留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳基非金属纳米材料用于二电子氧还原制备过氧化氢的研究进展

桑志远 侯峰 王思惠 梁骥

桑志远, 侯峰, 王思惠, 梁骥. 碳基非金属纳米材料用于二电子氧还原制备过氧化氢的研究进展. 新型炭材料(中英文), 2022, 37(1): 136-151. doi: 10.1016/S1872-5805(22)60583-3
引用本文: 桑志远, 侯峰, 王思惠, 梁骥. 碳基非金属纳米材料用于二电子氧还原制备过氧化氢的研究进展. 新型炭材料(中英文), 2022, 37(1): 136-151. doi: 10.1016/S1872-5805(22)60583-3
SANG Zhi-yuan, HOU Feng, WANG Si-hui, LIANG Ji. Research progress on carbon-based non-metallic nanomaterials as catalysts for the two-electron oxygen reduction for hydrogen peroxide production. New Carbon Mater., 2022, 37(1): 136-151. doi: 10.1016/S1872-5805(22)60583-3
Citation: SANG Zhi-yuan, HOU Feng, WANG Si-hui, LIANG Ji. Research progress on carbon-based non-metallic nanomaterials as catalysts for the two-electron oxygen reduction for hydrogen peroxide production. New Carbon Mater., 2022, 37(1): 136-151. doi: 10.1016/S1872-5805(22)60583-3

碳基非金属纳米材料用于二电子氧还原制备过氧化氢的研究进展

doi: 10.1016/S1872-5805(22)60583-3
基金项目: 天津市教委科研计划项目(2019KJ137)的支持。
详细信息
    作者简介:

    桑志远,博士,助研. E-mail:sangzhiyuan@tju.edu.cn

    通讯作者:

    梁 骥,博士,教授. E-mail:liangji@tju.edu.cn

  • 中图分类号: TQ127.1+1

Research progress on carbon-based non-metallic nanomaterials as catalysts for the two-electron oxygen reduction for hydrogen peroxide production

Funds: Scientific Research Project of Tianjin Education Commission (2019KJ137).
More Information
  • 摘要: 电催化二电子氧还原反应(2e-ORR)制备过氧化氢(H2O2)凭借其高效、安全和绿色特点,逐步发展为一种可能替代工业蒽醌法的新途径。碳基纳米材料具有电子导电性高、结构稳定性好、纳米结构调控容易、成本低等优势,是一类具有良好前景的2e-ORR制备H2O2的催化剂。针对该类碳基电催化材料的发展现状及相应材料上的活性中心和反应机制进行详细论述有助于对本领域的最新进展实现全面、系统的认识。本文首先介绍了氧还原反应的四电子、二电子反应路径及相关机制;其次,综述了提高碳基纳米材料二电子氧还原活性和H2O2生成选择性的结构优化策略及其活性中心的设计思路,包括非金属单原子掺杂、双原子掺杂、结构缺陷和表面修饰等。最后,展望了电催化制备H2O2及相关催化材料的发展前景和面临的挑战。
  • FIG. 1220.  FIG. 1220.

    FIG. 1220..  FIG. 1220.

    1.  2e and 4e pathways in electrocatalytic ORR. 2e-ORR: orange arrow; 4e-ORR: green arrow[19]. Reprinted with permission.

    图  1  非金属掺杂碳催化剂用于二电子氧还原制备H2O2的常见策略:O-掺杂碳[31],B-掺杂碳[32],N-掺杂碳[33],F/N-共掺杂碳[34],O/N-共掺杂碳[35],B/N-共掺杂碳[36],碳骨架边缘缺陷设计[37],表面活性剂改性(OCB-PAA)[38]和多孔结构设计[39]

    Figure  1.  Design strategies of non-metal-doped carbon electrocatalysts for two-electron oxygen reduction to H2O2, including O-doped carbon[31], B-doped carbon [32], N-doped carbon [33], F/N co-doped carbon [34], O/N co-doped carbon [35], B/N co-doped carbon [36], edge site-rich carbon [37], OCB-PAA [38] and porous carbon[39]. Reprinted with permission.

