留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Glycine-derived nitrogen-doped ordered mesoporous carbons with a bimodal mesopore size distribution for supercapacitors and oxygen reduction

SHAO Ying HU Ze-yu YAO Yan WEI Xiang-ru GAO Xing-min WU Zhang-xiong

邵颖, 胡泽宇, 姚艳, 卫翔茹, 高兴敏, 吴张雄. 甘氨酸衍生的双介孔掺氮有序介孔炭用于超级电容器和氧气还原. 新型炭材料(中英文), 2022, 37(1): 259-276. doi: 10.1016/S1872-5805(22)60585-7
引用本文: 邵颖, 胡泽宇, 姚艳, 卫翔茹, 高兴敏, 吴张雄. 甘氨酸衍生的双介孔掺氮有序介孔炭用于超级电容器和氧气还原. 新型炭材料(中英文), 2022, 37(1): 259-276. doi: 10.1016/S1872-5805(22)60585-7
SHAO Ying, HU Ze-yu, YAO Yan, WEI Xiang-ru, GAO Xing-min, WU Zhang-xiong. Glycine-derived nitrogen-doped ordered mesoporous carbons with a bimodal mesopore size distribution for supercapacitors and oxygen reduction. New Carbon Mater., 2022, 37(1): 259-276. doi: 10.1016/S1872-5805(22)60585-7
Citation: SHAO Ying, HU Ze-yu, YAO Yan, WEI Xiang-ru, GAO Xing-min, WU Zhang-xiong. Glycine-derived nitrogen-doped ordered mesoporous carbons with a bimodal mesopore size distribution for supercapacitors and oxygen reduction. New Carbon Mater., 2022, 37(1): 259-276. doi: 10.1016/S1872-5805(22)60585-7

甘氨酸衍生的双介孔掺氮有序介孔炭用于超级电容器和氧气还原

doi: 10.1016/S1872-5805(22)60585-7
基金项目: 国家自然科学基金项目(21875153, 21501125);江苏省自然科学基金项目(BK20150312);江苏省双创团队资助项目;江苏省高校优势学科经费(PAPD)
详细信息
    通讯作者:

    吴张雄,博士,教授. E-mail:zhangwu@suda.edu.cn

  • 中图分类号: TQ127.1+1

Glycine-derived nitrogen-doped ordered mesoporous carbons with a bimodal mesopore size distribution for supercapacitors and oxygen reduction

Funds: We appreciate the financial support from the National Natural Science Foundation of China (21875153, 21501125), the Natural Science Foundation of Jiangsu Province (BK20150312), and the Jiangsu Shuangchuang Team Program. We also thank the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions for support. We thank Ms. GUO Ya at Soochow University for experimental assistance
More Information
  • 摘要: 掺氮多孔炭材料在电化学能量储存和转化方面具有良好的应用前景。可控的氮原子掺杂与孔结构设计对提高其性能起着重要作用。本工作利用无溶剂纳米铸造法,以甘氨酸(Gly)为单一前驱体、以SBA-15为硬模板,制备了掺氮有序介孔炭材料(N-OMCs)。甘氨酸在SBA-15孔道内的限域热解对提高碳产率、氮掺杂量以及构筑双介孔结构非常重要。N-OMCs具有高比表面积(923~1374 m2·g−1)、大孔隙体积(1.32~2.21 cm3·g−1)、双介孔分布(4.8和6.2~20 nm)和高氮含量(3.66%~12.23%)。通过改变Gly/SBA-15的质量比和温度,可以调节材料的结构有序性、粒径、孔隙率和氮掺量。N-OMCs作为电极材料在超级电容器中具有较高性能。最佳样品在0.5 A·g−1时具有298 F·g−1的比电容、高倍率性能(在30 A·g−1时保留70%)与良好的循环稳定性。同时,N-OMCs在电催化氧还原反应(ORR)中也表现出良好性能。最佳样品的起始电位和半波电位分别为0.92和0.83 V,极限电流密度为5.06 mA·cm−2。本工作还讨论了N-OMCs的理化性质与其性能的关系。
  • FIG. 1227.  FIG. 1227.

