留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress on metal and covalent organic framework-based materials for high-performance supercapacitors

WANG Shuai GUO Yu-zhe WANG Fang-xiao ZHOU Sheng-hu ZENG Tian-yu DONG Yu-bin

王帅, 郭玉哲, 王芳霄, 周圣虎, 曾天宇, 董育斌. 金属有机骨架和共价有机骨架及其衍生物用于超级电容器电极材料的研究进展. 新型炭材料(中英文), 2022, 37(1): 109-135. doi: 10.1016/S1872-5805(22)60586-9
引用本文: 王帅, 郭玉哲, 王芳霄, 周圣虎, 曾天宇, 董育斌. 金属有机骨架和共价有机骨架及其衍生物用于超级电容器电极材料的研究进展. 新型炭材料(中英文), 2022, 37(1): 109-135. doi: 10.1016/S1872-5805(22)60586-9
WANG Shuai, GUO Yu-zhe, WANG Fang-xiao, ZHOU Sheng-hu, ZENG Tian-yu, DONG Yu-bin. Research progress on metal and covalent organic framework-based materials for high-performance supercapacitors. New Carbon Mater., 2022, 37(1): 109-135. doi: 10.1016/S1872-5805(22)60586-9
Citation: WANG Shuai, GUO Yu-zhe, WANG Fang-xiao, ZHOU Sheng-hu, ZENG Tian-yu, DONG Yu-bin. Research progress on metal and covalent organic framework-based materials for high-performance supercapacitors. New Carbon Mater., 2022, 37(1): 109-135. doi: 10.1016/S1872-5805(22)60586-9

金属有机骨架和共价有机骨架及其衍生物用于超级电容器电极材料的研究进展

doi: 10.1016/S1872-5805(22)60586-9
详细信息
    通讯作者:

    董育斌. E-mail:yubindong@sdnu.edu.cn

  • 中图分类号: TB33

Research progress on metal and covalent organic framework-based materials for high-performance supercapacitors

More Information
    Author Bio:

    王 帅,郭玉哲和王芳霄为共同第一作者

    Corresponding author: DONG Yu-bin. E-mail: yubindong@sdnu.edu.cn
  • 摘要: 金属有机骨架(MOFs)和共价有机骨架(COFs)是一系列结晶多孔材料。 由于其高度有序的结构、高的表面积、可调的孔径和拓扑结构、富含氧化还原活性位点的连续骨架,MOFs和COFs及其衍生物在储能领域引起了广泛关注。 为了制造高性能超级电容器电极,MOFs 和 COFs 及其衍生物具有结构稳定性好、氧化还原活性位点丰富和电子导电性高等特征。 本文回顾了近年来 MOFs 和 COFs材料、MOFs 和 COFs 与导电材料(导电聚合物、石墨烯、碳纳米管)的复合材料、MOFs 和 COFs 衍生炭材料的设计策略,以及所得材料的物化特性、电容性能的研究进展,并介绍了结构和性能之间的关系。 最后,提出了基于 MOFs 和 COFs电极材料的挑战和前景。
  • FIG. 1219.  FIG. 1219.

    FIG. 1219.. 

    Figure  1.  MOFs- and COFs-based materials used in SCs.

    Figure  2.  (a) 2D view of Co−LMOF (Hydrogen atoms are omitted for clarity. (b) Corresponding specific capacitances of the Co−LMOF electrode[33]. (c) The schematic diagram of the synthesis process of Ni/Co-MOFs with different molar ratios of Co/Ni[37]. Reprinted with permission.

    Figure  3.  (a) Schematic diagram for the preparation process of NCMOF/EGP[51]. (b) Schematic diagram for the preparation process of Ni-MOF@CNT/GN[54]. (c) Schematic illustration of the construction of p-PPy/Cu-CAT[57]. Reprinted with permission.

    Figure  4.  (a) Schematic illustration of BTCC preparation and the cycling stability of the two devices for 10000 GCD cycles at a current density of 20 A·g−1, (insert: an LED indicator in the assembled SC based on 1 mol·L−1 Na2SO4)[61]. (b) Schematic of the preparation process of UAC@NF and cycling stability over 10000 cycles (4 mA·cm−2), (inset) optical image showed three pieces of the ASC device connected in series to power a LED[62]. (c) Schematic for the synthesis process of HA-CoFe-ZIF and NCS and cycling stability, coulombic efficiency of the NCS-650//AC asymmetric SC[63]. Reprinted with permission.

