留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳基电催化材料选择性合成过氧化氢研究进展

闫啸 石文武 王新中

闫啸, 石文武, 王新中. 碳基电催化材料选择性合成过氧化氢研究进展. 新型炭材料(中英文), 2022, 37(1): 223-236. doi: 10.1016/S1872-5805(22)60582-1
引用本文: 闫啸, 石文武, 王新中. 碳基电催化材料选择性合成过氧化氢研究进展. 新型炭材料(中英文), 2022, 37(1): 223-236. doi: 10.1016/S1872-5805(22)60582-1
YAN Xiao, SHI Wen-wu, WANG Xin-zhong. Carbon based electrocatalysts for selective hydrogen peroxide conversion. New Carbon Mater., 2022, 37(1): 223-236. doi: 10.1016/S1872-5805(22)60582-1
Citation: YAN Xiao, SHI Wen-wu, WANG Xin-zhong. Carbon based electrocatalysts for selective hydrogen peroxide conversion. New Carbon Mater., 2022, 37(1): 223-236. doi: 10.1016/S1872-5805(22)60582-1

碳基电催化材料选择性合成过氧化氢研究进展

doi: 10.1016/S1872-5805(22)60582-1
基金项目: 深圳信息职业技术学院博士启动项目(SZIIT2021KJ020, SZIIT2020KJ006),广东省第三代半导体工程中心(2020GCZX007),龙岗区第三代半导体重点实验室(PT2020D003)。
详细信息
    作者简介:

    闫啸:闫 啸,副教授. E-mail:yanxiao@sziit.edu.cn

    通讯作者:

    王新中,教授. E-mail:wangxz@sziit.edu.cn

  • 中图分类号: TQ127.1+1

Carbon based electrocatalysts for selective hydrogen peroxide conversion

Funds: SZIIT Grant (SZIIT2021KJ020 and SZIIT2020KJ006); Guangdong Engineering and Technology Research Center for Third Generation Semiconductor (2020GCZX007); and Longgang District Key Laboratory of Third Generation Semiconductor Materials and Devices (PT2020D003).
More Information
  • 摘要: 过氧化氢(H2O2)作为一种环境友好型绿色氧化剂,在健康护理、污水处理和化学合成等领域均有广泛应用。近年来,其作为零碳型储氢材料在长期储能领域的应用前景也广受关注。当前H2O2的工业化生产主要依赖蒽醌工艺,步骤复杂、废水废气排放量大,且生产和运输过程存在安全隐患。电催化合成H2O2是近年来兴起的研究热点,通过利用清洁能源为动力源,以水和氧气为原料实现按需现场合成H2O2。兼具高活性、高选择性和稳定性的催化剂是实现高效选择性合成H2O2的关键。本文综述了碳基电催化材料在电催化合成H2O2领域的最新研究进展,包括催化位点调控,反应界面设计和催化剂结构优化等。通过合理设计催化剂组分和活性位点微环境调控,有望制备具有高稳定性的高效催化剂,缩小实验结果与理论预期的差距。希望本文可促进相关研究的进一步发展并最终实现按需合成H2O2的市场化应用。
  • FIG. 1224.  FIG. 1224.

    FIG. 1224..  FIG. 1224.

    图  1  (a) 氧分子在活性位表面吸附构型[20], (b) 单原子活性位利于端接吸附[7]与(c) 催化剂反应活性火山图[2]

    Figure  1.  (a) Schematic diagram of the typical O2 molecule adsorption modes on the catalytic surface. Reproduced with permission[20]. Copyright 2020, Royal Society of Chemistry. (b) Schematic illustration showing how discrete single-atom sites change the binding mode from “side-on” to “end-on” which favors H2O2 production. Reproduced with permission[7]. Copyright 2019, Springer Nature. (c) Activity volcano plots for WOR (red indicates the two-electron process and blue indicates the four-electron process) and ORR (green indicates the two-electron process and magenta indicates the four-electron process). Reproduced with permission[2]. Copyright 2021, Elsevier.