    FIG. 1227.. 

    Figure  1.  Schematic illustration of the synthesis process of the N-OMCs: (a) the molecular structure of Gly and structure model of SBA-15, (b) Gly in the mesopores loaded by melting infiltration and the molecular models of Gly cohesive forces and silica-Gly adhesive forces, (c) polymerized Gly binding with the silica surface, (d) carbon nanowires with pore voids inside the silica mesopores after carbonization and (e) structure model of the final N-OMCs after the silica removal.

    Figure  2.  Small-angle XRD patterns of (a) the SBA-15 template and the N-OMCs obtained with different Gly/SBA-15 mass ratios at 800 °C, and (b) the N-OMCs with a fixed Gly/SBA-15 mass ratio of 2.5 at different temperatures, respectively.

    Figure  3.  (a) Wide-angle XRD patterns and (b) Raman spectra of the N-OMCs obtained at different temperatures with a fixed Gly/SBA-15 mass ratio of 2.5.

    Figure  4.  Low-magnification SEM images of (a) the SBA-15 template and the N-OMCs obtained at 800 °C with a Gly/SBA-15 mass ratio of (b) 1, (c) 1.5, (d) 2, (e) 2.5 and (f) 3, respectively.

    Figure  5.  HRSEM images of (a) the SBA-15 template and the N-OMCs obtained at 800 °C with a Gly/SBA-15 mass ratio of (b) 1, (c) 1.5, (d) 2, (e) 2.5 and (f) 3, respectively.

    Figure  6.  TEM characterization of several N-OMCs obtained at 800 °C with different Gly/SBA-15 mass ratios: (a) TEM image of N-OMC-Gly-1.5-800; (b) TEM, (c, g) DF-STEM, (d) HRTEM and (h-j) the elemental maps of N-OMC-Gly-2.5-800; and (e) TEM and (f) HRTEM images of N-OMC-Gly-3-800.

    Figure  7.  N2 adsorption-desorption isotherms and the corresponding pore size distribution curves of (a, b) the N-OMCs obtained with different Gly/SBA-15 mass ratios at 800 °C and (c, d) at different temperatures with a Gly/SBA-15 mass ratio of 2.5, respectively.

    Figure  8.  (a) XPS survey spectrum, and (b) high-resolution N 1s, (c) C 1s and (d) O 1s XPS spectra of various N-OMCs.

    Figure  9.  (a) CV and (b) GCD curves, (c) capacitance at different current densities, (d) the Nyquist plots, and (e) capacitance retention for cyclic test and the inset CV curves before and after cycling of the N-OMCs obtained at different temperatures with a Gly/SBA-15 mass ratio of 2.5.

    Figure  10.  (a) Capacitance at different current densities and (b) the Nyquist plots of the N-OMCs obtained at 800 °C with different Gly/SBA-15 mass ratios.

    Figure  11.  (a) CV curves of N-OMC-Gly-2.5-1000 in N2- and O2-saturated 0.1 mol L−1 KOH solution, (b) LSV curves of the samples obtained at 700–1000 °C with a Gly/SBA-15 mass ratio of 2.5, and (c) LSV curves at different rotation speeds and the corresponding (d) K-L plots of N-OMC-Gly-2.5-1000.

    Table  1.   Summary of textural properties of the template SBA-15 and the N-OMCs obtained with different Gly/SBA-15 mass ratios and temperatures.

