留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

炭材料在低温型磷酸铁锂材料中的应用分析及展望

曹贺 闻雷 郭震强 朴楠 胡广剑 吴敏杰 李峰

曹贺, 闻雷, 郭震强, 朴楠, 胡广剑, 吴敏杰, 李峰. 炭材料在低温型磷酸铁锂材料中的应用分析及展望. 新型炭材料(中英文), 2022, 37(1): 46-58. doi: 10.1016/S1872-5805(22)60584-5
引用本文: 曹贺, 闻雷, 郭震强, 朴楠, 胡广剑, 吴敏杰, 李峰. 炭材料在低温型磷酸铁锂材料中的应用分析及展望. 新型炭材料(中英文), 2022, 37(1): 46-58. doi: 10.1016/S1872-5805(22)60584-5
CAO He, WEN Lei, GUO ZHEN-qiang, PIAO Nan, HU Guang-jian, WU Min-jie, LI Feng. Application and prospects for using carbon materials to modify lithium iron phosphate materials used at low temperatures. New Carbon Mater., 2022, 37(1): 46-58. doi: 10.1016/S1872-5805(22)60584-5
Citation: CAO He, WEN Lei, GUO ZHEN-qiang, PIAO Nan, HU Guang-jian, WU Min-jie, LI Feng. Application and prospects for using carbon materials to modify lithium iron phosphate materials used at low temperatures. New Carbon Mater., 2022, 37(1): 46-58. doi: 10.1016/S1872-5805(22)60584-5

炭材料在低温型磷酸铁锂材料中的应用分析及展望

doi: 10.1016/S1872-5805(22)60584-5
基金项目: 国家自然科学基金(52072378,52102054,52020105010),辽宁省“兴辽英才计划”项目(XLYC1908015),沈阳市科技局项目(20-2-1-1-04)。
详细信息
    作者简介:

    曹贺:曹 贺,工程师. E-mail:1965475584@qq.com

    通讯作者:

    闻 雷,副研究员. E-mail:leiwen@imr.ac.cn

    李 峰,研究员. E-mail:fli@imr.ac.cn

  • 中图分类号: TB33

Application and prospects for using carbon materials to modify lithium iron phosphate materials used at low temperatures

Funds: National Natural Science Foundation of China (52072378, 52102054, 52020105010); Liaoning Revitalization Talents Program (XLYC1908015) and Shenyang Science and Technology Program (20-2-1-1-04).
More Information
  • 摘要: 磷酸铁锂为正极的锂离子电池是目前电动汽车和储能领域应用最为广泛的电池体系之一,具有成本低廉、循环寿命长、安全性好等特点。但磷酸铁锂为正极的锂离子电池在低温下的容量和循环寿命衰减问题一直制约了其在寒冷地区的推广和应用。因此磷酸铁锂材料本身低温放电性能的提高,对于改善磷酸铁锂为正极的锂离子电池体系的低温放电特性具有重要意义。本文首先分析了磷酸铁锂为正极的锂离子电池的低温衰减机制,从炭材料作用的角度评述了低温型磷酸铁锂材料的研究进展,同时也关注了高倍率型磷酸铁锂材料。因磷酸铁锂的高倍率性能与低温特性具有很大的相似之处,两者对材料的要求基本接近,材料的设计原则和方法也基本相同。本文也重点分析了纳米炭材料,如碳纳米管和石墨烯等在低温型磷酸铁锂材料领域的应用。
  • FIG. 1215.  FIG. 1215.

    FIG. 1215..  FIG. 1215.

    图  1  充放电过程中锂离子的迁移过程[4]

    Figure  1.  Li+ migration during charge/discharge process[4]. Reprinted with permission.

    图  2  不同聚合物炭源得到的磷酸铁锂材料的形貌:(a) PEO, (b) PB, (c) PS, (d) SBS[29]

    Figure  2.  LiFePO4/C materials synthesized with various carbon source: (a) PEO, (b) PB, (c) PS and (d) SBS[29]. Reprinted with permission.