    图  2  (a)CNTs和(b)O-CNTs的TEM照片.(c)CNTs和O-CNTs催化剂在0.1 mol L−1 KOH中的2e-ORR性能(LSV曲线)和(d)在相应电位下的H2O2选择性曲线.(e-f)不同氧官能团下ORR活性位点结构模型,以及计算出的二电子(实心黑色)ORR火山图[46].(g)F-mrGO和F-mrGO(600)的活性位点的结构示意图[31]

    Figure  2.  TEM images of (a) CNTs and (b) O-CNTs. (c) The 2e-ORR performance (LSV curves) of CNTs and O-CNTs catalysts in 0.1 mol L−1 KOH and (d) the calculated H2O2 selectivity at corresponding potentials. (e-f) DFT results of the ORR active sites under different oxygen functional groups, and the calculated two-electron (solid black) ORR-related volcano plot for the electro-reduction of oxygen to H2O2 displayed with the limiting potential plotted as a function of ∆GOOH* [46]. (g) Idealized schemes of proposed low-overpotential active sites on F-mrGO and the F-mrGO (600) [31]. Reprinted with permission.

    图  3  不同氧化炭材料的X射线吸收近边结构(XANES):(a)C K-edge和(b)O K-edge.(c)0.1 mol L−1 KOH 溶液中的2e-ORR性能,以及(d)相应的H2O2产率.(e)H2O2 (JK, H2O2) 电流与材料中羰基含量的关系.(f)含有羰基、羧基或醚基的不同有机分子的2e-ORR性能.(g-h)碳骨架中含氧基团的结构示意图及其对*OOH中间体的吸附能力计算结果,其中碳:灰色;氧,红色;氢:白色[6]

    Figure  3.  The soft X-ray absorption near-edge structure (XANES) of different oxidated carbon materials: (a) C K-edge and (b) O K-edge. (c) Their 2e-ORR performance in 0.1 mol L−1 KOH solution, and (d) the corresponding H2O2 yield ratio. (e) The relationship of the current of H2O2 ($J_{{\rm{K}},{{\rm{H}}_2}{{\rm{O}}_2}} $) and the quinone content in the materials. (f) The polarization curves of different standalone molecules with quinone, carboxylic acid, and etheric ring groups. (g-h) Theoretical analysis of different oxygenated groups, the atomic structures of the examined oxygen functional groups. Color code: carbon, gray; oxygen, red; hydrogen, white [6]. Reprinted with permission.

    图  4  (a)0.1 V vs. RHE下,不同N-掺杂炭材料内N含量与H2O2选择性之间的关系[54],(b)基本氮缺陷类型(吡啶-N或石墨-N)和不同吡啶-N构型(SV+1N、SV+2N和SV+3N)的示意图,及(c,d)具有不同氮缺陷结构和吡啶-N构型的多种N-掺杂CNTs材料的2e-ORR性能[55].(e-f)不同热解温度得到的三种(N-FLG-8、N-FLG-12和N-FLG-16)碳纳米片的XANES光谱,及其在0.10 mol L−1 KOH条件下H2O2选择性,(g)该材料的氧还原位点揭示[33]

    Figure  4.  (a) The relationship between the total content of doped N and the H2O2 selectivity at 0.1 V for different N-doped carbons[54], (b) the basic nitrogen defects (pyridinic-N or graphitic-N) and different pyridinic N configurations (SV + 1N, SV + 2N, and SV + 3N), (c, d) different N-doped CNT consists of tunable basic nitrogen defects and pyridinic N configurations and their 2e-ORR performance [55]. (e-f) XANES spectra of N-FLG-8, N-FLG-12 and N-FLG-16 and the 2e-ORR performance of N-FLG in 0.10 mol L−1 KOH and (g) the proposed two-electron and four-electron ORR pathways on N-FLG with different nitrogen configurations [33]. Reprinted with permission.