    SamplesSBET (m2·g−1)Smicro (m2·g−1)Vtotal (cm3·g−1)Vmicro (cm3·g−1)Pore size (nm)
    SBA-15535541.090.0189.4
    N-OMC-Gly-1-8001374182.000.0044.3, 6.2-20
    N-OMC-Gly-1.5-8001306862.210.0344.7, 6.2-20
    N-OMC-Gly-2-80012031042.030.0434.8, 6.2-20
    N-OMC-Gly-2.5-80010301321.600.0564.8, 6.2-20
    N-OMC-Gly-3-8009231821.320.0784.8, 6.2-20
    N-OMC-Gly-2.5-7009541491.420.0654.8, 6.2-20
    N-OMC-Gly-2.5-90011661061.880.0455.5, 6.2-20
    N-OMC-Gly-2.5-100010601231.760.0535.0, 6.2-20
    下载: 导出CSV

    Table  2.   Summary of the chemical compositions from elemental analysis and the supercapacitor performances of the N-OMCs obtained with different Gly/SBA-15 mass ratios and temperatures.

    SamplesC (%)N (%)N/C ratioCapacitance (F·g−1 at 0.5 A·g−1)Rate capability at 30 A·g−1
    N-OMC-Gly-1-80079.665.830.06322773%
    N-OMC-Gly-1.5-80080.986.840.07224971%
    N-OMC-Gly-2-80077.268.320.09224865%
    N-OMC-Gly-2.5-80081.249.080.09629870%
    N-OMC-Gly-3-80079.269.200.1009570%
    N-OMC-Gly-2.5-70071.9212.230.15020947%
    N-OMC-Gly-2.5-90083.884.680.04818473%
    N-OMC-Gly-2.5-100080.883.660.03918575%
    下载: 导出CSV
  • [1] Duan L L, Wang C Y, Zhang W, et al. Interfacial assembly and applications of functional mesoporous materials[J]. Chemical Reviews,2021,121(23):14349-14429. doi: 10.1021/acs.chemrev.1c00236
    [2] Benzigar M R, Talapaneni S N, Joseph S, et al. Recent advances in functionalized micro and mesoporous carbon materials: Synthesis and applications[J]. Chemical Society Reviews,2018,47(8):2680-2721. doi: 10.1039/C7CS00787F
    [3] Szczesniak B, Choma J, Jaroniec M, et al. Major advances in the development of ordered mesoporous materials[J]. Chemical Communications,2020,56(57):7836-7848. doi: 10.1039/D0CC02840A
    [4] Wang H, Shao Y, Mei S L, et al. Polymer-derived heteroatom-doped porous carbon materials[J]. Chemical Reviews,2020,120(17):9363-9419. doi: 10.1021/acs.chemrev.0c00080
    [5] Liang C D, Li Z J, Dai S. Mesoporous carbon materials: Synthesis and modification[J]. Angewandte Chemie-International Edition,2008,47(20):3696-3717. doi: 10.1002/anie.200702046
    [6] Lin T Q, Chen I W, Liu F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science,2015,350(6267):1508-1513. doi: 10.1126/science.aab3798
    [7] Wu Z X, Zhao D Y. Ordered mesoporous materials as adsorbents[J]. Chemical Communications,2011,47(12):3332-3338. doi: 10.1039/c0cc04909c
    [8] Zhang W, Cheng R R, Bi H H, et al. A review of porous carbons produced by template methods for supercapacitor applications[J]. New Carbon Materials,2021,36(1):69-78. doi: 10.1016/S1872-5805(21)60005-7
    [9] Wang J, Kong H, Zhang J Y, et al. Carbon-based electrocatalysts for sustainable energy applications[J]. Progress in Materials Science,2021,116:100717. doi: 10.1016/j.pmatsci.2020.100717
    [10] Feng X, Bai Y, Liu M Q, et al. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials[J]. Energy & Environmental Science,2021,14(4):2036-2089. doi: 10.1039/d1ee00166c
    [11] Shi Q, Zhang R Y, Lu Y Y, et al. Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor[J]. Carbon,2015,84:335-346. doi: 10.1016/j.carbon.2014.12.013
    [12] Liu W X, Liu N, Song H H, et al. Properties of polyaniline/ordered mesoporous carbon composites as electrodes for supercapacitors[J]. New Carbon Materials,2011,26(3):217-223. doi: 10.1016/S1872-5805(11)60077-2