    图  2  (a) g-N-CNHs合成示意图和对应TEM照片[43], (b) HNCS活性位示意图[46], (c) 热力学平衡电势下氧还原过程不同元素掺杂碳材料的吸附自由能示意图[47], (d) F-mrGO催化剂活性位的理想模型[27]

    Figure  2.  (a) Scheme of the synthesis and relative TEM analysis. Reproduced with permission[43]. Copyright 2018, Elsevier. (b) Schemes of active sites of HNCS. Reproduced with permission[46]. Copyright 2021, American Chemical Society. (c) Free-energy profiles of O2 reduction paths where each state’s charge is corresponding to U = 0.7 VRHE. Reproduced with permission[47]. Copyright 2021, Springer Nature. (d) Idealized schemes of proposed low-overpotential active sites on F-mrGO. Reproduced with permission[27]. Copyright 2018, Springer Nature.

    图  3  (a) 氧等离子体处理商业炭黑合成H2O2[76], (b) HCNFs的SEM照片, (c) HCNFs和SCNFs的旋转环盘电极(RRDE)测试性能, (d) HCNFs高效合成H2O2机理示意图[78]

    Figure  3.  (a) Oxygen plasma treated carbon black (CB-Plasma) for efficient electrosynthesis of H2O2. Reproduced with permission[76]. Copyright 2021, American Chemical Society. (b) SEM image of HCNFs. (c) RRDE voltammograms of HCNFs and SCNFs for the ORR and H2O2 production. (d) 3-in-1 effect of HCNFs promotes O2-to-H2O2 conversion. Reproduced with permission[78]. Copyright 2021, Wiley.

    图  4  (a) DFT计算筛选SACs示意图[16], (b) Co-Nx-C SACs的透射电镜图片与协同合成H2O2示意图[97],(c) SACs金属中心选择与CoN4电镜照片[100], (d) 原子探针层析表征Fe―C―O[104]

    Figure  4.  (a) Schemes of screening SACs for the electrochemical synthesis of H2O2. Reproduced with permission[16]. Copyright 2019, American Chemical Society. (b) TEM images of Co-Nx-C and elemental mapping for efficient H2O2 production. Reproduced with permission[97]. Copyright 2019, Wiley. (c) Schematic of ORR paths on transition metal SACs and TEM images of CoN4 anchored on N-doped graphene. Reproduced with permission[100]. Copyright 2020, Elsevier. (d) Atomic distribution and coordination environmental analysis of Fe―C―O moiety by atom probe topography. Reproduced with permission[104]. Copyright 2019, Springer Nature.

    图  5  (a) 热力学平衡电势下Mo单原子不同配位构型对中间物种的的吸附自由能示意图, (b) *OOH在Mo-O3S-C和Mo-S4-C的吸附构型示意图[106], (c) CoNOC单原子的扫描透射电镜图和配位结构示意图(包括O、N共配位第一配位域和C―O―C第二配位域), (d) *OOH吸附自由能与邻氧碳原子的价态关系图。(e) *OOH吸附在CoO4和CoO4(O)的差分电荷密度比较[107], (f) 理论结合实验考察单原子在TiC基底上的活性和稳定性以及DFT计算得到的火山图[112]

    Figure  5.  (a) Free Energy diagram of 2e- ORR on three Mo SACs at equilibrium potential. (b) Atomic configuration of HOO* adsorption on Mo-O3S-C and Mo-S4-C. Reproduced with permission[106]. Copyright 2020, Wiley. (c) STEM image for the CoNOC sample with white circle indicating single Co atoms and schematic of proposed molecular-level structure for CoNOC including the center Co atom, O/N dual coordination in the first coordination shell (CS), and C―O―C group in the second CS. (d) Correlation between the *OOH adsorption energies and charge state of the active site (O-adjacent C atom). (e) Differential charge densities of CoO4 and CoO4(O) after *OOH adsorption. Reproduced with permission[107]. Copyright 2021, American Chemical Society. (f) Combining DFT calculations and experimental approaches to explore the stability and activity of SACs on TiC and the obtained volcano plot of ORR for the limiting potential of the catalyst (UL) with ΔGHOO*. Reproduced with permission[112]. Copyright 2019, American Chemical Society.