    图  5  (a)F-掺杂多孔炭催化剂的2e-ORR性能曲线[57],(b)S-掺杂空心炭球H2O2合成选择性 [58].(c)B-掺杂炭材料(B-C)的背散射电子(BSE)图像及其相应的(d)碳和(e)硼元素的波长色散光谱(WDS)映射.(f)B-、P-、N-和S-掺杂的炭材料内最优的*OOH吸附构型及其(g)氧还原路径的能量变化图。绿色、橙色、蓝色、黄色、灰色、红色和白色球体分别代表B、P、N、S、C、O和H.(h-i)B-C材料在碱性条件下的2e-ORR性能图[32]

    Figure  5.  (a) The corresponding H2O2 selectivity of F-doped porous carbon catalysts [57] and (b) S-doped hollow carbon spheres [58]. (c) Back-scattered electron (BSE) image of B-C sample and corresponding wavelength-dispersive spectroscopy (WDS) elemental mappings for (d) carbon and (e) boron. (f) Preferred *OOH adsorption configurations on B-, P-, N-, and S- doped graphene, respectively. Green, orange, blue, yellow, gray, red, and white spheres represent B, P, N, S, C, O and H, respectively. (g) Free-energy profile of O2 reduction paths. (h-i) 2e-ORR performance of B-C in 0.1 mol L−1 KOH[32]. Reprinted with permission.

    图  6  (a)具有不同氧化基团的N-掺杂炭材料的理论分析[35],(b)N/O-共掺杂多孔炭和(c-d)在0.10 mol L−1 KOH中的2e-ORR性能[62]

    Figure  6.  (a) Theoretical analysis of N-doped carbon materials with different oxygenated groups[35], (b) N/O co-doped porous carbon and the (c-d) 2e-ORR performance in 0.10 mol L−1 KOH[62]. Reprinted with permission.

    图  7  (a)BN-C1样品的SEM和(b)不同B-C样品的元素组成,(c)B/N共掺炭材料中可能的B/N位点结构及其对OH*的结合能,(d-e)不同B/N共掺炭材料在0.1 mol L−1 KOH溶液中的2e-ORR性能[36].(f)N/P共掺炭材料的H2O2选择性[63].(g-i)N/F-共掺杂碳原子的TEM和元素分布及其 2e-ORR性能[34]

    Figure  7.  (a) The SEM of BN-C1 sample and (b) the composition of different B-C samples. (c) The theoretical analysis about H2O2 synthesis of B/N co-doped carbon materials with different B/N sites. (d) The 2e-ORR performance (LSV curves) of different B/N co-doped carbon materials in 0.1 mol L−1 KOH and (e) the calculated H2O2 selectivity at corresponding potentials[36], (f) the H2O2 selectivity of N/P co-doped carbons [63], and (g-i) the TEM and corresponding elements mappings of N/F co-doped carbons, and their 2e-ORR performance[34]. Reprinted with permission.

    图  8  碳基材料的二电子氧还原为H2O2的其它策略:(a-b)具有蜂窝状多孔炭纤维材料及其2e-ORR性能[39];(c-e)具有优良O2扩散能力的介孔炭及其2e-ORR性能[30];(f-g)富含边缘缺陷结构的氧掺杂碳纳米片材料及其2e-ORR性能[37]

    Figure  8.  Other strategies to two-electron oxygen reduction to H2O2 for carbon-based materials: (a-b) Honeycomb carbon nanofibers with superhydrophilic O2-Entrapping features and the 2e-ORR performance[39]. (c-e) The mesoporous carbon spheres with effcient oxygen diffusion and their 2e-ORR performance[30]. (f-g) The active edge site-rich nanocarbon catalyst and the 2e-ORR performance[37]. Reprinted with permission.

    图  9  碳基材料的二电子氧还原为H2O2的其它策略:(a-c)表面活性剂的原位界面工程,用于无金属碳和2e-ORR性能[38]. (d-f)具有超疏水空气扩散层的碳纤维基电极材料及2e-ORR性能[64]

    Figure  9.  Other strategies to two-electron oxygen reduction to H2O2 for carbon-based materials: (a-c) In situ interface engineering with surfactants for metal-free carbon and the 2e-ORR performance[38]. (d-f) The carbon cloth based electrode with a superhydrophobic three-phase interface by natural air diffusion and its 2e-ORR performance[64]. Reprinted with permission.

    表  1  最近文献报道的碳基催化剂的2e-ORR性能

    Table  1.   Performances of recently reported catalysts for ORR to afford H2O2.