    [13] Tian H, Liang T, Liu J, et al. Nanoengineering carbon spheres as nanoreactors for sustainable energy applications[J]. Advanced Materials,2019,31(50):1903886. doi: 10.1002/adma.201903886
    [14] Liu N, Yu L Q, Chen X H, et al. Electrochemical performance of rod-type ordered mesoporous carbons with different rod lengths for electric double-layer capacitors[J]. New Carbon Materials,2016,31(3):328-335. doi: 10.1016/S1872-5805(16)60016-1
    [15] Xie X Y, He X J, Zhang H F, et al. Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors[J]. Chemical Engineering Journal,2018,350:49-56. doi: 10.1016/j.cej.2018.05.011
    [16] He X J, Ling P H, Qiu J S, et al. Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density[J]. Journal of Power Sources,2013,240:109-113. doi: 10.1016/j.jpowsour.2013.03.174
    [17] Yang D S, Bhattacharjya D, Inamdar S, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. Journal of the American Chemical Society,2012,134(39):16127-16130. doi: 10.1021/ja306376s
    [18] Lee S H, Kim J, Chung D Y, et al. Design principle of Fe-N-C electrocatalysts: How to optimize multimodal porous structures?[J]. Journal of the American Chemical Society,2019,141(5):2035-2045. doi: 10.1021/jacs.8b11129
    [19] Wei J, Zhou D D, Sun Z K, et al. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors[J]. Advanced Functional Materials,2013,23(18):2322-2328. doi: 10.1002/adfm.201202764
    [20] Liu D, Zeng C, Qu D Y, et al. Highly efficient synthesis of ordered nitrogen-doped mesoporous carbons with tunable properties and its application in high performance supercapacitors[J]. Journal of Power Sources,2016,321:143-154. doi: 10.1016/j.jpowsour.2016.04.129
    [21] Zhao M Y, Cui X X, Xu Y S, et al. An ordered mesoporous carbon nanosphere-encapsulated graphene network with optimized nitrogen doping for enhanced supercapacitor performance[J]. Nanoscale,2018,10(32):15379-15386. doi: 10.1039/C8NR04194F
    [22] Xin X P, Kang H Q, Feng J G, et al. A novel sol-gel strategy for N, P dual-doped mesoporous carbon with high specific capacitance and energy density for advanced supercapacitors[J]. Chemical Engineering Journal,2020,393:124710. doi: 10.1016/j.cej.2020.124710
    [23] Zhang D Y, Hao Y, Zheng L W, et al. Nitrogen and sulfur co-doped ordered mesoporous carbon with enhanced electrochemical capacitance performance[J]. Journal of Materials Chemistry A,2013,1(26):7584-7591. doi: 10.1039/c3ta11208j
    [24] Wei F, He X J, Ma L B, et al. 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors[J]. Nano-Micro Letters,2020,12:82. doi: 10.1007/s40820-020-00416-2
    [25] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. Journal of Physical Chemistry B,1999,103(37):7743-7746. doi: 10.1021/jp991673a
    [26] Ryoo R, Joo S H, M. Kruk M, et al. Ordered mesoporous carbons[J]. Advanced Materials,2001,13(9):677-681. doi: 10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
    [27] Liang C D, Hong K L, Guiochon G A, et al. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers[J]. Angewandte Chemie-International Edition,2004,43(43):5785-5789. doi: 10.1002/anie.200461051
    [28] Meng Y, Gu D, Zhang F Q, et al. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation[J]. Angewandte Chemie-International Edition,2005,44(43):7053-7059. doi: 10.1002/anie.200501561