  • [1] Shi X, Back S, Gill T M, et al. Electrochemical synthesis of H2O2 by two-electron water oxidation reaction[J]. Chem,2021,7(1):38-63. doi: 10.1016/j.chempr.2020.09.013
    [2] Tang J, Zhao T, Solanki D, et al. Selective hydrogen peroxide conversion tailored by surface, interface, and device engineering[J]. Joule,2021,5(6):1432-1461. doi: 10.1016/j.joule.2021.04.012
    [3] Hu S. Membrane-less photoelectrochemical devices for H2O2 production: Efficiency limit and operational constraint [J]. Sustainable Energy & Fuels, 2019, 3(1): 101-114.
    [4] Dowling J A, Rinaldi K Z, Ruggles T H, et al. Role of long-duration energy storage in variable renewable electricity systems[J]. Joule,2020,4(9):1907-1928. doi: 10.1016/j.joule.2020.07.007
    [5] Yang S, Verdaguer-Casadevall A, Arnarson L, et al. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis[J]. ACS Catalysis,2018,8(5):4064-4081. doi: 10.1021/acscatal.8b00217
    [6] Campos-Martin J M, Blanco-Brieva G, Fierro J L G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process[J]. Angewandte Chemie International Edition, 2006, 45(42): 6962-6984.
    [7] Perry S C, Pangotra D, Vieira L, et al. Electrochemical synthesis of hydrogen peroxide from water and oxygen[J]. Nature Reviews Chemistry,2019,3(7):442-458. doi: 10.1038/s41570-019-0110-6
    [8] Siahrostami S, Villegas S J, Bagherzadeh Mostaghimi A H, et al. A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide[J]. ACS Catalysis,2020,10(14):7495-7511. doi: 10.1021/acscatal.0c01641
    [9] Tang C, Zheng Y, Jaroniec M, et al. Electrocatalytic refinery for sustainable production of fuels and chemicals[J]. Angewandte Chemie International Edition,2021,60(36):19572-19590. doi: 10.1002/anie.202101522
    [10] Sun Y, Han L, Strasser P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production [J]. Chemical Society Reviews, 2020, 49(18): 6605-6631.
    [11] Wang Y, Waterhouse G I N, Shang L, et al. Electrocatalytic oxygen reduction to hydrogen peroxide: From homogeneous to heterogeneous electrocatalysis[J]. Advanced Energy Materials,2021,11(15):2003323. doi: 10.1002/aenm.202003323
    [12] Zheng X, Cui P, Qian Y, et al. Multifunctional active-center-transferable platinum/lithium cobalt oxide heterostructured electrocatalysts towards superior water splitting[J]. Angewandte Chemie International Edition,2020,59(34):14533-14540. doi: 10.1002/anie.202005241
    [13] Zheng X, Li P, Dou S, et al. Non-carbon-supported single-atom site catalysts for electrocatalysis[J]. Energy & Environmental Science,2021,14(5):2809-2858.
    [14] Zhu Y P, Guo C, Zheng Y, et al. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes[J]. Accounts of Chemical Research,2017,50(4):915-923. doi: 10.1021/acs.accounts.6b00635
    [15] Askins E J, Zoric M R, Li M, et al. Toward a mechanistic understanding of electrocatalytic nanocarbon[J]. Nature Communications,2021,12(1):3288. doi: 10.1038/s41467-021-23486-1
    [16] Guo X, Lin S, Gu J, et al. Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: The power of single-atom catalysts[J]. ACS Catalysis,2019,9(12):11042-11054. doi: 10.1021/acscatal.9b02778
    [17] Wang S, Yan X, Wu K H, et al. A hierarchical porous Fe-N impregnated carbon-graphene hybrid for high-performance oxygen reduction reaction[J]. Carbon,2019,144:798-804. doi: 10.1016/j.carbon.2018.12.066
    [18] Liu D, Tong Y, Yan X, et al. Recent advances in carbon-based bifunctional oxygen catalysts for zinc-air batteries[J]. Batteries & Supercaps,2019,2(9):743-765.
    [19] Siahrostami S, Verdaguer-Casadevall A, Karamad M, et al. Enabling direct H2O2 production through rational electrocatalyst design[J]. Nature Materials,2013,12(12):1137-1143. doi: 10.1038/nmat3795
    [20] Wang K, Huang J, Chen H, et al. Recent advances in electrochemical 2e oxygen reduction reaction for on-site hydrogen peroxide production and beyond[J]. Chemical Communications,2020,56(81):12109-12121. doi: 10.1039/D0CC05156J
