留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and synthesis of carbon-based nanomaterials for electrochemical energy storage

ZHU Cheng-yu YE You-wen GUO Xia CHENG Fei

朱成玉, 叶幼文, 郭霞, 程菲. 不同维度碳基纳米材料的设计与合成及其在电化学储能中的应用. 新型炭材料(中英文), 2022, 37(1): 59-92. doi: 10.1016/S1872-5805(22)60579-1
引用本文: 朱成玉, 叶幼文, 郭霞, 程菲. 不同维度碳基纳米材料的设计与合成及其在电化学储能中的应用. 新型炭材料(中英文), 2022, 37(1): 59-92. doi: 10.1016/S1872-5805(22)60579-1
ZHU Cheng-yu, YE You-wen, GUO Xia, CHENG Fei. Design and synthesis of carbon-based nanomaterials for electrochemical energy storage. New Carbon Mater., 2022, 37(1): 59-92. doi: 10.1016/S1872-5805(22)60579-1
Citation: ZHU Cheng-yu, YE You-wen, GUO Xia, CHENG Fei. Design and synthesis of carbon-based nanomaterials for electrochemical energy storage. New Carbon Mater., 2022, 37(1): 59-92. doi: 10.1016/S1872-5805(22)60579-1

不同维度碳基纳米材料的设计与合成及其在电化学储能中的应用

doi: 10.1016/S1872-5805(22)60579-1
详细信息
    通讯作者:

    程 菲,副教授. E-mail:fcheng@hebut.edu.cn

  • 中图分类号: TQ127.1+1

Design and synthesis of carbon-based nanomaterials for electrochemical energy storage

Funds: This work was supported by the National Natural Science Foundation of China (21805067), the State Key Laboratory of Fine Chemicals, Dalian University of Technology (KF 2008), and Science and Natural Science Foundation of Hebei Province (B2021202043)
More Information
  • 摘要: 随着环境的恶化和能源危机,太阳能、风能等可持续能源的存储和利用变得迫在眉睫。电化学储能(EES)装置作为有效存储这些新兴能源的手段,受到越来越多的关注。电极材料对EES的性能至关重要,碳基纳米材料因其独特而突出的优势成为极有前途的电极材料。电极材料的结构设计和可控合成决定了EES的电化学性能。围绕碳基纳米材料独特而突出的优势,本文综述和讨论了不同维度碳基材料的研究进展,并介绍了近年来碳基材料在不同储能器件中的应用。这有助于深入理解材料不同维度结构与电化学特性之间的关系,为应用于EES器件性能优异的碳基纳米材料的设计和合成提供了视角和参考。
  • FIG. 1217.  FIG. 1217.

    FIG. 1217.. 

    Figure  1.  Organization structure diagram of the research content in the Review.

    Figure  2.  (a) Schematic illustration of the SnOx quantum dots@carbon hybrid, (b) cycling performances and the Coulombic efficiency at 0.2 A g−1, (c) rate performances of SQD@C hybrids[48] (Reprinted with permission by copyright 2021, ACS). (d) Schematic illustration of fabrication route of Si@void@C composites, (e-g) SEM and TEM images of Si@void@C composites[53] (Reprinted with permission by copyright 2018, Elsevier).

    Figure  3.  (a) Schematic illustration for the preparation of MoC/C NWs from organic-inorganic hybrid MoOx/p-methylaniline[59] (Reprinted with permission by copyright 2018, Elsevier). (b) Schematic illustration for the fabricatin of MOF-structured ZnCo2O4/C composite nanofibers (inset:electrochemical performances), (c) and (d) SEM images of H-ZCO/C[61] (Reprinted with permission by copyright 2020, ACS). (e) Schematic illustration of the fabrication process for the 3D hierarchical α-MnS@GSC/GF and the construction process for the nanowire templated graphene scrolls, (f) SEM images of α-MnS@GSC/GF, (g) and (h) TEM images of α-MnS@GSC/GF[62] (Reprinted with permission by copyright 2019, Elsevier).

    Figure  4.  (a) The synthesis and assembly process of 2D/2D SnSe2/graphene heterostructure[65] (Reprinted with permission by copyright 2020, Elsevier). (b) Schematic illustration of the evolution process of MSCs[66] (Reprinted with permission by copyright 2018, ACS). (c) Schematic diagram of the preparation process about the porous SnO2-δ/C nanosheet arrays[68] (Reprinted with permission by copyright 2018, Elsevier). (d) and (e) SEM images of MnO/C[69] (Reprinted with permission by copyright 2016, ACS).

    Figure  5.  (a) Synthesis principle for 3D coralloid carbon structures with large pore volume and thin walls for the immobilization of LiFePO4 nanospheres [74] (Reprinted with permission by copyright 2013, Elsevier). (b) Schematic illustration of the synthesis strategy for the hierarchical α-MnSe/C structures [77] (Reprinted with permission by copyright 2019, ACS). (c) Scheme of the preparation process for the 3DOP Ge@N-C [78] (Reprinted with permission by copyright 2018, Wiley).

    Figure  6.  (a) Schematic illustration of the synthesis routes for the Co3O4 solid sphere, R-Co3O4 hollow sphere, and R-Co3O4/C hybrid hollow sphere [82] (Reprinted with permission by copyright 2018, Wiley). (b) Schematic illustration of the synthesis process of Bi@Void@C [84] (Reprinted with permission by copyright 2020, ACS).

