FIG. 1222.  FIG. 1222.

    FIG. 1222.. 

    Figure  1.  Mechanistic illustration of the adsorption for tetracycline on the magnetic Fe/porous carbon hybrid and the regeneration process, reproduced with permission[20].

    Figure  2.  Metal particles with higher dispersion condition showed better effect, reproduced with permission[22, 45, 46].

    Figure  3.  A mesoporous carbon supported α-FeOOH catalyst under irradiation, reproduced with permission[55].

    Figure  4.  Functions of iron-containing metal-organic framework and chloroquine in nanocatalytic cancer therapy, reproduced with permission[61].

    Figure  5.  A porous carbon promoting oxygen reduction reaction as well as OH generation with electricity driving force, reproduced with permission[70].

    Figure  6.  Different routines optimizing porous carbons in Electron-Fenton, reproduced with permission[79, 89-93].

    Figure  7.  Self-powered system for contaminant degradation, reproduced with permission[95].

  • [1] Chen L, Ma J, Li X, et al. Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles[J]. Environmental Science & Technology,2011,45(9):3925-3930.
    [2] Pignatello J J, Oliveros E, MacKay A. Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science and Technology,2006,36(1):1-84. doi: 10.1080/10643380500326564
    [3] Babuponnusami A, Muthukumar K. A review on Fenton and improvements to the Fenton process for wastewater treatment[J]. Journal of Environmental Chemical Engineering,2014,2(1):557-572. doi: 10.1016/j.jece.2013.10.011
    [4] Bokare A D, Choi W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J]. Journal of Hazardous Materials,2014,275:121-135. doi: 10.1016/j.jhazmat.2014.04.054
    [5] Munoz M, de Pedro Z M, Casas J A, et al. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – A review[J]. Applied Catalysis B:Environmental,2015,176-177:249-265. doi: 10.1016/j.apcatb.2015.04.003
    [6] Yang X J, Xu X M, Xu J, et al. Iron oxychloride (FeOCl): An efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants[J]. Journal of the American Chemical Society,2013,135(43):16058-16061. doi: 10.1021/ja409130c
    [7] Park J H, Wang J J, Xiao R, et al. Degradation of orange G by Fenton-like reaction with Fe-impregnated biochar catalyst[J]. Bioresour Technol,2018,249:368-376. doi: 10.1016/j.biortech.2017.10.030
    [8] Pugazhenthiran N, Sathishkumar P, Murugesan S, et al. Effective degradation of acid orange 10 by catalytic ozonation in the presence of Au-Bi2O3 nanoparticles[J]. Chemical Engineering Journal,2011,168(3):1227-1233. doi: 10.1016/j.cej.2011.02.020
    [9] Joseph D L, HervÉ G. Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: Mechanism and kinetic modeling [J]. Environmental Science & Technology, 1999, 33 (16) : 2726–2732.
    [10] Jiang C, Garg S, Waite T D. Iron redox transformations in the presence of natural organic matter: Effect of calcium[J]. Environmental Science & Technology,2017,51(18):10413-10422.
    [11] Ma S, Tong M, Yuan S, et al. Responses of the microbial community structure in Fe(II)-bearing sediments to oxygenation: The role of reactive oxygen species[J]. ACS Earth and Space Chemistry,2019,3(5):738-747. doi: 10.1021/acsearthspacechem.8b00189
    [12] Wang L, Cao M, Ai Z, et al. Design of a highly efficient and wide pH electro-Fenton oxidation system with molecular oxygen activated by ferrous-tetrapolyphosphate complex[J]. Environmental Science & Technology,2015,49(5):3032-3039.
    [13] Stein A, Wang Z, Fierke M A. Functionalization of porous carbon materials with designed pore architecture[J]. Advanced Materials,2009,21(3):265-293. doi: 10.1002/adma.200801492
    [14] Ribeiro R S, Silva A M T, Figueiredo J L, et al. Catalytic wet peroxide oxidation: A route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants. A review[J]. Applied Catalysis B:Environmental,2016,187:428-460. doi: 10.1016/j.apcatb.2016.01.033
    [15] Duan X, Sun H, Wang S. Metal-free carbocatalysis in advanced oxidation reactions[J]. Accounts of Chemical Research,2018,51(3):678-687. doi: 10.1021/acs.accounts.7b00535
    [16] Wu Y, Chen X, Han Y, et al. Highly efficient utilization of nano-Fe(0) embedded in mesoporous carbon for activation of peroxydisulfate[J]. Environmental Science & Technology,2019,53(15):9081-9090.