    [21] Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science,2017,355(6321):eaad4998. doi: 10.1126/science.aad4998
    [22] Nørskov J K, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. The Journal of Physical Chemistry B,2004,108(46):17886-17892. doi: 10.1021/jp047349j
    [23] Kulkarni A, Siahrostami S, Patel A, et al. Understanding catalytic activity trends in the oxygen reduction reaction[J]. Chemical Reviews,2018,118(5):2302-2312. doi: 10.1021/acs.chemrev.7b00488
    [24] Viswanathan V, Hansen H A, Rossmeisl J, et al. Universality in oxygen reduction rlectrocatalysis on metal surfaces[J]. ACS Catalysis,2012,2(8):1654-1660. doi: 10.1021/cs300227s
    [25] Verdaguer-Casadevall A, Deiana D, Karamad M, et al. Trends in the electrochemical synthesis of H2O2: Enhancing activity and selectivity by electrocatalytic site engineering[J]. Nano Letters,2014,14(3):1603-1608. doi: 10.1021/nl500037x
    [26] Fellinger T P, Hasché F, Strasser P, et al. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide[J]. Journal of the American Chemical Society,2012,134(9):4072-4075. doi: 10.1021/ja300038p
    [27] Kim H W, Ross M B, Kornienko N, et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts[J]. Nature Catalysis,2018,1(4):282-290. doi: 10.1038/s41929-018-0044-2
    [28] Chen S, Chen Z, Siahrostami S, et al. Designing boron nitride Islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide[J]. Journal of the American Chemical Society,2018,140(25):7851-7859. doi: 10.1021/jacs.8b02798
    [29] Jia N, Yang T, Shi S, et al. N, F-codoped carbon nanocages: An efficient electrocatalyst for hydrogen peroxide electroproduction in alkaline and acidic solutions[J]. ACS Sustainable Chemistry & Engineering,2020,8(7):2883-2891.
    [30] Lu Z, Chen G, Siahrostami S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J]. Nature Catalysis,2018,1(2):156-162. doi: 10.1038/s41929-017-0017-x
    [31] Perazzolo V, Daniel G, Brandiele R, et al. PEO-b-PS block copolymer templated mesoporous carbons: A comparative study of nitrogen and sulfur doping in the oxygen reduction reaction to hydrogen peroxide[J]. Chemistry – A European Journal,2021,27(3):1002-1014. doi: 10.1002/chem.202003355
    [32] Zhao K, Su Y, Quan X, et al. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon[J]. Journal of Catalysis,2018,357:118-126. doi: 10.1016/j.jcat.2017.11.008
    [33] Chakthranont P, Nitrathorn S, Thongratkaew S, et al. Rational design of metal-free doped carbon nanohorn catalysts for efficient electrosynthesis of H2O2 from O2 reduction[J]. ACS Applied Energy Materials,2021,4(11):12436-12447. doi: 10.1021/acsaem.1c02260
    [34] Li J C, Hou P X, Zhao S Y, et al. A 3D bi-functional porous N-doped carbon microtube sponge electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Energy & Environmental Science,2016,9(10):3079-3084.
    [35] Li J C, Yang Z Q, Tang D M, et al. N-doped carbon nanotubes containing a high concentration of single iron atoms for efficient oxygen reduction[J]. NPG Asia Materials,2018,10(1):e461-e461. doi: 10.1038/am.2017.212
    [36] Wang H, Shao Y, Mei S, et al. Polymer-derived heteroatom-doped porous carbon materials[J]. Chemical Reviews,2020,120(17):9363-9419. doi: 10.1021/acs.chemrev.0c00080
    [37] Park J, Nabae Y, Hayakawa T, et al. Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon[J]. ACS Catalysis,2014,4(10):3749-3754. doi: 10.1021/cs5008206
    [38] Mounfield W P, Garg A, Shao-Horn Y, et al. Electrochemical oxygen reduction for the production of hydrogen peroxide[J]. Chem,2018,4(1):18-19. doi: 10.1016/j.chempr.2017.12.015