    Figure  7.  (a) Schematic illustration of the synthesis of bullet-like Cu9S5@NC hollow particles[86] (Reprinted with permission by copyright 2019, Wiley). (b) Schematic illustration of the fabrication process of Fe7S8/N-CNFs[87] (Reprinted with permission by copyright 2021, Wiley).

    Figure  8.  (a) Schematic illustration of synthesis procedure for PbTe/BC nanosheets[91] (Reprinted with permission by copyright 2020, Elsevier). (b) Schematic description of the BP/rGO synthesis, (c) cycling performance of the BP/rGO anodes at charge and discharge current densities of 1 and 40 A/g in black and red, Respectively[93].

    Figure  9.  (a) Schematic illustration of synthetic procedure of freestanding CFG electrode[98] (Reprinted with permission by copyright 2019, Wiley). (b) Illustration of the synthetic process of hierarchical SnS@NC microboxes: (I) phase transformation, (II) PDA coating, and (III) thermal annealing in N2[100] (Reprinted with permission by copyright 2019, Wiley).

    Figure  10.  (a) Schematic illustration of the synthesis of NP-CNPs[103] ( Reprinted with permission by copyright 2018, ACS). (b) Schematic illustration of electrospray-assisted strategy for fabricating Sb@CSN material[104] (Reprinted with permission by copyright 2019, RSC). (c) Schematic illustration of synthesis for HGCNs[106] (Reprinted with permission by copyright 2020, ACS).

    Figure  11.  (a) Fabrication of NCNF, NCNF@CoOx, and NCNF@CS, cross section drawn and the corresponding structure of NCNF, NCNF@CoOx, and NCNF@CS[109] (Reprinted with permission by copyright 2018, Wiley). (b) Rate performance at various current densities of NCFs[111] (Reprinted with permission by copyright 2018, Elsevier).

    Figure  12.  (a) Schematic illustration of the synthesis process of T-Co3Se4, T-Co3Se4/GO, and N-Co3Se4/GO[117] (Reprinted with permission by copyright 2021, ACS). (b) Fabrication of tri-doped carbon for PIBs from AHF@COF by thermal treatment[118] (Reprinted with permission by copyright 2020, Wiley).

    Figure  13.  (a) Schematic diagram of preparation of CNFF[121] (Reprinted with permission by copyright 2020, Elsevier). (b) Schematic illustration of the synthesis process of N-HPC[122] (Reprinted with permission by copyright 2019, ACS). (c) Schematic diagram of the preparation process of 3DOM Cu9S5@C[123] (Reprinted with permission by copyright 2021, ACS).

    Figure  14.  (a) Schematic diagram illustrating the preparation procedure of MVN@NC NWs[141] (Reprinted with permission by copyright 2015, Wiley). (b) Construction processes of nanowire templated graphene scrolls. The green dots represent the precursor of the nanowire template and then formation into the nanowire. The gray sheets andscroll represent the reduced graphene oxide (rGO)[142] (Reprinted with permission by copyright 2013, ACS).

    Figure  15.  (a) Schematic illustration of the preparation of the NiCo2O4@rGO hybrid nanostructure on Ni foam[143] (Reprinted with permission by copyright 2017, RSC). (b) Schematic of the preparation processes of nickel sulfide materials[145] (Reprinted with permission by copyright 2017, Elsevier).

    Figure  16.  (a) Schematic illustration of the dip-coating process of RGO-F and the RGO-F/PANI composites[147] (Reprinted with permission by copyright 2014, RSC). (b) Schematic diagram illustrating all steps involved in the synthesis of 3D GF CNTs/MoO3 hybrid film and ASCs device[149] (Reprinted with permission by copyright 2018, Elsevier).