    [17] Yan X, Yue D, Guo C, et al. Effective removal of chlorinated organic pollutants by bimetallic iron-nickel sulfide activation of peroxydisulfate[J]. Chinese Chemical Letters,2020,31(6):1535-1539. doi: 10.1016/j.cclet.2019.11.003
    [18] Ravula S, Larm N E, Liu Y, et al. Ionothermal synthesis of magnetically-retrievable mesoporous carbons from alkyne-appended ionic liquids and demonstration of their use in selective dye removal[J]. New Journal of Chemistry,2018,42(3):1979-1986. doi: 10.1039/C7NJ03849F
    [19] Xiong Y, Che L, Fu Z, et al. Preparation of CuxO/C composite derived from Cu-MOFs as Fenton-like catalyst by two-step calcination strategy[J]. Advanced Powder Technology,2018,29(6):1331-1338. doi: 10.1016/j.apt.2018.02.028
    [20] Gu W, Huang X, Tian Y, et al. High-efficiency adsorption of tetracycline by cooperation of carbon and iron in a magnetic Fe/porous carbon hybrid with effective Fenton regeneration[J]. Applied Surface Science,2021, 538:147813.
    [21] Karthikeyan S, Boopathy R, Sekaran G. In situ generation of hydroxyl radical by cobalt oxide supported porous carbon enhance removal of refractory organics in tannery dyeing wastewater[J]. Journal of Colloid and Interface Science,2015,448:163-174. doi: 10.1016/j.jcis.2015.01.066
    [22] Liu D, Li X, Ma J, et al. Metal-organic framework modified pine needle-derived N, O-doped magnetic porous carbon embedded with Au nanoparticles for adsorption and catalytic degradation of tetracycline[J]. Journal of Cleaner Production,2021, 278:123575.
    [23] Vinu A, Miyahara M, Sivamurugan V, et al. Large pore cage type mesoporous carbon, carbon nanocage: A superior adsorbent for biomaterials [J]. Journal of Materials Chemistry, 2005, 15: 5122-5127
    [24] Coughlin R W. Carbon as adsorbent and catalyst[J]. Industrial & Engineering Chemistry Product Research and Development,1969,8(1):12-23.
    [25] A Vinu, C Streb, V Murugesan, et al. Adsorption of cytochrome C on new mesoporous carbon molecular sieves[J]. The Journal of Physical Chemistry B,2003,107(33):8297-8299. doi: 10.1021/jp035246f
    [26] Zhou L, Shao Y, Liu J, et al. Preparation and characterization of magnetic porous carbon microspheres for removal of methylene blue by a heterogeneous Fenton reaction[J]. ACS Applied Materials & Interfaces,2014,6(10):7275-7285.
    [27] Zhou L, Ma J, Zhang H, et al. Fabrication of magnetic carbon composites from peanut shells and its application as a heterogeneous Fenton catalyst in removal of methylene blue[J]. Applied Surface Science,2015,324:490-498. doi: 10.1016/j.apsusc.2014.10.152
    [28] Ma J, Zhou L, Dan W, et al. Novel magnetic porous carbon spheres derived from chelating resin as a heterogeneous Fenton catalyst for the removal of methylene blue from aqueous solution[J]. Journal of Colloid and Interface Science,2015,446:298-306. doi: 10.1016/j.jcis.2015.01.036
    [29] Duan F, Yang Y, Li Y, et al. Heterogeneous Fenton-like degradation of 4-chlorophenol using iron/ordered mesoporous carbon catalyst[J]. Journal of Environmental Sciences,2014,26(5):1171-1179. doi: 10.1016/S1001-0742(13)60532-X
    [30] Itoi H, Nishihara H, Kogure T, et al. Three-dimensionally arrayed and mutually connected 1.2-nm nanopores for high-performance electric double layer capacitor[J]. Journal of the American Chemical Society,2011,133(5):1165-1167. doi: 10.1021/ja108315p
    [31] Choi B G, Yang M, Hong W H, et al. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities[J]. ACS Nano,2012,6(5):4020-4028. doi: 10.1021/nn3003345
    [32] Navalon S, Alvaro M, Garcia H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites[J]. Applied Catalysis B: Environmental,2010,99(1-2):1-26. doi: 10.1016/j.apcatb.2010.07.006
    [33] Hartmann M, Kullmann S, Keller H. Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials [J]. Journal of Materials Chemistry, 2010, 20 : 9002-9017
    [34] Huang H, Cui Y, Liu M, et al. Facile preparation of nitrogen and FeSx codoped porous carbon with high catalytic activity under alkaline condition[J]. Colloid and Interface Science Communications,2020, 37:100291.