    图  3  催化炭包覆磷酸铁锂纳米片及其高倍率电化学性能[32]

    Figure  3.  Schematic illustration of the preparation process for the LiFePO4 nanoplates with graphitized carbon coating and its high rate electrochemical performance[32]. Reprinted with permission.

    图  4  不同碳源合成的磷酸铁锂材料的形貌[33]

    Figure  4.  Morphologies of LiFePO4/C materials fabricated with various carbon source[33]. Reprinted with permission.

    图  5  FePO4原位聚合法制备磷酸铁锂材料[28]

    Figure  5.  Preparation of LiFePO4/C material with an in situ polymerization reaction[28]. Reprinted with permission.

    图  6  磷酸铁锂/石墨烯材料的制备过程 [55]

    Figure  6.  Illustration of the preparation process of LiFePO4/graphene[55]. Reprinted with permission.

    图  7  磷酸铁锂/石墨烯材料的合成[58]

    Figure  7.  Schematic synthetic route for the LiFePO4-graphene hybrids[58]. Reprinted with permission.

    图  8  磷酸铁锂/碳纳米管材料. (a) SEM照片,(b) 高分辨透射电子显微镜照片,(c) 倍率放电性能,(d) 不同温度下的容量保持率. 其中LFP为纯相磷酸铁锂材料,LFP/CNT为磷酸铁锂/碳纳米管材料,LFP@C为炭包覆磷酸铁锂材料,LFP@C/CNT为炭包覆结合碳纳米管材料[61]

    Figure  8.  Carbon nanotube-decorated LiFePO4@C material. (a) SEM image, (b) HRTEM image, (c) rate performance, (d) capacity retention under various temperatures. where LFP, LFP/CNT, LFP@C and LFP@C/CNT are pristine LiFePO4, CNT decorated LiFePO4, carbon coated LiFePO4 and CNT decorated LiFePO4@C materials, respectively[61]. Reprinted with permission.

    图  9  磷酸铁锂为正极的锂离子电池低温改性策略

    Figure  9.  Strategies toward low temperature LiFePO4 batteries.

    表  1  低温型与常规磷酸铁锂材料的主要参数和性能对比

    Table  1.   Comparison between conventional and low-temperature type LiFePO4/C materials.

    Materials typeC%
    (w/w)
    BET
    (m2 g−1)
    Primary
    particle (nm)
    Secondary
    Particle (μm)
    Tapped
    density (g cm−3)
    Calendered
    density (g cm−3)
    Rate
    performance
    Temperature
    window (℃)
    LiFePO41.0~1.510~15100~3001.0~1.5≥1.0≥2.5~1 C at 25 ℃≥0
    Low-temperature
    LiFePO4
    1.5~2.015~20300~5001.5~2.0≥0.82.0~2.3≥10 C
    at 25 ℃
    ≥−25
    下载: 导出CSV

    表  2  常见锂离子电池商品导电剂的物理特性

    Table  2.   Physical properties of typical carbon conductive for LIBs.