    [29] Lu A H, Schuth F. Nanocasting: A versatile strategy for creating nanostructured porous materials[J]. Advanced Materials,2006,18(14):1793-1805. doi: 10.1002/adma.200600148
    [30] Ma T Y, Liu L, Yuan Z Y. Direct synthesis of ordered mesoporous carbons[J]. Chemical Society Reviews,2013,42(9):3977-4003. doi: 10.1039/C2CS35301F
    [31] Diez N, Sevilla M, Fuertes A B. Synthesis strategies of templated porous carbons beyond the silica nanocasting technique[J]. Carbon,2021,178:451-476. doi: 10.1016/j.carbon.2021.03.029
    [32] Yan B, Zheng J J, Wang F, et al. Review on porous carbon materials engineered by ZnO templates: Design, synthesis and capacitance performance[J]. Materials & Design,2021,201:109518. doi: 10.1016/j.matdes.2021.109518
    [33] He X J, Li R C, Qiu J S, et al. Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template[J]. Carbon,2012,50:4911-4921. doi: 10.1016/j.carbon.2012.06.020
    [34] Li W, Zhang F, Dou Y Q, et al. A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes[J]. Advanced Energy Materials,2011,1(3):382-386. doi: 10.1002/aenm.201000096
    [35] Zhang Z, Wang B, Zhu C, et al. Facile one-pot synthesis of mesoporous carbon and N-doped carbon for CO2 capture by a novel melting-assisted solvent-free method[J]. Journal of Materials Chemistry A,2015,3(47):23990-23999. doi: 10.1039/C5TA06465A
    [36] Zhang P F, Wang L, Yang S Z, et al. Solid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly through coordination cross-linking[J]. Nature Communications,2017,8:15020. doi: 10.1038/ncomms15020
    [37] Wang Q W, Mu Y J, Zhang W L, et al. A facile solvent-free route to synthesize ordered mesoporous carbons[J]. RSC Advances,2014,4(61):32113-32116. doi: 10.1039/C4RA02743D
    [38] Gao X M, Chen Z, Yao Y, et al. Direct heating amino acids with silica: A universal solvent-free assembly approach to highly nitrogen-doped mesoporous carbon materials[J]. Advanced Functional Materials,2016,26(36):6649-6661. doi: 10.1002/adfm.201601640
    [39] Lin Y Q, Hu Z Y, Shao Y, et al. Single-precursor design and solvent-free nanocasting synthesis of N/S/O-doped ordered mesoporous carbons with trimodal pores for excellent oxygen reduction[J]. Carbon,2021,183:390-403. doi: 10.1016/j.carbon.2021.07.030
    [40] Chen Z, Gao X M, Wei X R, et al. Directly anchoring Fe3C nanoclusters and FeNx sites in ordered mesoporous nitrogen-doped graphitic carbons to boost electrocatalytic oxygen reduction[J]. Carbon,2017,121:143-153. doi: 10.1016/j.carbon.2017.05.078
    [41] Wei X R, Zhang Z J, Zhou M Y, et al. Solid-state nanocasting synthesis of ordered mesoporous CoNx-carbon catalysts for highly efficient hydrogenation of nitro compounds[J]. Nanoscale,2018,10(35):16839-16847. doi: 10.1039/C8NR04775H
    [42] Choi C H, Park S H, Woo S I. Heteroatom doped carbons prepared by the pyrolysis of bio-derived amino acids as highly active catalysts for oxygen electro-reduction reactions[J]. Green Chemistry,2011,13(2):406-412. doi: 10.1039/C0GC00384K
    [43] Yan J, Meng H, Xie F Y, et al. Metal free nitrogen doped hollow mesoporous graphene-analogous spheres as effective electrocatalyst for oxygen reduction reaction[J]. Journal of Power Sources,2014,245:772-778. doi: 10.1016/j.jpowsour.2013.07.003
    [44] Choi I A,. Kwak D H, Han S B, et al. Nitrogen-doped bi-modal porous carbon nanostructure derived from glycine for supercapacitors[J]. Journal of Industrial and Engineering Chemistry,2018,63:112-116. doi: 10.1016/j.jiec.2018.02.006