    Figure  5.  (a) Layered structure of TpOMe-DAQ. (b) Redox behavior of TpOMe-DAQ through reversible quinine to hydroquinone transformation. (c) Cross section SEM analysis of TpOMe-DAQ thin sheet. (d) Cyclic voltammetry of the as-synthesized sheets[67]. (e) Synthesis of β-ketoenamine-linked 2D COFs[68]. Reprinted with permission.

    Figure  6.  (a) Synthesis scheme of TTF-COF1[73]. (b) Synthesis procedure and chemical structure of PG-BBT[74]. Electrochemical measurement of PG-BBT in a three-electrode system: (c) CV profiles at various scan rates (5–30 mV·s−1). (d) GCD curves at various current densities (1–10 A·g−1). (e) Capacitance at various current densities (1–10 A·g−1). Reprinted with permission.

    Figure  7.  (a) Synthesis and structures of olefin-linked 2D conjugated polymer framework by Knoevenagel reaction[76]. (b) Synthesis and structure of g-C34N6-COF[77]. (c) Synthetic routes to g-C30N6-COF and g-C48N6-COF[78]. (d) SEM graph of g-C30N6-COF. (e) CV curves of g-C30N6-COF-MSC. (f) The specific areal and volumetric capacitances (CA and CV) of g-C30N6-COF-MSC and g-C48N6-COF-MSC. Reprinted with permission.

    Figure  8.  (a) Synthesis procedure of a DAAQ-COF/GA composite[85]. Electrochemical performances of the DAAQ-COF/GA//GA asymmetric SC (ASC). (b) CV curves of the ASC with different scan rates. (c) GCD curves of the ASC at various current densities. (d) Cycling stability test at 5 A·g-1 for 20 000 cycles (the inset shows the digital photograph of LEDs powered by the DAAQ-COFs/GA//GA ASC). (e) Schematic illustration of template synthesis of [C60]X-COFs[88]. Reprinted with permission.

    Figure  9.  (a) Synthesis procedure of ACOF1. (b) GCD curves at various current densities of the carbonized ACOF1[115]. (c) The synthesis procedure of COF-TP, GCD curves of (d) COF-TP and (e) COF-TP-C at different current densities within the potential windows of 0-0.40 V[117]. (f) Schematic illustration of the formation of hierarchically porous B-doped carbons from COF-5 using the molten-salt approach. (g) Cyclic voltammograms of BC-MS-700-14 at sweep rates from 10 to 400 mV·s−1. (h) Galvanostatic charge–discharge curves at different current densities[118]. Reprinted with permission.

    Figure  10.  (a) Synthetic scheme and PXRD pattern of Ni-COF. (b) Energy storage and conversion diagram of Ni-COF. (c) GCD curves of Ni-COF (1-10 A·g−1). (d) Comparison of GCD curves of Ni-COF and Ni0-COF at 1 A·g−1. (e) Comparison of Nyquist plots of Ni-COF and Ni0-COF[121]. Reprinted with permission.

    Table  1.   Selected properties of MOFs-based materials for SCs.