    [39] Ding Y, Zhou W, Gao J, et al. H2O2 electrogeneration from O2 electroreduction by N-doped carbon materials: A mini-review on preparation methods, selectivity of N sites, and prospects[J]. Advanced Materials Interfaces,2021,8(10):2002091. doi: 10.1002/admi.202002091
    [40] Briega-Martos V, Ferre-Vilaplana A, de la Peña A, et al. An aza-fused π-conjugated microporous framework catalyzes the production of hydrogen peroxide[J]. ACS Catalysis,2017,7(2):1015-1024. doi: 10.1021/acscatal.6b03043
    [41] Zhou W, Xie L, Gao J, et al. Selective H2O2 electrosynthesis by O-doped and transition-metal-O-doped carbon cathodes via O2 electroreduction: A critical review[J]. Chemical Engineering Journal,2021,410:128368. doi: 10.1016/j.cej.2020.128368
    [42] Fan W, Zhang B, Wang X, et al. Efficient hydrogen peroxide synthesis by metal-free polyterthiophene via photoelectrocatalytic dioxygen reduction[J]. Energy & Environmental Science,2020,13(1):238-245.
    [43] Iglesias D, Giuliani A, Melchionna M, et al. N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2[J]. Chem,2018,4(1):106-123. doi: 10.1016/j.chempr.2017.10.013
    [44] Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields[J]. Chemical Reviews, 2014, 114(9): 5057-5115.
    [45] Wan K, Long G F, Liu M Y, et al. Nitrogen-doped ordered mesoporous carbon: synthesis and active sites for electrocatalysis of oxygen reduction reaction[J]. Applied Catalysis B: Environmental,2015,165:566-571. doi: 10.1016/j.apcatb.2014.10.054
    [46] Hu Y, Zhang J, Shen T, et al. Efficient electrochemical production of H2O2 on hollow N-doped carbon nanospheres with abundant micropores[J]. ACS Applied Materials & Interfaces,2021,13(25):29551-29557.
    [47] Xia Y, Zhao X, Xia C, et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates[J]. Nature Communications,2021,12(1):4225. doi: 10.1038/s41467-021-24329-9
    [48] Wu Y, Gao Z, Feng Y, et al. Harnessing selective and durable electrosynthesis of H2O2 over dual-defective yolk-shell carbon nanosphere toward on-site pollutant degradation[J]. Applied Catalysis B:Environmental,2021,298:120572. doi: 10.1016/j.apcatb.2021.120572
    [49] Chen S, Duan J, Jaroniec M, et al. Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction[J]. Advanced Materials,2014,26(18):2925-2930. doi: 10.1002/adma.201305608
    [50] Acik M, Lee G, Mattevi C, et al. Unusual infrared-absorption mechanism in thermally reduced graphene oxide[J]. Nature Materials,2010,9(10):840-845. doi: 10.1038/nmat2858
    [51] Shen A, Zou Y, Wang Q, et al. Oxygen reduction reaction in a droplet on graphite: Direct evidence that the edge is more active than the basal plane[J]. Angewandte Chemie International Edition,2014,53(40):10804-10808. doi: 10.1002/anie.201406695
    [52] Sa Y J, Kim J H, Joo S H. Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production[J]. Angewandte Chemie International Edition, 2019, 58(4): 1100-1105.
    [53] Guo D, Shibuya R, Akiba C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Scicence,2016,351(6271):361-365. doi: 10.1126/science.aad0832
    [54] Lee S, Choun M, Ye Y, et al. Designing a highly active metal-free oxygen reduction catalyst in membrane electrode assemblies for alkaline fuel cells: Effects of pore size and doping-site position[J]. Angewandte Chemie International Edition,2015,54(32):9230-9234. doi: 10.1002/anie.201501590
    [55] Liu Y, Quan X, Fan X, et al. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon[J]. Angewandte Chemie International Edition,2015,54(23):6837-6841. doi: 10.1002/anie.201502396
    [56] Sheng X, Daems N, Geboes B, et al. N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2 to H2O2[J]. Applied Catalysis B:Environmental,2015,176-177:212-224. doi: 10.1016/j.apcatb.2015.03.049
    [57] Liang J, Du X, Gibson C, et al. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction[J]. 2013, 25(43): 6226-6231.