  • [1] Yang Z J, Zhang J L, Kintner-Meyer M C, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews,2011,111:3577-3613. doi: 10.1021/cr100290v
    [2] Koohi-Fayegh S, Rosen M A. A review of energy storage types, applications and recent developments[J]. Journal of Energy Storage,2020,27:101047.
    [3] Bi H H, He X J, Yang L, et al. Interconnected carbon nanocapsules with high N/S co-doping as stable and high-capacity potassium-ion battery anode[J]. Journal of Energy Chemistry,2022,66:195-204. doi: 10.1016/j.jechem.2021.08.016
    [4] Li X R, Jiang Y H, Wang P Z, et al. Effect of the oxygen functional groups of activated carbon on its electrochemical performance for supercapacitors[J]. New Carbon Materials,2020,35:232-243. doi: 10.1016/S1872-5805(20)60487-5
    [5] Wei F, He X J, Ma L B, et al. 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors[J]. Nanomicro Letters,2020,12:82.
    [6] Chiang Y M. Building a better battery[J]. Science,2010,330:1485. doi: 10.1126/science.1198591
    [7] Kousksou T, Bruel P, Jamil A, et al. Energy storage: Applications and challenges[J]. Solar Energy Materials and Solar Cells,2014,120:59-80. doi: 10.1016/j.solmat.2013.08.015
    [8] Li Z, Wang C, Chen X Z, et al. MoOx nanoparticles anchored on N-doped porous carbon as Li-ion battery[J]. Chemical Engineering Journal,2020,381:122588. doi: 10.1016/j.cej.2019.122588
    [9] Men S, Lin J J, Zhou Y, et al. N-doped porous carbon wrapped FeSe2 nanoframework prepared by spray drying: A potential large-scale production technique for high-performance anode materials of sodium ion batteries[J]. Journal of Power Sources,2021,485:229310. doi: 10.1016/j.jpowsour.2020.229310
    [10] Han K, Zhao W, Yu Q Y, et al. Marcasite-FeS2@carbon nanodots anchored on 3D cell-like graphenic matrix for high-rate and ultrastable potassium ion storage[J]. Journal of Power Sources,2020,469:228429. doi: 10.1016/j.jpowsour.2020.228429
    [11] Li J E, Wang Y W, Xu W N, et al. Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors[J]. Nano Energy,2019,57:379-387. doi: 10.1016/j.nanoen.2018.12.061
    [12] Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices[J]. Advanced Materials,2008,20:2878-2887. doi: 10.1002/adma.200800627
    [13] Meng J S, Guo H C, Niu C J, et al. Advances in structure and property optimizations of battery electrode materials[J]. Joule,2017,1:522-547. doi: 10.1016/j.joule.2017.08.001
    [14] Ni J F, Li Y. Carbon nanomaterials in different dimensions for electrochemical energy storage[J]. Advanced Energy Materials,2016,6:1600278. doi: 10.1002/aenm.201600278
    [15] Kong D B, Gao Y, Xiao Z C, et al. Rational design of carbon-rich materials for energy storage and conversion[J]. Advanced Materials,2019,31:1804973. doi: 10.1002/adma.201804973
    [16] Hu C, Lin Y, Connell J W, et al. Carbon-based metal-free catalysts for energy storage and environmental remediation[J]. Advanced Materials,2019,31:1806128. doi: 10.1002/adma.201806128
    [17] Huan X, Yin Z Y, Wu S X, et al. Graphene-based materials: Synthesis, characterization, properties, and applications[J]. Small,2011,7:1876-1902. doi: 10.1002/smll.201002009
    [18] Zhu J, Yang D, Yin Z, et al. Graphene and graphene-based materials for energy storage applications[J]. Small,2014,10:3480-3498. doi: 10.1002/smll.201303202
    [19] Gu D, Li W, Wang F, et al. Controllable synthesis of mesoporous peapod-like Co3O4@carbon nanotube arrays for high-performance lithium-ion batteries[J]. Angewandte Chemie. International Ed. in English,2015,54:7060-7064. doi: 10.1002/anie.201501475
    [20] Huang X, Yu H, Tan H T, et al. Carbon nanotube-encapsulated noble metal nanoparticle hybrid as a cathode material for Li-oxygen batteries[J]. Advanced Functional Materials,2014,24:6516-6523. doi: 10.1002/adfm.201400921
    [21] Ya Hai, Wang M, Liu X W, et al. MoS2 embedded in 3D interconnected carbon nanofiber film as a free-standing anode for sodium-ion batteries[J]. Nano Research,2018,11:3844-3853. doi: 10.1007/s12274-017-1958-8
    [22] Xia L, Wang S Q, Liu G X, et al. Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life[J]. Small,2016,12:853-859. doi: 10.1002/smll.201503315
    [23] Wei W F, Cui X W, Chen W X, et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes[J]. Chemical Society Reviews,2011,40:1697-1721. doi: 10.1039/C0CS00127A
    [24] Zhao Y, Wang L Y, Sougrati M T, et al. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes[J]. Advanced Energy Materials,2017,7:1601424. doi: 10.1002/aenm.201601424
    [25] Hoheisel T N, Schrettl S, Szilluweit R, et al. Nanostructured carbonaceous materials from molecular precursors[J]. Angewandte Chemie International Edition,2010,49:6496-6515. doi: 10.1002/anie.200907180
    [26] Wen Z H, Li J H. Hierarchically structured carbon nanocomposites as electrode materials for electrochemical energy storage, conversion and biosensor systems[J]. Journal of Materials Chemistry,2009,19:8707-8713. doi: 10.1039/b907509g
    [27] Nishihara H, Kyotani T. Templated nanocarbons for energy storage[J]. Advanced Materials,2012,24:4473-4498. doi: 10.1002/adma.201201715