    [45] Sanetuntikul J, Hyun S, Ganesan P, et al. Cobalt and nitrogen co- doped hierarchically porous carbon nanostructure: A bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Journal of Materials Chemistry A,2018,6(47):24078-24085. doi: 10.1039/C8TA08476A
    [46] Cai J J, Zhou Q Y, Gong X F, et al. Metal-free amino acid glycine-derived nitrogen-doped carbon aerogel with superhigh surface area for highly efficient Zn-Air batteries[J]. Carbon,2020,167:75-84. doi: 10.1016/j.carbon.2020.06.002
    [47] Zhu C Y, Takata M, Aoki Y, et al. Nitrogen-doped porous carbon as-mediated by a facile solution combustion synthesis for supercapacitor and oxygen reduction electrocatalyst[J]. Chemical Engineering Journal,2018,350:278-289. doi: 10.1016/j.cej.2018.06.001
    [48] Kim J K, Kang Y C. Encapsulation of Se into hierarchically porous carbon microspheres with optimized pore structure for advanced Na–Se and K–Se batteries[J]. ACS Nano,2020,14(10):13203-13216. doi: 10.1021/acsnano.0c04870
    [49] Zhu J H, Chen Z, Jia L, et al. Solvent-free nanocasting toward universal synthesis of ordered mesoporous transition metal sulfide@N-doped carbon composites for electrochemical applications[J]. Nano Research,2019,12(9):2250-2258. doi: 10.1007/s12274-019-2299-8
    [50] Zhang Z J, Wei X R, Yao Y, et al. Conformal coating of Co/N-doped carbon layers into mesoporous silica for highly efficient catalytic dehydrogenation-hydrogenation tandem reactions[J]. Small,2017,13(42):1702243. doi: 10.1002/smll.201702243
    [51] Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science,1998,279(5350):548-552. doi: 10.1126/science.279.5350.548
    [52] Wan Y, Zhao D Y. On the controllable soft-templating approach to mesoporous silicates[J]. Chemical Reviews,2007,107(7):2821-2860. doi: 10.1021/cr068020s
    [53] Fox S, Dalai P, Lambert J F, et al. Hypercondensation of an amino acid: Synthesis and characterization of a black glycine polymer[J]. Chemistry-A European Journal,2015,21(24):8897-8904. doi: 10.1002/chem.201500820
    [54] Yao Y, Chen Z, Zhang A, et al. Surface-coating synthesis of nitrogen-doped inverse opal carbon materials with ultrathin micro/mesoporous graphene-like walls for oxygen reduction and supercapacitors[J]. Journal of Materials Chemistry A,2017,5(48):25237-25248. doi: 10.1039/C7TA08354H
    [55] Rimola A, Sodupe M, Ugliengo P. Affinity scale for the interaction of amino acids with silica surfaces[J]. Journal Of Physical Chemistry C,2009,113(14):5741-5750. doi: 10.1021/jp811193f
    [56] Ferrari A C, Robertson J. Interpretation of raman spectra of disordered and amorphous carbon[J]. Physical Review B,2000,61(20):14095-14107. doi: 10.1103/PhysRevB.61.14095
    [57] Zhou M Y, Lin Y Q, Xia H Y, et al. A molecular foaming and activation strategy to porous N-doped carbon foams for supercapacitors and CO2 capture[J]. Nano-Micro Letters,2020,12(1):58. doi: 10.1007/s40820-020-0389-3
    [58] Tian H, Lin Z, Xu F, et al. Quantitative control of pore size of mesoporous carbon nanospheres through the self-assembly of diblock copolymer micelles in solution[J]. Small,2016,12(23):3155-3163. doi: 10.1002/smll.201600364
    [59] Chen H, Li Q, Teng N, et al. Simultaneous micropore development and nitrogen doping of ordered mesoporous carbons for enhanced supercapacitor and Li-S cathode performance[J]. Electrochimica Acta,2016,214:231-240. doi: 10.1016/j.electacta.2016.08.045