    [35] Wang J, Liu C, Qi J, et al. Enhanced heterogeneous Fenton-like systems based on highly dispersed Fe(0)-Fe2O3 nanoparticles embedded ordered mesoporous carbon composite catalyst [J]. Environmental Pollution, 2018, 243 (Pt B): 1068-1077.
    [36] Costa R C C, Moura F C C, Ardisson J D, et al. Highly active heterogeneous Fenton-like systems based on FeO/Fe3O4 composites prepared by controlled reduction of iron oxides[J]. Applied Catalysis B:Environmental,2008,83(1-2):131-139. doi: 10.1016/j.apcatb.2008.01.039
    [37] Yang W, Hong P, Yang D, et al. Enhanced Fenton-like degradation of sulfadiazine by single atom iron materials fixed on nitrogen-doped porous carbon[J]. Journal of Colloid and Interface Science,2021,597:56-65. doi: 10.1016/j.jcis.2021.03.168
    [38] Soler J, Garcia-Ripoll A, Hayek N, et al. Effect of inorganic ions on the solar detoxification of water polluted with pesticides[J]. Water Researchearch,2009,43(18):4441-4450. doi: 10.1016/j.watres.2009.07.011
    [39] Lee H J, Lee H, Lee C. Degradation of diclofenac and carbamazepine by the copper(II)-catalyzed dark and photo-assisted Fenton-like systems[J]. Chemical Engineering Journal,2014,245:258-264. doi: 10.1016/j.cej.2014.02.037
    [40] Meng Q, Du L, Yang J, et al. Well-dispersed small-sized MnOx nanoparticles and porous carbon composites for effective methylene blue degradation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2018,548:142-149.
    [41] Dai C, Tian X, Feng S, et al. Insight into bicarbonate involved efficient heterogeneous Fenton-like degradation of sulfamethoxazole over a CuFeO2 based composite under alkaline conditions[J]. Environmental Science-Nano,2021,8(5):1296-1307. doi: 10.1039/D1EN00055A
    [42] Liu P, Zhong D, Xu Y, et al. Co/Fe co-doped porous graphite carbon derived from metal organic framework for microelectrolysis-Fenton catalytic degradation of Rhodamine B [J]. Journal of Environmental Chemical Engineering, 2021, 9 (5): 105924.
    [43] Yang Z, Yu A, Shan C, et al. Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes[J]. Water Research,2018,137:37-46. doi: 10.1016/j.watres.2018.03.006
    [44] Qin Y, Zhang L, An T. Hydrothermal carbon-mediated Fenton-like reaction mechanism in the degradation of alachlor: Direct electron transfer from hydrothermal carbon to Fe(III)[J]. ACS Applied Materials & Interfaces,2017,9(20):17115-17124.
    [45] Li W, Wu X, Li S, et al. Magnetic porous Fe3O4/carbon octahedra derived from iron-based metal-organic framework as heterogeneous Fenton-like catalyst[J]. Applied Surface Science,2018,436:252-262. doi: 10.1016/j.apsusc.2017.11.151
    [46] Wu F, Zhang Q, Zhang M, et al. Hollow porous carbon coated FeS2-based nanocatalysts for multimodal imaging-guided photothermal, starvation, and triple-enhanced chemodynamic therapy of cancer[J]. ACS Applied Materials & Interfaces,2020,12(9):10142-10155.
    [47] Enric Brillas, Ignasi Sirés, Mehme A O. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry[J]. Chemical Reviews,2009,109(12):6570-6631. doi: 10.1021/cr900136g
    [48] Giannakis S, Polo López M I, Spuhler D, et al. Solar disinfection is an augmentable, in situ -generated photo-Fenton reaction—Part 1: A review of the mechanisms and the fundamental aspects of the process[J]. Applied Catalysis B: Environmental,2016,199:199-223. doi: 10.1016/j.apcatb.2016.06.009
    [49] Hu Z T, Chen Z, Goei R, et al. Magnetically recyclable Bi/Fe-based hierarchical nanostructures via self-assembly for environmental decontamination[J]. Nanoscale,2016,8(25):12736-12746. doi: 10.1039/C6NR03677E
    [50] Hu Z T, Lua S K, Lim T T. Cuboid-like Bi2Fe4O9/Ag with graphene-wrapping tribrid composite with superior capability for environmental decontamination: Nanoscaled material design and visible-light-driven multifunctional catalyst[J]. ACS Sustainable Chemistry & Engineering,2015,3(11):2726-2736.