    Three-electrode systemDeviceRef.
    Electrode materialsElectrolyteCap
    (F·g−1)
    Current density
    (A·g−1)
    Electrode materialsElectrolyteCapacity
    (F·g−1)
    Current density
    (A·g−1)
    Energy density
    (W h·kg−1)
    Power density
    (W·kg−1)
    Ni-MOF 3 mol·L−1 KOH 988 1.4 -//AC H2SO4-PVA gel 230 mF·cm−2 1 A·cm−2 4.18 mW h·cm−3 231.2 mW·cm−3 [31]
    Co-LMOF 1 mol·L−1 KOH 2474 1 [33]
    Ni/Co-MOF 2 mol·L−1 KOH 1230.3 1 -//AC 2 mol·L−1 KOH 328 1 116 0.795 [37]
    Mn-MOF 2 mol·L−1 KOH 567.5 mA h·g−1 1 -//rGO 2 mol·L−1 KOH 211.4 5 66 441 [41]
    Ni3(HITP)2 symmetric 1 MTEABF4/ACN 111 0.05 [43]
    Cu–CAT NWAs 3 mol·L−1 KCl 202 0.5 symmetric PVA/KCl gel 120 0.5 ~2.6 ~200 [44]
    NHMO-5 3 mol·L−1 KOH 368.2 1 -//AC 3 mol·L−1 KOH 178.9 1 600 35.8 [45]
    2D c-MOFs -//EC PVA/LiCl gel 18.9 mF·cm−1 0.04 mA·cm−2 1.7 mA h·cm−2 168 mW·cm−2 [46]
    Cu3(HHTP)2 3 mol·L−1 KCl 1700 µF·cm−2 30 µA·cm−2 symmetric PVA/KCl gel 939.2 µF·cm−2 7 µA·cm−2 0.047 µW h·cm−2 2.1 µW·cm−2 [47]
    nMOF-867 symmetric 1mol·L−1 (C2H5)4NBF4 0.644 F·cm−3 6.04×10−4 W h·cm−3 1.097 W·cm−3 [49]
    CoMG5 6 mol·L−1 KOH 549.96 10 mV·s−1 -//AC 6 mol·L−1 KOH 50.2 20 mV·s−1 8.1 850 [50]
    NCMOF/EGP 2 mol·L−1 KOH 2.41 F·cm−2 0.5 mA·cm−2 -//AC 0.36 F·cm−2 1 A·cm−2 0.11 mW h·cm−2 0.75 mW·cm−2 [51]
    Ni-MOF/CNTs 6 mol·L−1 KOH 1765 0.5 -//rGO/g-C3N4 6 mol·L−1 KOH 103 0.5 36.6 480 [52]
    Ni-MOF@CNT -//AC PVA-KOH gel 898 mF·cm−2 1 mA·cm−2 0.3396 mW h·cm−2 [53]
    PEDOT-GO/U-C symmetric H3PO4-PVA gel 30 mF·cm−2 5 mV·s−1 0.0022 mW h·cm−2 0.2 mW·cm−2 [54]
    PPy@NiCo-CAT 2 mol·L−1 KOH 572.2 1 -//AC 2 mol·L−1 KOH 65 0.5 22.22 400 [55]
    PANI-ZIF-67-CC 3 mol·L−1 KCl 2146 mF·cm−2 10 mV·s−1 symmetric H2SO4-PVA gel 35 mF·cm−2 0.05 mA·cm−2 0.833 W·cm−3 0.0161 mW h·cm−3 [56]
    p-PPy/Cu-CAT 3 mol·L−1 KCl 480 mF·cm−2 0.5 mA·cm−2 symmetric PVA/LiCl gel 233 mF·cm−2 0.5 mA·cm−2 12 μW h·cm−2 1.5 mW·cm−2 [57]
    rGO-HKUST-1 0.5 mol·L−1 Na2SO4 377 100 mV·s−1 symmetric NaNO3-PVA gel 193 42 3100 [58]
    C-Co@MOF 0.6 -//N-CNT KOH-PVA gel 118.3 3 37 2250.2 [59]
    BTCC 6 mol·L−1 KOH 285 1 symmetric 6 mol·L−1 KOH 101.7 1 13.7 650 [61]
    symmetric 1 mol·L−1 Na2SO4 99.8 1 2.4 450
    UAC@NF 3 mol·L−1 KOH 524.6 mF·cm−2 1 mA·cm−2 -//GF500 3 mol·L−1 KOH 263.6 mF·cm−2 0.3 mA·cm−2 0.036 mWh·cm−3 0.984 mW·cm−3 [62]
    NCS-650 6 mol·L−1 KOH 324 1 -//AC 6 mol·L−1 KOH 93 1 10.3 331 [63]
    CMP-25 6 mol·L−1 KOH 385 0.1 symmetric 6 mol·L−1 KOH 10.51 5454 [64]
    NSPC 6 mol·L−1 KOH 386.3 1 6 mol·L−1 KOH 186.9 1 50.9 1600 [65]
    下载: 导出CSV

    Table  2.   Selected properties of COFs-based materials for SCs.