    ElectrocatalystsElectrolyteSelectivity (H2O2%)Onset potential
    (vs. RHE)
    Ref./Year
    O-CNTs0.1 mol L−1 KOH90 %~0.75 V2018[46]
    0.1 mol L−1 PBS~85 %~0.50 V
    Few-layer rGO0.1 mol L−1 KOH~100 %0.78 V2018[31]
    GNPC=O0.1 mol L−1 KOH>90 %~0.82 V2020[6]
    OCNS0.1 mol L−1 KOH>90 %~0.82 V2021[47]
    O-GOMC0.1 mol L−1 KOH>90 %~0.82 V2021[48]
    NCMK-30.1 mol L−1 KOH~80 %~0.75 V2018[54]
    0.1 mol L−1 K2SO4~75 %~0.45 V
    0.1 mol L−1 H2SO4~95 %~0.35 V
    N-FLG0.1 mol L−1 KOH>95 %~0.76 V2020[33]
    FPC0.05 mol L−1 H2SO4~80 %~0.30 V2018[57]
    HPCS-S0.1 mol L−1 KOH~70 %~0.75 V2019[58]
    B-C0.1 mol L−1 KOH~90 %~0.76 V2021[32]
    0.1 mol L−1 Na2SO4~75 %~0.40 V
    N/O co-doped0.1 mol L−1 KOH>90 %~0.78 V2021[62]
    N+COOH0.1 mol L−1 KOH>90 %0.80 V2019[35]
    B/N co-doped0.1 mol L−1 KOH~80 %0.80 V2018[36]
    P/N co-doped0.1 mol L−1 KOH~85 %0.70 V2021[63]
    F/N co-doped0.1 mol L−1 KOH~80 %~0.77 V2020[34]
    0.05 mol L−1 H2SO4>80 %~0.72 V
    CB+CTAB0.1 mol L−1 KOH>90 %~0.75 V2020[38]
    Edge-rich Carbon0.1 mol L−1 KOH>90%~0.78 V2019[37]
    Home-like porous carbon fiber0.1 mol L−1 KOH>90 %~0.85 V2021[39]
    下载: 导出CSV
  • [1] Zhou W, Meng X, Gao J, et al. Hydrogen peroxide generation from O2 electroreduction for environmental remediation: A state-of-the-art review[J]. Chemosphere,2019,225:588-607. doi: 10.1016/j.chemosphere.2019.03.042
    [2] Perry S C, Pangotra D, Vieira L, et al. Electrochemical synthesis of hydrogen peroxide from water and oxygen[J]. Nature Reviews Chemistry,2019,3(7):442-458. doi: 10.1038/s41570-019-0110-6
    [3] Zhou Y, Chen G, Zhang J. A review of advanced metal-free carbon catalysts for oxygen reduction reactions towards the selective generation of hydrogen peroxide[J]. Journal of Materials Chemistry A,2020,8(40):20849-20869. doi: 10.1039/D0TA07900F
    [4] Siahrostami S, Verdaguer-Casadevall A, Karamad M, et al. Enabling direct H2O2 production through rational electrocatalyst design[J]. Nature Materials,2013,12(12):1137-1143. doi: 10.1038/nmat3795
    [5] Guo X, Lin S, Gu J, et al. Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: The power of single-atom catalysts[J]. ACS Catalysis,2019,9(12):11042-11054. doi: 10.1021/acscatal.9b02778
    [6] Han G-F, Li F, Zou W, et al. Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2[J]. Nature Communications,2020,11(1):2209. doi: 10.1038/s41467-020-15782-z
    [7] Campos-Martin J M, Blanco-Brieva G, Fierro J L G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process[J]. Angewandte Chemie International Edition,2006,45(42):6962-6984. doi: 10.1002/anie.200503779
    [8] San Roman D, Krishnamurthy D, Garg R, et al. Engineering three-dimensional (3D) out-of-plane graphene edge sites for highly selective two-electron oxygen reduction electrocatalysis[J]. ACS Catalysis,2020,10(3):1993-2008. doi: 10.1021/acscatal.9b03919
    [9] Zhang J, Zhang G, Jin S, et al. Graphitic N in nitrogen-doped carbon promotes hydrogen peroxide synthesis from electrocatalytic oxygen reduction[J]. Carbon,2020,163:154-161. doi: 10.1016/j.carbon.2020.02.084
    [10] Liu H, Zhu S, Cui Z, et al. Tuning the π-electron delocalization degree of mesoporous carbon for hydrogen peroxide electrochemical generation[J]. Journal of Catalysis,2020,392:1-7. doi: 10.1016/j.jcat.2020.09.033
    [11] Han L, Sun Y, Li S, et al. In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene[J]. ACS Catalysis,2019,9(2):1283-1288. doi: 10.1021/acscatal.8b03734
    [12] Jiang Y, Ni P, Chen C, et al. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry[J]. Advanced Energy Materials,2018,8(31):1801909. doi: 10.1002/aenm.201801909