    [51] Isari A A, Payan A, Fattahi M, et al. Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies[J]. Applied Surface Science,2018,462:549-564. doi: 10.1016/j.apsusc.2018.08.133
    [52] Li Q, Kong H, Li P, et al. Photo-Fenton degradation of amoxicillin via magnetic TiO2-graphene oxide-Fe3O4 composite with a submerged magnetic separation membrane photocatalytic reactor (SMSMPR)[J]. Journal of Hazardous Materials,2019,373:437-446. doi: 10.1016/j.jhazmat.2019.03.066
    [53] Wang F, Yu X, Ge M, et al. One-step synthesis of TiO2/γ-Fe2O3/GO nanocomposites for visible light-driven degradation of ciprofloxacin[J]. Chemical Engineering Journal,2020, 384:123381.
    [54] Liu Q, Guo Y, Chen Z, et al. Constructing a novel ternary Fe(III)/graphene/g-C3N4 composite photocatalyst with enhanced visible-light driven photocatalytic activity via interfacial charge transfer effect[J]. Applied Catalysis B: Environmental,2016,183:231-241. doi: 10.1016/j.apcatb.2015.10.054
    [55] Qian X, Ren M, Zhu Y, et al. Visible light assisted heterogeneous Fenton-like degradation of organic pollutant via alpha-FeOOH/mesoporous carbon composites[J]. Environmental Science & Technology,2017,51(7):3993-4000.
    [56] Qian X, Ren M, Fang M, et al. Hydrophilic mesoporous carbon as iron(III)/(II) electron shuttle for visible light enhanced Fenton-like degradation of organic pollutants[J]. Applied Catalysis B: Environmental,2018,231:108-114. doi: 10.1016/j.apcatb.2018.03.016
    [57] Gong Q, Liu Y, Dang Z. Core-shell structured Fe3O4@GO@MIL-100(Fe) magnetic nanoparticles as heterogeneous photo-Fenton catalyst for 2, 4-dichlorophenol degradation under visible light[J]. Journal of Hazardous Materials,2019,371:677-686. doi: 10.1016/j.jhazmat.2019.03.019
    [58] Li Y, Ouyang S, Xu H, et al. Constructing solid-gas-interfacial Fenton reaction over alkalinized-C3N4 photocatalyst to achieve apparent quantum yield of 49% at 420 nm[J]. Journal of the American Chemical Society,2016,138(40):13289-13297. doi: 10.1021/jacs.6b07272
    [59] Shiraishi Y, Kanazawa S, Sugano Y, et al. Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light[J]. ACS Catalysis,2014,4(3):774-780. doi: 10.1021/cs401208c
    [60] Hou W C, Wang Y S. Photocatalytic generation of H2O2 by graphene oxide in organic electron donor-free condition under sunlight[J]. ACS Sustainable Chemistry & Engineering,2017,5(4):2994-3001.
    [61] Yang B, Ding L, Yao H, et al. A metal-organic framework (MOF) Fenton nanoagent-enabled nanocatalytic cancer therapy in synergy with autophagy inhibition[J]. Advanced Materials,2020,32(12):e1907152. doi: 10.1002/adma.201907152
    [62] Tsai J H, Chiang H M, Huang G Y, et al. Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers[J]. Journal of Hazardous Materials,2008,154(1-3):1183-91. doi: 10.1016/j.jhazmat.2007.11.065
    [63] Yang J, Zhang Q, Zhang F, et al. Three-dimensional hierarchical porous sludge-derived carbon supported on silicon carbide foams as effective and stable Fenton-like catalyst for odorous methyl mercaptan elimination[J]. Journal of Hazardous Materials,2018,358:136-144. doi: 10.1016/j.jhazmat.2018.06.045
    [64] Xie M, Tang J, Fang G, et al. Biomass Schiff base polymer-derived N-doped porous carbon embedded with CoO nanodots for adsorption and catalytic degradation of chlorophenol by peroxymonosulfate[J]. Journal of Hazardous Materials,2020,384:121345. doi: 10.1016/j.jhazmat.2019.121345
    [65] Amelia S, Sediawan W B, Prasetyo I, et al. Role of the pore structure of Fe/C catalysts on heterogeneous Fenton oxidation [J]. Journal of Environmental Chemical Engineering, 2020, 8 (1): 102921.