    Three-electrode systemDeviceRef.
    Electrode materialsElectrolyteCap
    (F·g−1)
    Current density
    (A·g−1)
    Electrode materialsElectrolyteCapacity
    (F·g−1)
    Current
    density
    (A·g−1)
    Energy
    density
    (W h·kg−1)
    power density
    (W·kg−1)
    TFP-NDA-COF 1 mol·L−1 H2SO4 348 0.5 [66]
    TpOMe-DAQ 3 mol·L−1 H2SO4 1600 mF·cm−2 3.3 A·cm−2 Symmetric H2SO4/PVA gel 84 mF·cm−2 0.25 mA·cm−2 ~2.9 μW h·cm−2 ~61.8 μW·cm−2 [67]
    Dq1Da1Tp 1 mol·L−1 H2SO4 111 1.56 mA·cm−2 Symmetric H2SO4-PVA gel 8.5 mF·cm−2 0.39mA·cm−2 0.30 μW h·cm−2 960 μW·cm−2 [68]
    PDC-MA-COF 6 mol·L−1 KOH 335 1 -//AC 6 mol·L−1 KOH 94 1 29.2 750 [69]
    TPA-COFs 1 mol·L−1 H2SO4 263.1 0.1 [70]
    TFP-TPA COF 1mol·L−1 KOH 291.1 2 [71]
    TTF-COF1 3 mol·L−1 KOH 752 1 -//AC 3 mol·L−1 KOH 183 1 57 858 [73]
    PG-BBT 3 mol·L−1 KOH 724 1 -//AC 3 mol·L−1 KOH 220 1 69 1010 [74]
    2DPPV-800 6 mol·L−1 KOH 334 0.5 [76]
    g-C34N6-COF/CNT LiCl/PVA gel 15.2 2 mV·s−1 7.3 mW h·cm−3 0.05 W·cm−3 [77]
    g-C30N6-COF EMIMBF4/PVDF-HFP 44.3 mF·cm−2 5mV·s−1 38.5 mW h·cm−3 0.3 W·cm−3 [78]
    P1 1 mol·L−1 H2SO4 805 0.5 [79]
    PEDOT@AQ-COF 1 mol·L−1 H2SO4 1663 1 1 mol·L−1 H2SO4 1663 1 [80]
    TpPa-COF@PANI 1 mol·L−1 H2SO4 95 0.2 [81]
    aza-MOFs@COFs Symmetric (C2H5)4NBF4 20.35 mF·cm−2 0.2 A·cm−2 [82]
    BIBDZ 1mol·L−1 H3PO4 88.4 0.5 [84]
    DAAQ-COFs/GA 1 mol·L−1 H2SO4 378 1 -//GA 1 mol·L−1 H2SO4 112 1 30.5 700 [85]
    COFs/NH2–rGO 1 mol·L−1 Na2SO4 533 0.2 [86]
    [C60]0.05-COF 1 mol·L−1 Na2SO4 63.1 0.7 -//rGO 1 mol·L−1 Na2SO4 47.6 4 21.4 900 [88]
    CNT/NKCOF-2 2 mol·L−1 H2SO4 440 0.5 -//AC H2SO4-PVA gel 263 1 71 42 [95]
    TCNQ-CTF-800 1 mol·L−1 KOH 383 0.2 Symmetric EMIM BF4 100 0.1 42.8 8750 [102]
    TPI-P-700 1 mol·L−1 H2SO4 423 2 Symmetric 1 mol·L−1 H2SO4 304 0.5 10.5 5000 [103]
    PTF-700 Symmetric EMIMBF4 151.3 0.1 62.7 8750 [104]
    p-CTF-800 1 mol·L−1 H2SO4 406 0.2 Symmetric 1 mol·L−1 H2SO4 245.7 0.2 6.9 50 [105]
    Symmetric EMIMBF4 181 0.2 77 175
    FCTF 1 mol·L−1 H2SO4 379 1 -//AC 1 mol·L−1 H2SO4 148 1 46.3 975 [106]
    CTF-800 1 mol·L−1 H2SO4 628 0.5 Symmetric 1 mol·L−1 H2SO4 448 0.5 15.5 125 [108]
    EMIMBF4 222 0.5 70 375
    1 mol·L−1 LiPF6 251 0.5 78 375
    FUM-700 6 mol·L−1 KOH 400 1 Symmetric 6 mol·L−1 KOH 275 1 18 325 [109]
    PDC-MA-COF 6 mol·L−1 KOH 335 1 -//AC 6 mol·L−1 KOH 94 1 29.2 750 [110]
    TPT-DAHQ COF 1 mol·L−1 KOH 256 0.5 [111]
    TDFP-1 0.1 mol·L−1 H2SO4 418 0.5 [112]
    THPC 6 mol·L−1 KOH 235 1 Symmetric EMIMBF4 103 0.5 50.45 350 [113]
    Symmetric 6 mol·L−1 KOH 183 0.2
    Symmetric 1 mol·L−1 Na2SO4 81 10
    LNU-18-800 6 mol·L−1 KOH 269 0.5 [114]
    ACOF1 6 mol·L−1 KOH 234 1 [115]
    N-MCS-200 6 mol·L−1 KOH 292 1 Symmetric 6 mol·L−1 KOH 251 1 8.75 500 [116]
    BC-MS-700-14 1 mol·L−1 H2SO4 160 10 mV·s−1 [118]
    PCCOF-5 Symmetric TEABF4 15.3 mF·cm−2 0.04 [119]
    B-C-N-1000 6 mol·L−1 KOH 230 5 [120]
    Ni-COF 3 mol·L−1 KOH 1478 0.5 -//AC 3 mol·L−1 KOH 417 1 130 839 [121]
    (N)G2 6 mol·L−1 KOH 460 1 Symmetric 6 mol·L−1 KOH 175 0.2 6.1 50 [122]
    下载: 导出CSV
  • [1] Wang F, Wu X, Yuan X, et al. Latest advances in supercapacitors: from new electrode materials to novel device designs[J]. Chemical Society Reviews,2017,46(22):6816-6854. doi: 10.1039/C7CS00205J