    [28] Dai L, Chang D W, Baek J B, et al. Carbon nanomaterials for advanced energy conversion and storage[J]. Small,2012,8:1130-1166. doi: 10.1002/smll.201101594
    [29] Dang Z M, Zheng M S, Zha J W. 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications[J]. Small,2016,12:1688-1701. doi: 10.1002/smll.201503193
    [30] Liu J, Kopold P, Wu C, et al. Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries[J]. Energy & Environmental Science,2015,8:3531-3538.
    [31] Wang D, Zhang Y, Chen J, et al. Structural hybridization of ternary (0D, 1D and 2D) composites as anodes for high-performance Li-ion batteries[J]. Energy Storage Materials,2018,13:293-302. doi: 10.1016/j.ensm.2018.02.003
    [32] Wu H B, Zhang G, Yu L, et al. One-dimensional metal oxide-carbon hybrid nanostructures for electrochemical energy storage[J]. Nanoscale Horizons,2016,1:27-40. doi: 10.1039/C5NH00023H
    [33] Hou J H, Cao C B, Idrees F, et al. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors[J]. ACS Nano,2015,9:2556-2564. doi: 10.1021/nn506394r
    [34] Shu H, Li F, Hu C, et al. The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries[J]. Nanoscale,2016,8:2918-2926. doi: 10.1039/C5NR07909H
    [35] Zheng J, Wu Y, Sun Y, et al. Advanced anode materials of potassium ion batteries: From zero dimension to three dimensions[J]. Nanomicro Letters,2020,13:12.
    [36] Cao X H, Yin Z Y, Zhang H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors[J]. Energy & Environmental Science,2014,7:1850-1865.
    [37] Lin T Q, Chen I W, Liu F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science,2015,350:1508-1513. doi: 10.1126/science.aab3798
    [38] Jiang H, Lee P S, Li C Z. 3D carbon based nanostructures for advanced supercapacitors[J]. Energy & Environmental Science,2013,6:41-53.
    [39] Lee W J, Maiti U N, Lee J M, et al. Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications[J]. Chemical Communication,2014,50:6818-6830. doi: 10.1039/c4cc00146j
    [40] Zhang C, Wei L, Ying T, et al. Towards superior volumetric performance: Design and preparation of novel carbon materials for energy storage[J]. Energy & Environmental Science,2015,8:1390-1403.
    [41] Shi C, Owusu K A, Xu X, et al. 1D carbon-based nanocomposites for electrochemical energy storage[J]. Small,2019,15:1902348. doi: 10.1002/smll.201902348
    [42] Cheng F, Li W C, Zhu J N, et al. Designed synthesis of nitrogen-rich carbon wrapped Sn nanoparticles hybrid anode via in-situ growth of crystalline ZIF-8 on a binary metal oxide[J]. Nano Energy,2016,19:486-494. doi: 10.1016/j.nanoen.2015.10.033
    [43] Xie P, Yuan W, Liu X B, et al. Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors[J]. Energy Storage Materials,2021,36:56-76. doi: 10.1016/j.ensm.2020.12.011
    [44] Lin C R, Wang Y J, Zhong F L, et al. Carbon materials for high-performance potassium-ion energy-storage devices[J]. Chemical Engineering Journal,2021,407:126991. doi: 10.1016/j.cej.2020.126991
    [45] Chen S, Qiu L, Cheng H M. Carbon-based fibers for advanced electrochemical energy storage devices[J]. Chemical Reviews,2020,120:2811-2878. doi: 10.1021/acs.chemrev.9b00466
    [46] Feng H P, Tang L, Zeng G M, et al. Carbon-based core–shell nanostructured materials for electrochemical energy storage[J]. Journal of Materials Chemistry A,2018,6:7310-7337. doi: 10.1039/C8TA01257A
    [47] Wu Q, Yang L J, Wang X Z, et al. Carbon-based nanocages: A New platform for advanced energy storage and conversion[J]. Advanced Materials,2020,32:1904177.
    [48] Zhang Y N, Yan D, Liu Z F, et al. A SnOx quantum dots embedded carbon nanocage network with ultrahigh Li storage capacity[J]. ACS Nano,2021,15:7021-7031. doi: 10.1021/acsnano.1c00088
    [49] Cheng F, Li W C, Lu A H. Using confined carbonate crystals for the fabrication of nanosized metal oxide@carbon with superior lithium storage capacity[J]. Journal of Materials Chemistry A,2016,4:15030-15035. doi: 10.1039/C6TA05693H
    [50] Cao B K, Liu Z Q, Xu C Y, et al. High-rate-induced capacity evolution of mesoporous C@SnO2@C hollow nanospheres for ultra-long cycle lithium-ion batteries[J]. Journal of Power Sources,2019,414:233-241. doi: 10.1016/j.jpowsour.2019.01.001
    [51] Chae S, Choi S H, Kim N, et al. Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries[J]. Angewandte Chemie International Edition,2020,59:110-135. doi: 10.1002/anie.201902085
    [52] Wu H, Zheng G Y, Liu N, et al. Engineering empty space between Si nanoparticles for lithium-ion battery anodes[J]. Nano Letters,2012,12:904-909. doi: 10.1021/nl203967r
    [53] Mi H W, Yang X D, Li Y L, et al. A self-sacrifice template strategy to fabricate yolk-shell structured silicon@void@carbon composites for high-performance lithium-ion batteries[J]. Chemical Engineering Journal,2018,351:103-109. doi: 10.1016/j.cej.2018.06.065
    [54] Wang K, Pei S E, He Z S, et al. Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium ion battery anodes[J]. Chemical Engineering Journal,2019,356:272-281. doi: 10.1016/j.cej.2018.09.027