    PropertiesSuper P LiECP-600JDGraphiteCNTsGraphene
    Diameter (nm)40353000~500010~151000~2000
    BET (m2 g−1)6212705~10100~200100~300
    Oil Adsorption
    number (mL/100 g)
    150400~50010//
    Volume Resistivity
    (Ω·cm)
    0.010.010.00010.00010.0001
    下载: 导出CSV
  • [1] Lu Y X, Rong X H, Hu Y S, et al. Research and development of advanced battery materials in China[J]. Energy Storage Materials,2019,23:144-153. doi: 10.1016/j.ensm.2019.05.019
    [2] Gupta A, Manthiram A. Designing advanced lithium-based batteries for low-temperature conditions[J]. Advanced Energy Materials,2020,10(38):2001972. doi: 10.1002/aenm.202001972
    [3] Li Q Y, Lu D P, Zheng J M, et al. Li+-desolvation dictating lithium-ion battery’s low-temperature performances[J]. ACS Applied Materials & Interfaces,2017,9(49):42761-42768.
    [4] Piao N, Gao X N, Yang H C, et al. Challenges and development of lithium-ion batteries for low temperature environments[J]. eTransportation,2022,11:100145. doi: 10.1016/j.etran.2021.100145
    [5] Zhu G L, Wen K C, Lv W Q, et al. Materials insights into low-temperature performances of lithium-ion batteries[J]. Journal of Power Sources,2015,300:29-40. doi: 10.1016/j.jpowsour.2015.09.056
    [6] Rodrigues M F, Babu G L, Gullapalli H, et al. A materials perspective on Li-ion batteries at extreme temperatures[J]. Nature Energy,2017,2(8):17108. doi: 10.1038/nenergy.2017.108
    [7] Liao X Z, Ma Z F, Gong Q, et al. Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte[J]. Electrochemistry Communications,2008,10(5):691-694. doi: 10.1016/j.elecom.2008.02.017
    [8] Rui X H, Jin Y, Feng X Y, et al. A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries[J]. Journal of Power Sources,2011,196(4):2109-2114. doi: 10.1016/j.jpowsour.2010.10.063
    [9] Wang J J, Yang J L, Zhang Y, et al. Interaction of carbon coating on LiFePO4: A local visualization study of the influence of impurity phases[J]. Advanced Functional Materials,2013,23(7):806-814. doi: 10.1002/adfm.201201310
    [10] Wang J J, Sun X L. Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries[J]. Energy & Environmental Science,2012,5(1):5163-5185.
    [11] Wang J J, Sun X L. Olivine LiFePO4: The remaining challenges for future energy storage[J]. Energy & Environmental Science,2015,8(4):1110-1138.
    [12] Li L, Wu L, Wu F, et al. Review-recent research progress in surface modification of LiFePO4 cathode materials[J]. Journal of the Electrochemical Society,2017,164(9):A2138-A2150. doi: 10.1149/2.1571709jes
    [13] Yuan L X, Wang Z H, Zhang W X, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries[J]. Energy & Environmental Science,2011,4(2):269-284.
    [14] Meethong N, Kao Y H, Speakman S A, et al. Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties[J]. Advanced Functional Materials,2009,19(7):1060-1070. doi: 10.1002/adfm.200801617
    [15] Meethong N, Kao Y H, Tang M, et al. Electrochemically induced phase transformation in nanoscale olivines Li1-xMPO4 (M = Fe, Mn)[J]. Chemistry of Materials,2008,20(19):6189-6198. doi: 10.1021/cm801722f
    [16] 梁骥, 李峰, 闻雷, 等. 碳材料在电化学储能中的应用[J]. 电化学,2015,21(6):505-517.