    [13] Gao J, Liu B. Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts[J]. ACS Materials Letters,2020,2(8):1008-1024. doi: 10.1021/acsmaterialslett.0c00189
    [14] Hunter M A, Fischer J M T A, Yuan Q, et al. Evaluating the catalytic efficiency of paired, single-atom catalysts for the oxygen reduction reaction[J]. ACS Catalysis,2019,9(9):7660-7667. doi: 10.1021/acscatal.9b02178
    [15] Bu Y, Wang Y, Han G F, et al. Carbon-based electrocatalysts for efficient hydrogen peroxide production[J]. Advanced Materials,2021,33(49):2103266. doi: 10.1002/adma.202103266
    [16] Hu C, Dai L. Carbon-based metal-free catalysts for electrocatalysis beyond the ORR[J]. Angewandte Chemie International Edition,2016,55(39):11736-11758. doi: 10.1002/anie.201509982
    [17] Jiang K, Back S, Akey A J, et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination[J]. Nature Communications,2019,10(1):3997. doi: 10.1038/s41467-019-11992-2
    [18] Hooe S L, Machan C W. Dioxygen reduction to hydrogen peroxide by a molecular Mn complex: mechanistic divergence between homogeneous and heterogeneous reductants[J]. Journal of the American Chemical Society,2019,141(10):4379-4387. doi: 10.1021/jacs.8b13373
    [19] Zhao H, Yuan Z Y. Design Strategies of non-noble metal-based electrocatalysts for two-electron oxygen reduction to hydrogen peroxide[J]. ChemSusChem,2021,14(7):1616-1633. doi: 10.1002/cssc.202100055
    [20] Jirkovský J S, Panas I, Ahlberg E, et al. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production[J]. Journal of the American Chemical Society,2011,133(48):19432-19441. doi: 10.1021/ja206477z
    [21] Verdaguer-Casadevall A, Deiana D, Karamad M, et al. Trends in the electrochemical synthesis of H2O2: Enhancing activity and selectivity by electrocatalytic site engineering[J]. Nano Letters,2014,14(3):1603-1608. doi: 10.1021/nl500037x
    [22] Yang S, Kim J, Tak Y J, et al. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions[J]. Angewandte Chemie International Edition,2016,55(6):2058-2062. doi: 10.1002/anie.201509241
    [23] Zhang Q, Tan X, Bedford N M, et al. Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production[J]. Nature Communications,2020,11(1):4181. doi: 10.1038/s41467-020-17782-5
    [24] Jung E, Shin H, Lee B H, et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production[J]. Nature Materials,2020,19(4):436-442. doi: 10.1038/s41563-019-0571-5
    [25] Smith P T, Kim Y, Benke B P, et al. Supramolecular tuning enables selective oxygen reduction catalyzed by cobalt porphyrins for direct electrosynthesis of hydrogen peroxide[J]. Angewandte Chemie International Edition,2020,59(12):4902-4907. doi: 10.1002/anie.201916131
    [26] Shen H, Pan L, Thomas T, et al. Selective and continuous electrosynthesis of hydrogen peroxide on nitrogen-doped carbon supported nickel[J]. Cell Reports Physical Science,2020,1(11):100255. doi: 10.1016/j.xcrp.2020.100255
    [27] Wang Y, Shi R, Shang L, et al. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell[J]. Angewandte Chemie International Edition,2020,59(31):13057-13062. doi: 10.1002/anie.202004841
    [28] Pang Y, Wang K, Xie H, et al. Mesoporous carbon hollow spheres as efficient electrocatalysts for oxygen reduction to hydrogen peroxide in neutral electrolytes[J]. ACS Catalysis,2020,10(14):7434-7442. doi: 10.1021/acscatal.0c00584
    [29] Pan Z, Wang K, Wang Y, et al. In-situ electrosynthesis of hydrogen peroxide and wastewater treatment application: A novel strategy for graphite felt activation[J]. Applied Catalysis B:Environmental,2018,237:392-400. doi: 10.1016/j.apcatb.2018.05.079
    [30] Huang B, Cui Y, Hu R, et al. Promoting the two-electron oxygen reduction reaction performance of carbon nanospheres by pore engineering[J]. ACS Applied Energy Materials,2021,4(5):4620-4629. doi: 10.1021/acsaem.1c00259