    [2] Liang J, Jiang C, Wu W. Toward fiber-, paper-, and foam-based flexible solid-state supercapacitors: Electrode materials and device designs[J]. Nanoscale,2019,11(15):7041-7061. doi: 10.1039/C8NR10301A
    [3] Li C, Yang W, He W, et al. Multifunctional surfactants for synthesizing high-performance energy storage materials[J]. Energy Storage Materials,2021,43:1-19. doi: 10.1016/j.ensm.2021.08.033
    [4] Chavan S, Pandey A. Prasad eknath lokhande, umesh[J]. Electrochemical Energy Reviews,2020,3(1):155-186. doi: 10.1007/s41918-019-00057-z
    [5] Dou Q, Park H S. Perspective on high‐energy carbon‐based supercapacitors[J]. Energy & Environmental Materials,2020,3(3):286-305.
    [6] Kong D, Gao Y, Xiao Z, et al. Rational design of carbon‐rich materials for energy storage and conversion[J]. Advanced Materials,2019,31(45):1804973. doi: 10.1002/adma.201804973
    [7] Gao X, Dong Y, Li S, et al. MOFs and COFs for batteries and supercapacitors[J]. Electrochemical Energy Reviews,2020,3(1):81-126. doi: 10.1007/s41918-019-00055-1
    [8] Pei C, Choi M S, Yu X, et al. Recent progress in emerging metal and covalent organic frameworks for electrochemical and functional capacitors[J]. Journal of Materials Chemistry A,2021,9(14):8832-8869. doi: 10.1039/D1TA00652E
    [9] Wang J, Li N, Xu Y, et al. Two‐dimensional MOF and COF nanosheets: synthesis and applications in electrochemistry[J]. Chemistry–A European Journal,2020,26(29):6402-6422. doi: 10.1002/chem.202000294
    [10] Tajik S, Beitollahi H, Nejad F G, et al. Recent electrochemical applications of metal–organic framework-based materials[J]. Crystal Growth & Design,2020,20(10):7034-7064.
    [11] Cherusseri J, Pandey D, Kumar K S, et al. Flexible supercapacitor electrodes using metal–organic frameworks[J]. Nanoscale,2020,12(34):17649-17662. doi: 10.1039/D0NR03549A
    [12] Wang J, Wang Y, Hu H, et al. From metal–organic frameworks to porous carbon materials: Recent progress and prospects from energy and environmental perspectives[J]. Nanoscale,2020,12(7):4238-4268. doi: 10.1039/C9NR09697C
    [13] Zhang Q, Xue C, Wang J, et al. Research progress on nanoporous carbons produced by the carbonization of metal organic frameworks[J]. New Carbon Materials,2021,36(2):322-335. doi: 10.1016/S1872-5805(21)60022-7
    [14] Lu X F, Fang Y, Luan D, et al. Metal–organic frameworks derived functional materials for electrochemical energy storage and conversion: A mini review[J]. Nano Letters,2021,21(4):1555-1565. doi: 10.1021/acs.nanolett.0c04898
    [15] Guo Y, Wang K, Hong Y, et al. Recent progress on pristine two-dimensional metal-organic frameworks as active components in supercapacitors[J]. Dalton Transactions,2021,50(33):11331-11346. doi: 10.1039/D1DT01729B
    [16] Mohanty A, Jaihindh D P, Fu Y P, et al. An extensive review on three-dimension architectural metal-organic frameworks towards supercapacitor application[J]. Journal of Power Sources,2021,488:229444. doi: 10.1016/j.jpowsour.2020.229444
    [17] Cai Z X, Wang Z L, Kim J, et al. Hollow functional materials derived from metal–organic frameworks: Synthetic strategies, conversion mechanisms, and electrochemical applications[J]. Advanced Materials,2019,31(11):1804903. doi: 10.1002/adma.201804903