    LIANG J, WEN L, LI F, et al. Applications of carbon materials in electrochemical energy storage[J]. Journal of Electrochemistry,2015,21(6):505-517.
    [17] Dai L M, Chang D W, Baek J B, et al. Carbon nanomaterials for advanced energy conversion and storage[J]. Small,2012,8(8):1130-1166. doi: 10.1002/smll.201101594
    [18] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society,1997,144(4):1188-1194. doi: 10.1149/1.1837571
    [19] Zhang W J. Structure and performance of LiFePO4 cathode materials: A review[J]. Journal of Power Sources,2011,196(6):2962-2970. doi: 10.1016/j.jpowsour.2010.11.113
    [20] Yamada A, Hosoya M, Chung S C, et al. Olivine-type cathodes achievements and problems[J]. Journal of Power Sources,2003,119:232-238.
    [21] Jugovic D, Uskokovic D. A review of recent developments in the synthesis procedures of lithium iron phosphate powders[J]. Journal of Power Sources,2009,190(2):538-544. doi: 10.1016/j.jpowsour.2009.01.074
    [22] Chen Z Y, Zhu H L, Ji S, et al. Influence of carbon sources on electrochemical performances of LiFePO4/C composites[J]. Solid State Ionics,2008,179(27):1810-1815.
    [23] Chen Z H, Dahn J R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density[J]. Journal of the Electrochemical Society,2002,149(9):A1184-A1189. doi: 10.1149/1.1498255
    [24] Wang L, Huang Y D, Jiang R R, et al. Nano-LiFePO4/MWCNT cathode materials prepared by room-temperature solid-state reaction and microwave heating[J]. Journal of the Electrochemical Society,2007,154(11):A1015-A1019. doi: 10.1149/1.2776231
    [25] Tan J, Tiwari A. Effects of carbon precursors on LiFePO4/C nanocomposites for lithium-ion batteries[J]. Nanoscience and Nanotechnology Letters,2011,3(4):487-490. doi: 10.1166/nnl.2011.1197
    [26] Mi C H, Zhao X B, Cao G S, et al. In situ synthesis and properties of carbon-coated LiFePO4 as Li-ion battery cathodes[J]. Journal of the Electrochemical Society,2005,152(3):A483-A487. doi: 10.1149/1.1852438
    [27] Fey G T K, Tu H J, Huang K P, et al. Particle size effects of carbon sources on electrochemical properties of LiFePO4/C composites[J]. Journal of Solid State Electrochemistry,2012,16(5):1857-1862. doi: 10.1007/s10008-011-1621-3
    [28] Wang Y G, Wang Y R, Hosono E J, et al. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method[J]. Angewandte Chemie-International Edition,2008,47(39):7461-7465. doi: 10.1002/anie.200802539
    [29] Nien Y H, Carey J R, Chen J S. Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors[J]. Journal of Power Sources,2009,193(2):822-827. doi: 10.1016/j.jpowsour.2009.04.013
    [30] Dominko R, Bele M, Gaberscek M, et al. Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites[J]. Journal of the Electrochemical Society,2005,152(3):A607-A610. doi: 10.1149/1.1860492
    [31] Zhang H, Xu Y L, Zhao C J, et al. Effects of carbon coating and metal ions doping on low temperature electrochemical properties of LiFePO4 cathode material[J]. Electrochimica Acta,2012,83:341-347. doi: 10.1016/j.electacta.2012.07.128
    [32] Ma Z P, Fan Y Q, Shao G J, et al. In situ catalytic synthesis of high-graphitized carbon-coated LiFePO4 nanoplates for superior Li-ion battery cathodes[J]. ACS Applied Materials & Interfaces,2015,7(4):2937-2943.
    [33] Wen L, Hu X D, Luo H Z, et al. Open-pore LiFePO4/C microspheres with high volumetric energydensity for lithium ion batteries[J]. Particuology,2015,22(5):24-29.
    [34] 张宁, 刘永畅, 陈程成, 等. 磷酸铁锂表面碳包覆研究进展[J]. 电化学,2015,21(3):201-210.