    [58] He W, Jiang C, Wang J, et al. High-rate oxygen electroreduction over graphitic-N species exposed on 3D hierarchically porous nitrogen-doped carbons[J]. Angewandte Chemie International Edition,2014,53(36):9503-9507. doi: 10.1002/anie.201404333
    [59] Jung E, Shin H, Hooch Antink W, et al. Recent advances in electrochemical oxygen reduction to H2O2: Catalyst and cell design[J]. ACS Energy Letters,2020,5(6):1881-1892. doi: 10.1021/acsenergylett.0c00812
    [60] Han L, Sun Y, Li S, et al. In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene[J]. ACS Catalysis,2019,9(2):1283-1288. doi: 10.1021/acscatal.8b03734
    [61] Sun Y, Sinev I, Ju W, et al. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts[J]. ACS Catalysis,2018,8(4):2844-2856. doi: 10.1021/acscatal.7b03464
    [62] Gong X, Liu S, Ouyang C, et al. Nitrogen- and phosphorus-doped biocarbon with enhanced electrocatalytic activity for oxygen reduction[J]. ACS Catalysis,2015,5(2):920-927. doi: 10.1021/cs501632y
    [63] Liang J, Zhou R F, Chen X M, et al. Fe–N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction[J]. Advanced Materials,2014,26(35):6074-6079. doi: 10.1002/adma.201401848
    [64] Tang C, Wang H F, Zhang Q. Multiscale principles to boost reactivity in gas-involving energy electrocatalysis [J]. Accounts of Chemical Research, 2018, 51(4): 881-889.
    [65] Tian H, Liang J, Liu J. Nanoengineering carbon spheres as nanoreactors for sustainable energy applications [J]. Advanced Materials, 2019, 31(50): 1903886.
    [66] Jing L, Tang C, Tian Q, et al. Mesoscale diffusion enhancement of carbon-bowl-shaped nanoreactor toward high-performance electrochemical H2O2 production[J]. ACS Applied Materials & Interfaces,2021,13(33):39763-39771.
    [67] Zhao H, Yuan Z Y. Design strategies of non-noble metal-based electrocatalysts for two-electron oxygen reduction to hydrogen peroxide [J]. ChemSusChem, 2021, 14(7): 1616-1633.
    [68] Arquer F P G d, Dinh C T, Ozden A, et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2[J]. Science,2020,367(6478):661-666. doi: 10.1126/science.aay4217
    [69] Xia C, Back S, Ringe S, et al. Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide[J]. Nature Catalysis,2020,3(2):125-134. doi: 10.1038/s41929-019-0402-8
    [70] Zhao Q, An J, Wang S, et al. Superhydrophobic air-breathing cathode for efficient hydrogen peroxide generation through two-electron pathway oxygen reduction reaction[J]. ACS Applied Materials & Interfaces,2019,11(38):35410-35419.
    [71] Xu A, He B, Yu H, et al. A facile solution to mature cathode modified by hydrophobic dimethyl silicon oil (DMS) layer for electro-Fenton processes: Water proof and enhanced oxygen transport[J]. Electrochimica Acta,2019,308:158-166. doi: 10.1016/j.electacta.2019.04.047
    [72] Yu F, Zhou M, Yu X. Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration [J]. Electrochimica Acta, 2015, 163: 182-189.
    [73] Zhang Q, Zhou M, Ren G, et al. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion[J]. Nature Communications,2020,11(1):1731. doi: 10.1038/s41467-020-15597-y
    [74] Zhang H, Zhao Y, Li Y, et al. Janus electrode of asymmetric wettability for H2O2 production with highly efficient O2 utilization[J]. ACS Applied Energy Materials,2020,3(1):705-714. doi: 10.1021/acsaem.9b01908
    [75] Zhou W, Meng X, Gao J, et al. Hydrogen peroxide generation from O2 electroreduction for environmental remediation: A state-of-the-art review[J]. Chemosphere,2019,225:588-607. doi: 10.1016/j.chemosphere.2019.03.042
    [76] Wang Z, Li Q-K, Zhang C, et al. Hydrogen peroxide generation with 100% faradaic efficiency on metal-free carbon black[J]. ACS Catalysis,2021,11(4):2454-2459. doi: 10.1021/acscatal.0c04735
    [77] Ye G, Gong Y, Lin J, et al. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction[J]. Nano Letters,2016,16(2):1097-1103. doi: 10.1021/acs.nanolett.5b04331