    [18] Sanati S, Abazari R, Albero J, et al. Metal–organic framework derived bimetallic materials for electrochemical energy storage[J]. Angewandte Chemie International Edition,2021,60(20):11048-11067. doi: 10.1002/anie.202010093
    [19] Ding S Y, Wang W. Covalent organic frameworks (COFs): From design to applications[J]. Chemical Society Reviews,2013,42(2):548-568. doi: 10.1039/C2CS35072F
    [20] Li M, Liu J, Zhang T, et al. 2D redox‐active covalent organic frameworks for supercapacitors: Design, synthesis, and challenges[J]. Small,2021,17(22):2005073. doi: 10.1002/smll.202005073
    [21] Song Y, Sun Q, Aguila B, et al. Opportunities of covalent organic frameworks for advanced applications[J]. Advanced Science,2019,6(2):1801410. doi: 10.1002/advs.201801410
    [22] Feng X, Ding X, Jiang D. Covalent organic frameworks[J]. Chemical Society Reviews,2012,41(18):6010-6022. doi: 10.1039/c2cs35157a
    [23] Zhao X, Pachfule P, Thomas A. Covalent organic frameworks (COFs) for electrochemical applications[J]. Chemical Society Reviews,2021:6871-6913.
    [24] Wang D G, Qiu T, Guo W, et al. Covalent organic framework-based materials for energy applications[J]. Energy & Environmental Science,2021,14(2):688-728.
    [25] Liu X, Liu C F, Lai W Y, et al. Porous organic polymers as promising electrode materials for energy storage devices[J]. Advanced Materials Technologies,2020,5(9):2000154.
    [26] Liao C, Zuo Y, Zhang W, et al. Electrochemical performance of metal-organic framework synthesized by a solvothermal method for supercapacitors[J]. Russian Journal of Electrochemistry,2013,49(10):983-986. doi: 10.1134/S1023193512080113
    [27] Yang J, Xiong P, Zheng C, et al. Metal–organic frameworks: a new promising class of materials for a high performance supercapacitor electrode[J]. Journal of Materials Chemistry A,2014,2(39):16640-16644. doi: 10.1039/C4TA04140B
    [28] Yang J, Zheng C, Xiong P, et al. Zn-doped Ni-MOF material with a high supercapacitive performance[J]. Journal of Materials Chemistry A,2014,2(44):19005-19010. doi: 10.1039/C4TA04346D
    [29] Qu C, Jiao Y, Zhao B, et al. Nickel-based pillared MOFs for high-performance supercapacitors: Design, synthesis and stability study[J]. Nano Energy,2016,26:66-73. doi: 10.1016/j.nanoen.2016.04.003
    [30] Jiao Y, Pei J, Yan C, et al. Layered nickel metal–organic framework for high performance alkaline battery-supercapacitor hybrid devices[J]. Journal of Materials Chemistry A,2016,4(34):13344-13351. doi: 10.1039/C6TA05384J
    [31] Yan Y, Gu P, Zheng S, et al. Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors[J]. Journal of Materials Chemistry A,2016,4(48):19078-19085. doi: 10.1039/C6TA08331E
    [32] Lee D Y, Yoon S J, Shrestha N K, et al. Unusual energy storage and charge retention in Co-based metal–organic-frameworks[J]. Microporous and Mesoporous Materials,2012,153:163-165. doi: 10.1016/j.micromeso.2011.12.040
    [33] Liu X, Shi C, Zhai C, et al. Cobalt-based layered metal–organic framework as an ultrahigh capacity supercapacitor electrode material[J]. ACS applied materials & interfaces,2016,8(7):4585-4591.
    [34] Yang J, Ma Z, Gao W, et al. Layered structural co‐based MOF with conductive network frames as a new supercapacitor electrode[J]. Chemistry–A European Journal,2017,23(3):631-636. doi: 10.1002/chem.201604071