    ZHANG N, LIU Y C, CHEN C C, et al. Research progress in carbon coating on LiFePO4 cathode materials for lithium ion batteries[J]. Journal of Electrochemistry,2015,21(3):201-210.
    [35] Liu Y L, Wang J J, Liu J, et al. Origin of phase inhomogeneity in lithium iron phosphate during carbon coating[J]. Nano Energy,2018,45:52-60. doi: 10.1016/j.nanoen.2017.12.035
    [36] Li Z J, Peng Z Z, Zhang H, et al. [100]-oriented LiFePO4 nanoflakes toward high rate Li-ion battery cathode[J]. Nano Letters,2016,16(1):795-799. doi: 10.1021/acs.nanolett.5b04855
    [37] Qin X, Wang J M, Xie J, et al. Hydrothermally synthesized LiFePO4 crystals with enhanced electrochemical properties: simultaneous suppression of crystal growth along 010 and antisite defect formation[J]. Physical Chemistry Chemical Physics,2012,14(8):2669-2677. doi: 10.1039/c2cp23433e
    [38] Nan C Y, Lu J, Chen C, et al. Solvothermal synthesis of lithium iron phosphate nanoplates[J]. Journal of Materials Chemistry,2011,21(27):9994-9996. doi: 10.1039/c0jm04126b
    [39] Sun C W, Rajasekhara S, Goodenough J B, et al. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode[J]. Journal of the American Chemical Society,2011,133(7):2132-2135. doi: 10.1021/ja1110464
    [40] Yang L T, Xia Y G, Fan X, et al. Constructing durable carbon layer on LiMn0.8Fe0.2PO4 with superior long-term cycling performance for lithium-ion battery[J]. Electrochimica Acta,2016,191:200-206. doi: 10.1016/j.electacta.2016.01.069
    [41] Yang M P, Guo Y J, Wang Q S, et al. Synthesis and properties of optimized LiFePO4/C by a CVD-assisted two-step coating method[J]. Journal of Nanoparticle Research,2014,16(9):2598. doi: 10.1007/s11051-014-2598-5
    [42] Spahr M E, Goers D, Leone A, et al. Development of carbon conductive additives for advanced lithium ion batteries[J]. Journal of Power Sources,2011,196(7):3404-3413. doi: 10.1016/j.jpowsour.2010.07.002
    [43] Zheng H H, Yang R Z, Liu G, et al. Cooperation between active material, polymeric binder and conductive carbon additive in lithium ion battery cathode[J]. Journal of Physical Chemistry C,2012,116(7):4875-4882. doi: 10.1021/jp208428w
    [44] Hong J K, Lee J H, Oh S M. Effect of carbon additive on electrochemical performance of LiCoO2 composite cathodes[J]. Journal of Power Sources,2002,111(1):90-96. doi: 10.1016/S0378-7753(02)00264-1
    [45] Zhang Q T, Peng G C, Wang G P, et al. Effect of mesoporous carbon containing binary conductive additives in lithium ion batteries on the electrochemical performance of the LiCoO2 composite cathodes[J]. Solid State Ionics,2009,180(9-10):698-702. doi: 10.1016/j.ssi.2009.03.008
    [46] Jin Y Z, Li B H, Zhang Z, et al. Production of high purity conductive carbon black by high temperature treatment[J]. Nanoscience and Nanotechnology Letters,2011,3(6):784-787. doi: 10.1166/nnl.2011.1266
    [47] Kuroda S, Tobori N, Sakuraba M, et al. Charge-discharge properties of a cathode prepared with ketjen black as the electro-conductive additive in lithium ion batteries[J]. Journal of Power Sources,2003,119:924-928.
    [48] Wang C W, Yi Y B, Sastry A M, et al. Particle compression and conductivity in Li-ion anodes with graphite additives[J]. Journal of the Electrochemical Society,2004,151(9):A1489-A1498. doi: 10.1149/1.1783909
    [49] Liu C, Cheng H M. Carbon nanotubes: Controlled growth and application[J]. Materials Today,2013,16(1-2):19-28. doi: 10.1016/j.mattod.2013.01.019
    [50] Liu C, Li F, Ma L P, et al. Advanced materials for energy storage[J]. Advanced Materials,2010,22(8):E28-E63. doi: 10.1002/adma.200903328
    [51] Chen X L, Lu W Z, Chen C, et al. Improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode with different carbon additives for lithium-ion batteries[J]. International Journal of Electrochemical Science,2018,13(1):296-304.
    [52] Su F Y, He Y B, Li B H, et al. Could graphene construct an effective conducting network in a high-power lithium ion battery?[J]. Nano Energy,2012,1(3):429-439. doi: 10.1016/j.nanoen.2012.02.004
    [53] Wei X F, Guan Y B, Zheng X H, et al. Improvement on high rate performance of LiFePO4 cathodes using graphene as a conductive agent[J]. Applied Surface Science,2018,440:748-754. doi: 10.1016/j.apsusc.2018.01.201
    [54] Shi Y, Wen L, Pei S F, et al. Choice for graphene as conductive additive for cathode of lithium-ion batteries[J]. Journal of Energy Chemistry,2019,30:19-26. doi: 10.1016/j.jechem.2018.03.009
    [55] Zhou X F, Wang F, Zhu Y M, et al. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries[J]. Journal of Materials Chemistry,2011,21(10):3353-3358. doi: 10.1039/c0jm03287e
    [56] Wang B, Al Abdulla W, Wang D L, et al. A three-dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries[J]. Energy & Environmental Science,2015,8(3):869-875.
    [57] Li N, Chen Z P, Ren W C, et al. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(43):17360-17365. doi: 10.1073/pnas.1210072109
    [58] Fan Q, Zhang Y J, Xu Q Y, et al. Coral-shaped porous LiFePO4/graphene hybrids for high rate and all-climate battery applications[J]. Energy Storage Materials,2019,21:457-463. doi: 10.1016/j.ensm.2019.06.020
    [59] Kucinskis G, Bajars G, Kleperis J. Graphene in lithium ion battery cathode materials: A review[J]. Journal of Power Sources,2013,240:66-79. doi: 10.1016/j.jpowsour.2013.03.160
    [60] Luo W B, Wen L, Luo H Z, et al. Carbon nanotube-modified LiFePO4 for high rate lithium ion batteries[J]. New Carbon Materials,2014,29(4):287-294. doi: 10.1016/S1872-5805(14)60138-4
    [61] Wu X L, Guo Y G, Su J, et al. Carbon-nanotube-decorated nano-LiFePO4 @C cathode material with superior high-rate and low-temperature performances for lithium-ion batteries[J]. Advanced Energy Materials,2013,3(9):1155-1160. doi: 10.1002/aenm.201300159
    [62] 朱成玉, 叶幼文, 郭霞, 等. 不同维度碳质纳米材料的设计与合成在电化学储能中的应用[J]. 新型炭材料, DOI: 10.1016/S1872-5805(22)60579-1.