    [55] Zhao F H, Li X D, He J J, et al. Preparation of hierarchical graphdiyne hollow nanospheres as anode for lithium-ion batteries[J]. Chemical Engineering Journal,2021,413:127486. doi: 10.1016/j.cej.2020.127486
    [56] Yang Y F, Jin S, Zhang Z, et al. Nitrogen-doped hollow carbon nanospheres for high-performance Li-ion batteries[J]. ACS Appllied Materials & Interfaces,2017,9:14180-14186.
    [57] Iigima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58. doi: 10.1038/354056a0
    [58] Li H Q, Li D, Zhou H S. One-dimensional nanostructured metal[M]. Hoboken: Wiley, 2012.
    [59] Deng M D, Qi J, Li X, et al. MoC/C nanowires as high-rate and long cyclic life anode for lithium ion batteries[J]. Electrochimica Acta,2018,277:205-210. doi: 10.1016/j.electacta.2018.04.185
    [60] Fei L, Williams B P, Yoo S H, et al. A general approach to fabricate free-standing metal sulfide@carbon nanofiber networks as lithium ion battery anodes[J]. Chemical Communication,2016,52:1501-1504. doi: 10.1039/C5CC06957B
    [61] Dai Z X, Long Z W, Li R R, et al. Metal–organic framework-structured porous ZnCo2O4/C composite nanofibers for high-rate lithium-ion batteries[J]. ACS Applied Energy Materials,2020,3:12378-12384. doi: 10.1021/acsaem.0c02379
    [62] Gao X, Wang B Y, Zhang Y, et al. Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage[J]. Energy Storage Materials,2019,16:46-55. doi: 10.1016/j.ensm.2018.04.027
    [63] Yang C, Yao Y, Lian Y B, et al. A double-buffering strategy to boost the lithium storage of botryoid MnOx/C anodes[J]. Small,2019,15:1900015. doi: 10.1002/smll.201900015
    [64] Chen Y M, Yu X Y, Li Z, et al. Hierarchical MoS2 tubular structures internallywired by carbon nanotubes as a highly stableanode material for lithium-ion batteries[J]. Science Advances,2016,2:1600021. doi: 10.1126/sciadv.1600021
    [65] Chen H W, Liu R M, Wu Y, et al. Interface coupling 2D/2D SnSe2/graphene heterostructure as long-cycle anode for all-climate lithium-ion battery[J]. Chemical Engineering Journal,2021,407:126973. doi: 10.1016/j.cej.2020.126973
    [66] Wang Y X, Tian W, Wang LH, et al. A tunable molten-salt route for scalable synthesis of ultrathin amorphous carbon nanosheets as high-performance anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10:5577-5585.
    [67] Chen B, Lu H H, Zhao N Q, et al. Facile synthesis and electrochemical properties of continuous porous spheres assembled from defect-rich, interlayer-expanded, and few-layered MoS2/C nanosheets for reversible lithium storage[J]. Journal of Power Sources,2018,387:16-23. doi: 10.1016/j.jpowsour.2018.03.044
    [68] Jia R, Yue J L, Xia Q Y, et al. Carbon shelled porous SnO2-δ nanosheet arrays as advanced anodes for lithium-ion batteries[J]. Energy Storage Materials,2018,13:303-311. doi: 10.1016/j.ensm.2018.02.009
    [69] Cheng F, Li W C, Lu A H. Interconnected nanoflake network derived from a natural resource for high-performance lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2016,8:27843-27849.
    [70] Zhang Y N, Song X F, Huang R T, et al. A sustainable route from kelp to a porous MnO/C network anode for high-capacity lithium-ion batteries[J]. Journal of Materials Science,2020,55:10740-10750. doi: 10.1007/s10853-020-04680-w
    [71] Mu T S, Zuo P J, Lou S F, et al. A two-dimensional nitrogen-rich carbon/silicon composite as high performance anode material for lithium ion batteries[J]. Chemical Engineering Journal,2018,341:37-46. doi: 10.1016/j.cej.2018.02.026
    [72] Liu D J, Han Z L, Ma J Q, et al. Dual-confined SiO encapsulated in PVA derived carbon layer and chitin derived N-doped carbon nanosheets for high-performance lithium storage[J]. Chemical Engineering Journal,2021,420:129754. doi: 10.1016/j.cej.2021.129754
    [73] Ke G X, Chen H H, He J, et al. Ultrathin MoS2 anchored on 3D carbon skeleton containing SnS quantum dots as a high-performance anode for advanced lithium ion batteries[J]. Chemical Engineering Journal,2021,403:126251. doi: 10.1016/j.cej.2020.126251
    [74] Cheng F, Wang S, Lu A H, et al. Immobilization of nanosized LiFePO4 spheres by 3D coralloid carbon structure with large pore volume and thin walls for high power lithium-ion batteries[J]. Journal of Power Sources,2013,229:249-257. doi: 10.1016/j.jpowsour.2012.12.036
    [75] Han C P, Xu L, Li H F, et al. Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors[J]. Carbon,2018,140:296-305. doi: 10.1016/j.carbon.2018.09.010
    [76] Lee J, Moon J, Han S A, et al. Everlasting living and breathing gyroid 3D network in Si@SiOx/C nanoarchitecture for lithium ion battery[J]. ACS Nano,2019,13:9607-9619. doi: 10.1021/acsnano.9b04725
    [77] Yang T, Liu J W, Zhang M s, et al. Encapsulating MnSe nanoparticles inside 3D hierarchical carbon frameworks with lithium storage boosted by in situ electrochemical phase transformation[J]. ACS Applied Materials & Interfaces,2019,11:33022-33032.
    [78] Wang Y, Luo S N, Chen M, et al. Uniformly confined germanium quantum dots in 3D ordered porous carbon framework for high-performance Li-ion battery[J]. Advanced Functional Materials,2020,30:2000373. doi: 10.1002/adfm.202000373