    [60] Fan L, Sun P, Yang L, et al. Facile and scalable synthesis of nitrogen-doped ordered mesoporous carbon for high performance supercapacitors[J]. Korean Journal of Chemical Engineering,2020,37(1):166-175. doi: 10.1007/s11814-019-0414-8
    [61] Fei H F, Li W H, Bhardwaj A, et al. Ordered nanoporous carbons with broadly tunable pore size using bottlebrush block copolymer templates[J]. Journal of the American Chemical Society,2019,141(42):17006-17014. doi: 10.1021/jacs.9b09572
    [62] Xie M, Meng H, Chen J, et al. High-volumetric supercapacitor performance of ordered mesoporous carbon electrodes enabled by the faradaic-active nitrogen doping and decrease of microporosity[J]. ACS Applied Energy Materials,2021,4(2):1840-1850. doi: 10.1021/acsaem.0c02948
    [63] Wang Q, Yan J, Fan Z. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities[J]. Energy & Environmental Science,2016,9(3):729-762. doi: 10.1039/c5ee03109e
    [64] Li B, Dai F, Xiao Q F, et al. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor[J]. Energy & Environmental Science,2016,9(1):102-106. doi: 10.1039/c5ee03149d
    [65] Bi Z H, Kong Q Q, Cao Y F, et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: A review[J]. Journal of Materials Chemistry A,2019,7(27):16028-16045. doi: 10.1039/C9TA04436A
    [66] Ma C, Song Y, Shi J L, et al. Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes[J]. Carbon,2013,51:290-300. doi: 10.1016/j.carbon.2012.08.056
    [67] Liu X, Zhou Y, Wang C L, et al. Solvent-free self-assembly synthesis of N-doped ordered mesoporous carbons as effective and bifunctional materials for CO2 capture and oxygen reduction reaction[J]. Chemical Engineering Journal,2022,427:130878. doi: 10.1016/j.cej.2021.130878
    [68] Wan K, Long G F, Liu M Y, et al. Nitrogen-doped ordered mesoporous carbon: synthesis and active sites for electrocatalysis of oxygen reduction reaction[J]. Applied Catalysis B:Environmental,2015,165:566-571. doi: 10.1016/j.apcatb.2014.10.054
    [69] Zhong H, Zhang S, Jiang J, et al. Improved electrocatalytic performance of tailored metal-free nitrogen-doped ordered mesoporous carbons for the oxygen reduction reaction[J]. ChemElectroChem,2018,5(14):1899-1904. doi: 10.1002/celc.201700910
    [70] Deng C, Pan L, Ji F, et al. Hybrid dual-template induced nitrogen-doped hierarchically porous carbon as highly efficient oxygen reduction electrocatalyst[J]. International Journal of Hydrogen Energy,2021,46(73):36167-36175. doi: 10.1016/j.ijhydene.2021.08.156
    [71] Xiao C, Chen X, Fan Z, et al. Surface-nitrogen-rich ordered mesoporous carbon as an efficient metal-free electrocatalyst for oxygen reduction reaction[J]. Nanotechnology,2016,27(44):445402. doi: 10.1088/0957-4484/27/44/445402
    [72] Zhang L, Gu T, Lu K, et al. Engineering synergistic edge-N dipole in metal-free carbon nanoflakes toward intensified oxygen reduction electrocatalysis[J]. Advanced Functional Materials,2021,31(42):2103187. doi: 10.1002/adfm.202103187
  • 20210310-支撑材料.pdf
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  774
  • HTML全文浏览量:  456
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-19
  • 修回日期:  2021-12-31
  • 网络出版日期:  2022-01-07
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回