    Zhu C Y, Ye Y W, Guo X, et al. Design and synthesis of carbon-based nanomaterials with different dimensions for electrochemical energy storage [J]. New Carbon Materials, DOI: 10.1016/S1872-5805(22)60579-1.
    [63] 李圆, 田晓冬, 宋燕, 等. 高性能无烟煤基石墨的制备及其储锂性能研究[J]. 新型炭材料, DOI; 10.1016/S1872-5805(21)60057-4.

    Li Y, Tian X D, Song Y, et al. Preparation of high-performance anthracite-based graphite anode materials and their lithium storage properties [J]. New Carbon Materials, DOI; 10.1016/S1872-5805(21)60057-4.
    [64] Zhang S S, Xu K, Jow T R. The low temperature performance of Li-ion batteries[J]. Journal of Power Sources,2003,115(1):137-140. doi: 10.1016/S0378-7753(02)00618-3
    [65] Wang Z X, Sun Z H, Shi Y, et al. Ion-dipole chemistry drives rapid evolution of Li ions solvation sheath in low-temperature Li batteries[J]. Advanced Energy Materials,2021,11(28):2100935. doi: 10.1002/aenm.202100935
    [66] Yang H C, Li J, Sun Z H, et al. Reliable liquid electrolytes for lithium metal batteries[J]. Energy Storage Materials,2020,30:113-129. doi: 10.1016/j.ensm.2020.04.010
    [67] Wang Z X, Sun Z H, Li J, et al. Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes[J]. Chemical Society Reviews,2021,50(5):3178-3210. doi: 10.1039/D0CS01017K
    [68] Verma P, Maire P, Novak P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta,2010,55(22):6332-6341. doi: 10.1016/j.electacta.2010.05.072
    [69] Kirad K, Chaudhari M. Design of cell spacing in lithium-ion battery module for improvement in cooling performance of the battery thermal management system[J]. Journal of Power Sources,2021,481(1):229016.
    [70] Wang C Y, Zhang G S, Ge S H, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature,2016,529(7587):515-518. doi: 10.1038/nature16502
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1108
  • HTML全文浏览量:  451
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-14
  • 修回日期:  2021-12-31
  • 网络出版日期:  2022-01-10
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回