    [78] Dong K, Liang J, Wang Y, et al. Honeycomb carbon nanofibers: A superhydrophilic O2-entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction[J]. Angewandte Chemie International Edition,2021,60(19):10583-10587. doi: 10.1002/anie.202101880
    [79] Yan J, Dong K, Zhang Y, et al. Multifunctional flexible membranes from sponge-like porous carbon nanofibers with high conductivity[J]. Nature Communications,2019,10(1):5584. doi: 10.1038/s41467-019-13430-9
    [80] Qiao M, Titirici M M. Engineering the interface of carbon electrocatalysts at the triple point for enhanced oxygen reduction reaction[J]. Chemistry – A European Journal, 2018, 24(69): 18374-18384.
    [81] Li J, Gao X, Li Z, et al. Superhydrophilic graphdiyne accelerates interfacial mass/electron transportation to boost electrocatalytic and photoelectrocatalytic water oxidation activity[J]. Advanced Functional Materials,2019,29(16):1808079. doi: 10.1002/adfm.201808079
    [82] Ni W, Gao Y, Zhang Y, et al. O-doping boosts the electrochemical oxygen reduction activity of a single Fe site in hydrophilic carbon with deep mesopores[J]. ACS Applied Materials & Interfaces,2019,11(49):45825-45831.
    [83] Huo S, Song X, Zhao Y, et al. Insight into the significant contribution of intrinsic carbon defects for the high-performance capacitive desalination of brackish water[J]. Journal of Materials Chemistry A,2020,8(38):19927-19937. doi: 10.1039/D0TA07014A
    [84] Mahmoud M A, Narayanan R. El-sayed M A, enhancing colloidal metallic nanocatalysis: Sharp edges and corners for solid nanoparticles and cage effect for hollow ones[J]. Accounts of Chemical Research, 2013, 46(8): 1795-1805.
    [85] Liu Z, Du Y, Zhang P, et al. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon[J]. Matter,2021,4(10):3161-3194. doi: 10.1016/j.matt.2021.07.019
    [86] Han G-F, Li F, Zou W, et al. Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2[J]. Nature Communications,2020,11(1):2209. doi: 10.1038/s41467-020-15782-z
    [87] Chen S, Luo T, Chen K, et al. Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide[J]. Angewandte Chemie International Edition,2021,60(30):16607-16614. doi: 10.1002/anie.202104480
    [88] Kim H W, Park H, Roh J S, et al. Carbon defect characterization of nitrogen-doped reduced graphene oxide electrocatalysts for the two-electron oxygen reduction reaction[J]. Chemistry of Materials,2019,31(11):3967-3973. doi: 10.1021/acs.chemmater.9b00210
    [89] San Roman D, Krishnamurthy D, Garg R, et al. Engineering three-dimensional (3D) out-of-plane graphene edge sites for highly selective two-electron oxygen reduction electrocatalysis[J]. ACS Catalysis,2020,10(3):1993-2008. doi: 10.1021/acscatal.9b03919
    [90] Lim J S, Kim J H, Woo J, et al. Designing highly active nanoporous carbon H2O2 production electrocatalysts through active site identification [J]. Chem, 2021. 7: 3114-3130
    [91] Gyenge E L, Oloman C W. Influence of surfactants on the electroreduction of oxygen to hydrogen peroxide in acid and alkaline electrolytes [J]. Journal of Applied Electrochemistry, 2001, 31(2): 233-243.
    [92] Wu K-H, Wang D, Lu X, et al. Highly selective hydrogen peroxide electrosynthesis on carbon: In situ interface engineering with surfactants[J]. Chem,2020,6(6):1443-1458. doi: 10.1016/j.chempr.2020.04.002
    [93] Gerber I C, Serp P, A theory/experience description of support effects in carbon-supported catalysts [J]. Chemical Reviews, 2020, 120(2): 1250-1349.
    [94] Peng W, Feng Y, Yan X, et al. Multiatom catalysts for energy-related electrocatalysis[J]. Advanced Sustainable Systems,2021,5(3):2000213. doi: 10.1002/adsu.202000213
    [95] Wang H, Li J, Li K, et al. Transition metal nitrides for electrochemical energy applications[J]. Chemical Society Reviews,2021,50(2):1354-1390. doi: 10.1039/D0CS00415D