    [66] Espinosa J C, Navalon S, Primo A, et al. Graphenes as efficient metal-free Fenton catalysts[J]. Chemistry,2015,21(34):11966-11971. doi: 10.1002/chem.201501533
    [67] Navalon S, Dhakshinamoorthy A, Alvaro M, et al. Active sites on graphene-based materials as metal-free catalysts[J]. Chemical Society Reviews,2017,46(15):4501-4529. doi: 10.1039/C7CS00156H
    [68] Hu Z, Shen Z, Yu J C. Converting carbohydrates to carbon-based photocatalysts for environmental treatment[J]. Environmental Science & Technology,2017,51(12):7076-7083.
    [69] Yu M, Dong H, Liu K, et al. Porous carbon monoliths for electrochemical removal of aqueous herbicides by "one-stop" catalysis of oxygen reduction and H2O2 activation[J]. Journal of Hazardous Materials,2021,414:125592. doi: 10.1016/j.jhazmat.2021.125592
    [70] Wang C, Gu Y, Wu S, et al. Construction of a microchannel electrochemical reactor with a monolithic porous-carbon cathode for adsorption and degradation of organic pollutants in several minutes of retention time[J]. Environmental Science & Technology,2020,54(3):1920-1928.
    [71] Chen S, Chen Z, Siahrostami S, et al. Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide[J]. ACS Sustainable Chemistry & Engineering,2017,6(1):311-317.
    [72] Park J, Nabae Y, Hayakawa T, et al. Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon[J]. ACS Catalysis,2014,4(10):3749-3754. doi: 10.1021/cs5008206
    [73] Ganiyu S O, de Araújo M J G, de Araújo Costa E C T, et al. Design of highly efficient porous carbon foam cathode for electro-Fenton degradation of antimicrobial sulfanilamide[J]. Applied Catalysis B:Environmental,2021, 283:119652.
    [74] Gao Y, Zhu W, Li Y, et al. Novel porous carbon felt cathode modified by cyclic voltammetric electrodeposited polypyrrole and anthraquinone 2-sulfonate for an efficient electro-Fenton process[J]. International Journal of Hydrogen Energy,2021,46(15):9707-9717. doi: 10.1016/j.ijhydene.2020.04.197
    [75] Su H, Chu Y, Miao B. Degreasing cotton used as pore-creating agent to prepare hydrophobic and porous carbon cathode for the electro-Fenton system: Enhanced H2O2 generation and RhB degradation[J]. Environmental Science and Pollution Research International,2021,28:33570-33582. doi: 10.1007/s11356-021-12965-z
    [76] Chen J, Wan J, Gong Y, et al. Effective electro-Fenton-like process for phenol degradation on cerium oxide hollow spheres encapsulated in porous carbon cathode derived from skimmed cotton[J]. Chemosphere,2021,270:128661. doi: 10.1016/j.chemosphere.2020.128661
    [77] Sun C, Chen T, Huang Q, et al. Biochar cathode: Reinforcing electro-Fenton pathway against four-electron reduction by controlled carbonization and surface chemistry[J]. Science of the Total Environment,2021,754:142136. doi: 10.1016/j.scitotenv.2020.142136
    [78] Sun Y, Li Y, Mi X, et al. Evaluation of ciprofloxacin destruction between ordered mesoporous and bulk NiMn2O4/CF cathode: efficient mineralization in a heterogeneous electro-Fenton-like process[J]. Environmental Science-Nano,2019,6(2):661-671. doi: 10.1039/C8EN01279B
    [79] Cao P, Quan X, Zhao K, et al. Selective electrochemical H2O2 generation and activation on a bifunctional catalyst for heterogeneous electro-Fenton catalysis[J]. Journal of Hazardous Materials,2020,382:121102. doi: 10.1016/j.jhazmat.2019.121102
    [80] Zhang Q, Chen S, Wang H, et al. Exquisite enzyme-Fenton biomimetic catalysts for hydroxyl radical production by mimicking an enzyme cascade[J]. ACS Applied Materials & Interfaces,2018,10(10):8666-8675.