    [79] Hasa I, Mariyappan S, Saurel D, et al. Challenges of today for Na-based batteries of the future: From materials to cell metrics[J]. Journal of Power Sources,2021,482:228872. doi: 10.1016/j.jpowsour.2020.228872
    [80] Kim Y J, Ha K H, Oh S M, et al. High-capacity anode materials for sodium-ion batteries[J]. Chemistry,2014,20:11980-11992. doi: 10.1002/chem.201402511
    [81] Wang Y P, Zhang Y F, Shi J R. S-doped porous carbon nanospheres confined SnS with enhanced electrochemical performance for sodium-ion batteries[J]. Journal of Materials Chemistry A,2017,6:18286-18292.
    [82] Xu M, Xia Q Y, Yue J L, et al. Rambutan-like hybrid hollow spheres of carbon confined Co3O4 nanoparticles as advanced anode materials for sodium-ion batteries[J]. Advanced Functional Materials,2018,29:1807377.
    [83] Liu J, Yu L T, Wu C, et al. New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries[J]. Nano Letters,2017,17:2034-2042. doi: 10.1021/acs.nanolett.7b00083
    [84] Yang H, Chen L W, He F X, et al. Optimizing the void size of yolk-shell Bi@void@C nanospheres for high-power-density sodium-ion batteries[J]. Nano Letters,2020,20:758-767. doi: 10.1021/acs.nanolett.9b04829
    [85] Wang G, Shao M, Ding H R, et al. Multiple active sites of carbon for high-rate surface-capacitive sodium-ion storage[J]. Angewandte Chemie International Edition,2019,58:13584-13589. doi: 10.1002/anie.201908159
    [86] Zhang X, Dong X L, Qiu X, et al. Extended low-voltage plateau capacity of hard carbon spheres anode for sodium ion batteries[J]. Journal of Power Sources,2020,476:228550. doi: 10.1016/j.jpowsour.2020.228550
    [87] Lu H Y, Chen X Y, Jia Y L, et al. Engineering Al2O3 atomic layer deposition: Enhanced hard carbon-electrolyte interface towards practical sodium ion batteries[J]. Nano Energy,2019,64:103903. doi: 10.1016/j.nanoen.2019.103903
    [88] Liu D, Huang X K, Qu D Y, et al. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries[J]. Nano Energy,2018,52:1-10. doi: 10.1016/j.nanoen.2018.07.023
    [89] Fang Y, Yu X Y, Lou X W. Bullet-like Cu9S5 hollow particles coated with nitrogen-doped carbon for sodium-ion batteries[J]. Angewandte Chemie International Edition,2019,58:7744-7748. doi: 10.1002/anie.201902988
    [90] Wang Y, Wen Z, Wang C C, et al. MOF-derived Fe7S8 nanoparticles/N-doped carbon nanofibers as an ultra-stable anode for sodium-ion batteries[J]. Small,2021,17:2102349. doi: 10.1002/smll.202102349
    [91] Sun Y, Yang Y L, Shi X L, et al. Self-standing film assembled using SnS-Sn/multiwalled carbon nanotubes encapsulated carbon fibers: A potential large-scale production material for ultra-stable sodium-ion battery anodes[J]. ACS Applied Materials & Interfaces,2021,13:28359-28368.
    [92] Liu Y C, Zhang N, Yu C M, et al. MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries[J]. Nano Letters,2016,16:3321-3328. doi: 10.1021/acs.nanolett.6b00942
    [93] Liu W L, Ju S L, Yu X B. Phosphorus-amine-based synthesis of nanoscale red phosphorus for application to sodium-ion batteries[J]. ACS Nano,2020,14:974-984. doi: 10.1021/acsnano.9b08282
    [94] Wang H Q, An D, Li N, et al. PbTe nanodots confined on ternary B2O3/BC2O/C nanosheets as electrode for efficient sodium storage[J]. Journal of Power Sources,2020,461:228110. doi: 10.1016/j.jpowsour.2020.228110
    [95] Xu X D, Zeng H L, Han D Z, et al. Nitrogen and sulfur Co-doped graphene nanosheets to improve anode materials for sodium-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10:37172-37180.
    [96] Liu Y H, Liu Q Z, Zhang A Y, et al. Room-temperature pressure synthesis of layered black phosphorus-graphene composite for sodium-ion battery anodes[J]. ACS Nano,2018,12:8323-8329. doi: 10.1021/acsnano.8b03615
    [97] Xia J, Yuan Y T, Yan H X, et al. Electrospun SnSe/C nanofibers as binder-free anode for lithium–ion and sodium-ion batteries[J]. Journal of Power Sources,2020,449:227559. doi: 10.1016/j.jpowsour.2019.227559
    [98] Chen W H, Zhang X X, Mi L W, et al. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries[J]. Advanced Materials,2019,31:1806664. doi: 10.1002/adma.201806664
    [99] Wang P Y, Yang B J, Zhang G H, et al. Three-dimensional carbon framework as a promising anode material for high performance sodium ion storage devices[J]. Chemical Engineering Journal,2018,353:453-459. doi: 10.1016/j.cej.2018.07.150
    [100] Wang S B, Fang Y J, Wang X, et al. Hierarchical microboxes constructed by SnS nanoplates coated with nitrogen-doped carbon for efficient sodium storage[J]. Angewandte Chemie International Edition,2019,58:760-763. doi: 10.1002/anie.201810729
    [101] Pramudita J C, Sehrawat D, Goonetilleke D, et al. An initial review of the status of electrode materials for potassium-ion batteries[J]. Advanced Energy Materials,2017,7:1602911. doi: 10.1002/aenm.201602911
    [102] Liu Y J, Tai Z X, Zhang J, et al. Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation[J]. Nature Communications,2018,9:3645.