    [96] Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis [J]. Nature Reviews Chemistry, 2018, 2(6): 65-81.
    [97] Li B Q, Zhao C X, Liu J N, et al. Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic Co–Nx–C sites and oxygen functional groups in noble-metal-free electrocatalysts[J]. Advanced Materials,2019,31(35):1808173. doi: 10.1002/adma.201808173
    [98] Jung E, Shin H, Lee B H, et al. Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production[J]. Nature Materials,2020,19(4):436-442. doi: 10.1038/s41563-019-0571-5
    [99] Jia Y, Yao X. Atom-coordinated structure triggers selective H2O2 production[J]. Chem,2020,6(3):548-550.
    [100] Gao J, Yang H b, Huang X, et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst[J]. Chem,2020,6(3):658-674. doi: 10.1016/j.chempr.2019.12.008
    [101] Xu Q, Guo C, Tian S, et al. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes[J]. Science China Materials,2020,63(6):972-981. doi: 10.1007/s40843-020-1334-6
    [102] Li X, Huang Y, Liu B. Catalyst: Single-atom catalysis: Directing the way toward the nature of catalysis [J]. Chem, 2019, 5(11): 2733-2735.
    [103] Sun T, Xu L, Wang D, et al. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion[J]. Nano Research,2019,12(9):2067-2080. doi: 10.1007/s12274-019-2345-4
    [104] Jiang K, Back S, Akey A J, et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination[J]. Nature Communications,2019,10(1):3997. doi: 10.1038/s41467-019-11992-2
    [105] Li L, Huang B, Tang X, et al. Recent developments of microenvironment engineering of single-atom catalysts for oxygen reduction toward desired activity and selectivity[J]. Advanced Functional Materials,2021,31(45):2103857. doi: 10.1002/adfm.202103857
    [106] Tang C, Jiao Y, Shi B, et al. Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts[J]. Angewandte Chemie International Edition,2020,59(23):9171-9176. doi: 10.1002/anie.202003842
    [107] Tang C, Chen L, Li H, et al. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres[J]. Journal of the American Chemical Society,2021,143(20):7819-7827. doi: 10.1021/jacs.1c03135
    [108] Li X, Rong H, Zhang J, et al. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance[J]. Nano Research,2020,13(7):1842-1855. doi: 10.1007/s12274-020-2755-3
    [109] Xu H, Zhao Y, Wang Q, et al. Supports promote single-atom catalysts toward advanced electrocatalysis[J]. Coordination Chemistry Reviews,2022,451:214261. doi: 10.1016/j.ccr.2021.214261
    [110] Jackson C, Smith G T, Inwood D W, et al. Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum[J]. Nature Communications,2017,8(1):15802. doi: 10.1038/ncomms15802
    [111] Yang S, Tak Y J, Kim J, et al. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction[J]. ACS Catalysis,2017,7(2):1301-1307. doi: 10.1021/acscatal.6b02899
    [112] Sahoo S K, Ye Y, Lee S, et al. Rational design of TiC-supported single-atom electrocatalysts for hydrogen evolution and selective oxygen reduction reactions[J]. ACS Energy Letters,2019,4(1):126-132. doi: 10.1021/acsenergylett.8b01942
    [113] Yang S, Kim J, Tak Y J, et al. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions[J]. Angewandte Chemie International Edition,2016,55(6):2058-2062. doi: 10.1002/anie.201509241
    [114] Stamenkovic V R, Mun B S, Arenz M, et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nature Materials,2007,6(3):241-247. doi: 10.1038/nmat1840
    [115] Shin S, Kim J, Park S, et al. Changes in the oxidation state of Pt single-atom catalysts upon removal of chloride ligands and their effect for electrochemical reactions[J]. Chemical Communications,2019,55(45):6389-6392. doi: 10.1039/C9CC01593K
  • 加载中
图(6)
计量
  • 文章访问数:  1060
  • HTML全文浏览量:  759
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-10
  • 修回日期:  2021-12-25
  • 网络出版日期:  2021-12-29
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回