    [31] Kim H W, Ross M B, Kornienko N, et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts[J]. Nature Catalysis,2018,1(4):282-290. doi: 10.1038/s41929-018-0044-2
    [32] Xia Y, Zhao X, Xia C, et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates[J]. Nature Communications,2021,12(1):4225. doi: 10.1038/s41467-021-24329-9
    [33] Li L, Tang C, Zheng Y, et al. Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon[J]. Advanced Energy Materials,2020,10(21):2000789. doi: 10.1002/aenm.202000789
    [34] Jia N, Yang T, Shi S, et al. N, F-codoped carbon nanocages: An efficient electrocatalyst for hydrogen peroxide electroproduction in alkaline and acidic solutions[J]. ACS Sustainable Chemistry & Engineering,2020,8(7):2883-2891.
    [35] Zhao H, Shen X, Chen Y, et al. A COOH-terminated nitrogen-doped carbon aerogel as a bulk electrode for completely selective two-electron oxygen reduction to H2O2[J]. Chemical Communications,2019,55(44):6173-6176. doi: 10.1039/C9CC02580D
    [36] Chen S, Chen Z, Siahrostami S, et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide[J]. Journal of the American Chemical Society,2018,140(25):7851-7859. doi: 10.1021/jacs.8b02798
    [37] Sa Y J, Kim J H, Joo S H. Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production[J]. Angewandte Chemie International Edition,2019,58(4):1100-1105. doi: 10.1002/anie.201812435
    [38] Wu K-H, Wang D, Lu X, et al. Highly selective hydrogen peroxide electrosynthesis on carbon: In situ interface engineering with surfactants[J]. Chem,2020,6(6):1443-1458. doi: 10.1016/j.chempr.2020.04.002
    [39] Dong K, Liang J, Wang Y, et al. Honeycomb carbon nnanofibers: a superhydrophilic O2-entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction[J]. Angewandte Chemie International Edition,2021,60(19):10583-10587. doi: 10.1002/anie.202101880
    [40] Sahoo S K, Ye Y, Lee S, et al. Rational design of TiC-supported single-atom electrocatalysts for hydrogen evolution and selective oxygen reduction reactions[J]. ACS Energy Letters,2019,4(1):126-132. doi: 10.1021/acsenergylett.8b01942
    [41] Yang Q, Xu W, Gong S, et al. Atomically dispersed Lewis acid sites boost 2-electron oxygen reduction activity of carbon-based catalysts[J]. Nature Communications,2020,11(1):5478. doi: 10.1038/s41467-020-19309-4
    [42] Lu X, Wang D, Wu K H, et al. Oxygen reduction to hydrogen peroxide on oxidized nanocarbon: Identification and quantification of active sites[J]. Journal of Colloid and Interface Science,2020,573:376-383. doi: 10.1016/j.jcis.2020.04.030
    [43] Wang Y L, Li S S, Yang X H, et al. One minute from pristine carbon to an electrocatalyst for hydrogen peroxide production[J]. Journal of Materials Chemistry A,2019,7(37):21329-21337. doi: 10.1039/C9TA04788C
    [44] Zhu J, Xiao X, Zheng K, et al. KOH-treated reduced graphene oxide: 100% selectivity for H2O2 electroproduction[J]. Carbon,2019,153:6-11. doi: 10.1016/j.carbon.2019.07.009
    [45] Zhou W, Xie L, Gao J, et al. Selective H2O2 electrosynthesis by O-doped and transition-metal-O-doped carbon cathodes via O2 electroreduction: A critical review[J]. Chemical Engineering Journal,2021,410:128368. doi: 10.1016/j.cej.2020.128368
    [46] Lu Z, Chen G, Siahrostami S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J]. Nature Catalysis,2018,1(2):156-162. doi: 10.1038/s41929-017-0017-x
    [47] Chen S, Luo T, Chen K, et al. Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide[J]. Angewandte Chemie International Edition,2021,60(30):16607-16614. doi: 10.1002/anie.202104480