    [103] Gan Q M, Xie J W, Zhu Y H, et al. Sub-20 nm carbon nanoparticles with expanded interlayer spacing for high-performance potassium storage[J]. ACS Applied Materials & Interfaces,2019,11:930-939.
    [104] Zheng J, Yang Y, Fan X L, et al. Extremely stable antimony–carbon composite anodes for potassium-ion batteries[J]. Energy & Environmental Science,2019,12:615-623.
    [105] Wang W, Jiang B, Qian C, et al. Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage[J]. Advanced Materials,2018,30:1801812. doi: 10.1002/adma.201801812
    [106] Li Z P, Sun N, Soomro R A, et al. Retraction of “Structurally engineered hollow graphitized carbon nanocages as high-performance anodes for potassium ion batteries”[J]. ACS Nano,2020,14:16161. doi: 10.1021/acsnano.0c01150
    [107] Ding J, Zhang H L, Zhou H, et al. Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes[J]. Advanced Materials,2019,31:1900429.
    [108] Adams R A, Syu J M, Zhao Y, et al. Binder-free N- and O-rich carbon nanofiber anodes for long cycle life K-ion batteries[J]. ACS Applied Materials & Interfaces,2017,9:17872-17881.
    [109] Yu Q Y, Jiang B, Hu J, et al. Metallic octahedral CoSe2 threaded by N-doped carbon nanotubes: A flexible framework for high-performance potassium-ion batteries[J]. Advanced Science,2018,5:1800782. doi: 10.1002/advs.201800782
    [110] Xu Y, Zhang C L, Zhou M, et al. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries[J]. Nature Communications,2018,9:1720. doi: 10.1038/s41467-018-04190-z
    [111] Hao R, Lan H, Kuang C W, et al. Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers[J]. Carbon,2018,128:224-230. doi: 10.1016/j.carbon.2017.11.064
    [112] Lee C G, Wei X D, Kysa J W, et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphen[J]. Science,2008,321:385-388. doi: 10.1126/science.1157996
    [113] Li Q, Mahmood N, Zhu J H, et al. Graphene and its composites with nanoparticles for electrochemical energy applications[J]. Nano Today,2014,9:668-683. doi: 10.1016/j.nantod.2014.09.002
    [114] Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8:902-907. doi: 10.1021/nl0731872
    [115] Sun P Z, Wang K L, Zhu H W. Recent developments in graphene-based membranes: Structure, mass-transport mechanism and potential applications[J]. Advanced Materials,2016,28:2287-2310. doi: 10.1002/adma.201502595
    [116] Ma G Y, Huang K S, Ma J S, et al. , Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries[J]. Journal of Materials Chemistry A[J],2017,5:7854-7861. doi: 10.1039/C7TA01108C
    [117] Zhang H, Cheng Y, Zhang Q, et al. Fast and durable potassium storage enabled by constructing stress-dispersed Co3Se4 nanocrystallites anchored on graphene sheets[J]. ACS Nano,2021,15:10107-10118. doi: 10.1021/acsnano.1c01918
    [118] Xu Q, Li Q, Guo Y, et al. Multiscale hierarchically engineered carbon nanosheets derived from covalent organic framework for potassium-ion batteries[J]. Small Methods,2020,4:2000159. doi: 10.1002/smtd.202000159
    [119] Yun Y X, Xi B J, Gu Y, et al. Cu3P nanoparticles confined in nitrogen/phosphorus dual-doped porous carbon nanosheets for efficient potassium storage[J]. Journal of Energy Chemistry,2022,66:339-347. doi: 10.1016/j.jechem.2021.05.045
    [120] Bai J, Xi B, Mao H, et al. One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage[J]. Advanced Materials,2018,30:1802310. doi: 10.1002/adma.201802310
    [121] Li H Y, Cheng Z, Zhang Q, et al. Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries[J]. Nano Letters,2018,18:7407-7413. doi: 10.1021/acs.nanolett.8b03845
    [122] Zhou X F, Chen L L, Zhang W H, et al. Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries[J]. Nano Letters,2019,19:4965-4973. doi: 10.1021/acs.nanolett.9b01127
    [123] Huang H, Etogo C A, Chen C, et al. Realizing fast diffusion kinetics based on three-dimensional ordered macroporous Cu9S5@C for potassium-ion batteries[J]. ACS Appllied Materials & Interfaces,2021,13:36982-36991.
    [124] Du J C, Gao S S, Shi P H, et al. Three-dimensional carbonaceous for potassium ion batteries anode to boost rate and cycle life performance[J]. Journal of Power Sources,2020,451:227727. doi: 10.1016/j.jpowsour.2020.227727
    [125] Zhang W, Yin J, Sun M, et al. Direct pyrolysis of supermolecules: An ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries[J]. Advanced Materials,2020,32:2000732. doi: 10.1002/adma.202000732
    [126] Chen X L, Paul R, Dai L M. Carbon-based supercapacitors for efficient energy storage[J]. National Science Review,2017,4:453-489. doi: 10.1093/nsr/nwx009
    [127] Nguyen T, Montemor M F. Metal oxide and hydroxide-based aqueous supercapacitors: From charge storage mechanisms and functional electrode engineering to need-tailored devices[J]. Advanced Science,2019,6:1801797. doi: 10.1002/advs.201801797
    [128] Yu M, Lin D, Feng H B, et al. Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge[J]. Angewandte Chemie International Edition,2017,56:5454-5459. doi: 10.1002/anie.201701737