    [81] Fellinger T P, Hasché F, Strasser P, et al. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide[J]. Journal of the American Chemical Society,2012,134(9):4072. doi: 10.1021/ja300038p
    [82] Perazzolo V, Durante C, Pilot R, et al. Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide[J]. Carbon,2015,95:949-963. doi: 10.1016/j.carbon.2015.09.002
    [83] Zhao K, Su Y, Quan X, et al. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon[J]. Journal of Catalysis,2018,357:118-126. doi: 10.1016/j.jcat.2017.11.008
    [84] Chen E, Bevilacqua M, Tavagnacco C, et al. High surface area N/O co-doped carbon materials: Selective electrocatalysts for O2 reduction to H2O2[J]. Catalysis Today,2020,356:132-140. doi: 10.1016/j.cattod.2019.06.034
    [85] Lu Z, Chen G, Siahrostami S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials [J]. Nature Catalysis, 2018, 1: 156–162.
    [86] Kim H W, Ross M B, Kornienko N, et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts[J]. Nature Catalysis,2018,1(4):282-290. doi: 10.1038/s41929-018-0044-2
    [87] Chen C, Han H, Liu X, et al. Nitrogen, phosphorus, sulfur tri-doped porous carbon derived from covalent polymer with versatile performances in supercapacitor, oxygen reduction reaction and electro-fenton degradation[J]. Microporous and Mesoporous Materials,2021, 325:117376.
    [88] Hu X, Deng Y, Zhou J, et al. N- and O self-doped biomass porous carbon cathode in an electro-Fenton system for Chloramphenicol degradation[J]. Separation and Purification Technology,2020:251.
    [89] Zhao K, Quan X, Chen S, et al. Enhanced electro-Fenton performance by fluorine-doped porous carbon for removal of organic pollutants in wastewater[J]. Chemical engineering journal (Lausanne, Switzerland:1996),2018,354:606-615.
    [90] Deng F, Olvera-Vargas H, Garcia-Rodriguez O, et al. Waste-wood-derived biochar cathode and its application in electro-Fenton for sulfathiazole treatment at alkaline pH with pyrophosphate electrolyte[J]. Journal of Hazardous Materials,2019,377:249-258. doi: 10.1016/j.jhazmat.2019.05.077
    [91] Zhao H, Qian L, Guan X, et al. Continuous bulk FeCuC aerogel with ultradispersed metal nanoparticles: an efficient 3D heterogeneous electro-Fenton cathode over a wide range of pH 3-9[J]. Environmental Science & Technology,2016,50(10):5225-33.
    [92] Qi H, Sun X, Sun Z. Porous graphite felt electrode with catalytic defects for enhanced degradation of pollutants by electro-Fenton process[J]. Chemical Engineering Journal,2021, 403:126270.
    [93] Zhu Y, Tian M, Chen Y, et al. 3D printed triboelectric nanogenerator self-powered electro-Fenton degradation of orange IV and crystal violet system using N-doped biomass carbon catalyst with tunable catalytic activity[J]. Nano Energy,2021, 83:105824.
    [94] Chen Y, Wang M, Tian M, et al. An innovative electro-fenton degradation system self-powered by triboelectric nanogenerator using biomass-derived carbon materials as cathode catalyst[J]. Nano Energy,2017,42:314-321. doi: 10.1016/j.nanoen.2017.10.060
    [95] Chen C, Zhu Y, Tian M, et al. Sustainable self-powered electro-Fenton degradation using N, S co-doped porous carbon catalyst fabricated with adsorption-pyrolysis-doping strategy[J]. Nano Energy,2021:81.
    [96] Wang Z L, Wang A C. On the origin of contact-electrification[J]. Materials Today,2019,30:34-51. doi: 10.1016/j.mattod.2019.05.016
    [97] Zhu Y, Chen C, Tian M, et al. Self-powered electro-Fenton degradation system using oxygen-containing functional groups-rich biomass-derived carbon catalyst driven by 3D printed flexible triboelectric nanogenerator[J]. Nano Energy,2021, 83:105720.
  • 加载中
图(8)
计量
  • 文章访问数:  900
  • HTML全文浏览量:  648
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 修回日期:  2021-12-17
  • 网络出版日期:  2021-12-20
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回