    [48] Lim J S, Kim J H, Woo J, et al. Designing highly active nanoporous carbon H2O2 production electrocatalysts through active site identification[J]. Chem,2021,7(11):3114-3130. doi: 10.1016/j.chempr.2021.08.007
    [49] Zhou T, Zhang N, Wu C, et al. Surface/interface nanoengineering for rechargeable Zn-air batteries[J]. Energy & Environmental Science,2020,13(4):1132-1153.
    [50] Ji H, Wang M, Liu S, et al. Pyridinic and graphitic nitrogen-enriched carbon paper as a highly active bifunctional catalyst for Zn-air batteries[J]. Electrochimica Acta,2020,334:135562. doi: 10.1016/j.electacta.2019.135562
    [51] Paul R, Du F, Dai L, et al. 3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices[J]. Advanced Materials,2019,31(13):1805598. doi: 10.1002/adma.201805598
    [52] Gao K, Wang B, Tao L, et al. Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: mono-doping and Co-doping[J]. Advanced Materials,2019,31(13):1805121. doi: 10.1002/adma.201805121
    [53] Li W, Wang D, Zhang Y, et al. Defect engineering for fuel-cell electrocatalysts[J]. Advanced Materials,2020,32(19):1907879. doi: 10.1002/adma.201907879
    [54] Sun Y, Sinev I, Ju W, et al. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts[J]. ACS Catalysis,2018,8(4):2844-2856. doi: 10.1021/acscatal.7b03464
    [55] Fernandez-Escamilla H N, Guerrero-Sanchez J, Contreras E, et al. Understanding the selectivity of the oxygen reduction reaction at the atomistic level on nitrogen-doped graphitic carbon materials[J]. Advanced Energy Materials,2021,11(3):2002459. doi: 10.1002/aenm.202002459
    [56] Contreras E, Dominguez D, Tiznado H, et al. N-doped carbon nanotubes enriched with graphitic nitrogen in a buckypaper configuration as efficient 3D electrodes for oxygen reduction to H2O2[J]. Nanoscale,2019,11(6):2829-2839. doi: 10.1039/C8NR08384C
    [57] Zhao K, Su Y, Quan X, et al. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon[J]. Journal of Catalysis,2018,357:118-126. doi: 10.1016/j.jcat.2017.11.008
    [58] Chen G, Liu J, Li Q, et al. A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts[J]. Nano Research,2019,12(10):2614-2622. doi: 10.1007/s12274-019-2496-3
    [59] Shao H, Zhuang Q, Gao H, et al. Nitrogen and oxygen tailoring of a solid carbon active site for two-electron selectivity electrocatalysis[J]. Inorganic Chemistry Frontiers,2021,8(1):173-181. doi: 10.1039/D0QI01089H
    [60] Li X, Wang X, Xiao G, et al. Identifying active sites of boron, nitrogen co-doped carbon materials for the oxygen reduction reaction to hydrogen peroxide[J]. Journal of Colloid and Interface Science,2021,602:799-809. doi: 10.1016/j.jcis.2021.06.068
    [61] Chen E, Bevilacqua M, Tavagnacco C, et al. High surface area N/O co-doped carbon materials: Selective electrocatalysts for O2 reduction to H2O2[J]. Catalysis Today,2020,356:132-140. doi: 10.1016/j.cattod.2019.06.034
    [62] Zhang C, Liu G, Ning B, et al. Highly efficient electrochemical generation of H2O2 on N/O co-modified defective carbon[J]. International Journal of Hydrogen Energy,2021,46(27):14277-14287. doi: 10.1016/j.ijhydene.2021.01.195
    [63] Sun Y, Li S, Paul B, et al. Highly efficient electrochemical production of hydrogen peroxide over nitrogen and phosphorus dual-doped carbon nanosheet in alkaline medium[J]. Journal of Electroanalytical Chemistry,2021,896:115197. doi: 10.1016/j.jelechem.2021.115197
    [64] Zhang Q, Zhou M, Ren G, et al. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion[J]. Nature Communications,2020,11(1):1731. doi: 10.1038/s41467-020-15597-y
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1730
  • HTML全文浏览量:  849
  • PDF下载量:  291
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-09
  • 修回日期:  2021-12-27
  • 网络出版日期:  2022-01-13
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回