    [129] Wang F X, Wu X W, Yuan X H, et al. Latest advances in supercapacitors: From new electrode materials to novel device designs[J]. Chemstry Society Review,2017,46:6816-6854. doi: 10.1039/C7CS00205J
    [130] Yu M H, Lu Y Z, Zheng H B, et al. New insights into the operating voltage of aqueous supercapacitors[J]. Chemistry,2018,24:3639-3649. doi: 10.1002/chem.201704420
    [131] Chen T, Dai L M. Carbon nanomaterials for high-performance supercapacitors[J]. Materials Today,2013,16:272-280. doi: 10.1016/j.mattod.2013.07.002
    [132] Afif A, Rahman S M H, Atia Tasfiah Azad, et al. Advanced materials and technologies for hybrid supercapacitors for energy storage-A review[J]. Journal of Energy Storage,2019,25:100852. doi: 10.1016/j.est.2019.100852
    [133] Boota M, Gogotsi Y. MXene-conducting polymer asymmetric pseudocapacitors[J]. Advanced Energy Materials,2018,9:1802917.
    [134] Augustyn V, Come J, Lowe M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nature Materials,2013,12:518-522. doi: 10.1038/nmat3601
    [135] Zhu Y R, Wu Z B, Jing M J, et al. Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor[J]. Journal of Materials Chemistry A,2015,3:866-877. doi: 10.1039/C4TA05507A
    [136] Pan Z Z, Dong L, Lv W, et al. A hollow spherical carbon derived from the spray drying of corncob lignin for high-rate-performance supercapacitors[J]. Chemstry Asian Journal,2017,12:503-506. doi: 10.1002/asia.201601724
    [137] Wu M S, Hsu W H. Nickel nanoparticles embedded in partially graphitic porous carbon fabricated by direct carbonization of nickel-organic framework for high-performance supercapacitors[J]. Journal of Power Sources,2015,274:1055-1062. doi: 10.1016/j.jpowsour.2014.10.133
    [138] Zhou S H, Xu H B, Gan W, et al. Graphene quantum dots: Recent progress in preparation and fluorescence sensing applications[J]. RSC Advances,2016,6:110775-110788. doi: 10.1039/C6RA24349E
    [139] Liu W W, Feng Y Q, Yan X B, et al. Superior micro-supercapacitors based on graphene quantum dots[J]. Advanced Functional Materials,2013,23:4111-4122. doi: 10.1002/adfm.201203771
    [140] Li L, Hu Z A, An N, et al. Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability[J]. The Journal of Physical Chemistry C,2014,118:22865-22872. doi: 10.1021/jp505744p
    [141] Gao B, Li X X, Guo X L, et al. Nitrogen-doped carbon encapsulated mesoporous vanadium nitride nanowires as self‐supported electrodes for flexible all‐solid‐state supercapacitors[J]. Advanced Materials Interfaces,2015,2:1500211. doi: 10.1002/admi.201500211
    [142] Yan M, Wang F, Han C, et al. Nanowire templated semihollow bicontinuous graphene scrolls: Designed construction, mechanism, and enhanced energy storage performance[J]. Journal of American Chemstry Society,2013,135:18176-18182. doi: 10.1021/ja409027s
    [143] Zhang C, Geng X P, Tang S L, et al. NiCo2O4@rGO hybrid nanostructures on Ni foam as high-performance supercapacitor electrodes[J]. Journal of Materials Chemistry A,2017,5:5912-5919.
    [144] Ma H, He J, Xiong D B, et al. Nickel cobalt hydroxide @reduced graphene oxide hybrid nanolayers for high performance asymmetric supercapacitors with remarkable cycling stability[J]. ACS Appllied Materials & Interfaces,2016,8:1992-2000.
    [145] Dai S G, Zhao B T, Qu C, et al. Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with high energy and power density[J]. Nano Energy,2017,33:522-531. doi: 10.1016/j.nanoen.2017.01.056
    [146] Liu Y P, Li Z L, Yao L, et al. Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors[J]. Chemical Engineering Journal,2019,366:550-559. doi: 10.1016/j.cej.2019.02.125
    [147] Yu P P, Zhao X, Huang Z L, et al. Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors[J]. Journal of Materials Chemstry A,2014,2:14413-14420. doi: 10.1039/C4TA02721C
    [148] Xiong G P, He P G, Wang D N, et al. Hierarchical Ni-Co hydroxide petals on mechanically robust graphene petal foam for high‐energy asymmetric supercapacitors[J]. Advanced Functional Materials,2016,26:5460-5470. doi: 10.1002/adfm.201600879
    [149] Saeed G, Kumar S, Kim N H, et al. Fabrication of 3D graphene-CNTs/α-MoO3 hybrid film as an advance electrode material for asymmetric supercapacitor with excellent energy density and cycling life[J]. Chemical Engineering Journal,2018,352:268-276. doi: 10.1016/j.cej.2018.07.026
    [150] Kumar S, Saeed G, Kim H N, et al. Hierarchical nanohoneycomb-like CoMoO4–MnO2 core–shell and Fe2O3 nanosheet arrays on 3D graphene foam with excellent supercapacitive performance[J]. Journal of Materials Chemistry A,2018,6:7182-7193. doi: 10.1039/C8TA00889B
    [151] Zhu C Y, Zhang W J, Li G, et al. Ultra-simple and green two-step synthesis of sodium anthraquinone-2-sulfonate composite graphene (AQS/rGO) hydrogels for supercapacitor electrode materials[J]. Journal of Alloys and Compounds,2021,862:158472. doi: 10.1016/j.jallcom.2020.158472
  • 加载中
图(17)
计量
  • 文章访问数:  1852
  • HTML全文浏览量:  1058
  • PDF下载量:  269
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 修回日期:  2021-12-17
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回