    [35] Abazari R, Sanati S, Morsali A, et al. Dual-purpose 3D pillared metal–organic framework with excellent properties for catalysis of oxidative desulfurization and energy storage in asymmetric supercapacitor[J]. ACS applied materials & interfaces,2019,11(16):14759-14773.
    [36] Rajak R, Saraf M, Mobin S M. Mixed-ligand architected unique topological heterometallic sodium/cobalt-based metal–organic framework for high-performance supercapacitors[J]. Inorganic chemistry,2020,59(3):1642-1652. doi: 10.1021/acs.inorgchem.9b02762
    [37] Ren F, Ji Y, Chen F, et al. Flower-like bimetal Ni/Co-based metal–organic-framework materials with adjustable components toward high performance solid-state supercapacitors[J]. Materials Chemistry Frontiers,2021,5(19):7333-7342. doi: 10.1039/D1QM00940K
    [38] Gong Y, Li J, Jiang P G, et al. Novel metal (II) coordination polymers based on N, N′-bis-(4-pyridyl) phthalamide as supercapacitor electrode materials in an aqueous electrolyte[J]. Dalton Transactions,2013,42(5):1603-1611. doi: 10.1039/C2DT31965A
    [39] Du M, Chen M, Yang X G, et al. A channel-type mesoporous In (iii)–carboxylate coordination framework with high physicochemical stability for use as an electrode material in supercapacitors[J]. Journal of Materials Chemistry A,2014,2(25):9828-9834. doi: 10.1039/C4TA00963K
    [40] Tan Y, Zhang W, Gao Y, et al. Facile synthesis and supercapacitive properties of Zr-metal organic frameworks (UiO-66)[J]. RSC Advances,2015,5(23):17601-17605. doi: 10.1039/C4RA11896K
    [41] Shinde P A, Seo Y, Lee S, et al. Layered manganese metal-organic framework with high specific and areal capacitance for hybrid supercapacitors[J]. Chemical Engineering Journal,2020,387:122982. doi: 10.1016/j.cej.2019.122982
    [42] Sheberla D, Sun L, Blood-Forsythe M A, et al. High electrical conductivity in Ni3 (2, 3, 6, 7, 10, 11-hexaiminotriphenylene) 2, a semiconducting metal–organic graphene analogue[J]. Journal of the American Chemical Society,2014,136(25):8859-8862. doi: 10.1021/ja502765n
    [43] Sheberla D, Bachman J C, Elias J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nature materials,2017,16(2):220-224. doi: 10.1038/nmat4766
    [44] Li W H, Ding K, Tian H R, et al. Conductive metal–organic framework nanowire array electrodes for high-performance solid-state supercapacitors[J]. Advanced Functional Materials,2017,27(27):1702067. doi: 10.1002/adfm.201702067
    [45] Duan H, Zhao Z, Lu J, et al. When conductive MOFs meet MnO2: High electrochemical energy storage performance in an aqueous asymmetric supercapacitor[J]. ACS Applied Materials & Interfaces,2021,13(28):33083-33090.
    [46] Wang M, Shi H, Zhang P, et al. Phthalocyanine‐based 2D conjugated metal‐organic framework nanosheets for high‐performance micro‐supercapacitors[J]. Advanced Functional Materials,2020,30(30):2002664. doi: 10.1002/adfm.202002664
    [47] Zhao W, Chen T, Wang W, et al. Layer‐by‐layer 2D ultrathin conductive Cu3 (HHTP)2 film for high‐performance flexible transparent supercapacitors[J]. Advanced Materials Interfaces,2021,8(11):2100308. doi: 10.1002/admi.202100308
    [48] Wang H, Zhu Q L, Zou R, et al. Metal-organic frameworks for energy applications[J]. Chem,2017,2(1):52-80. doi: 10.1016/j.chempr.2016.12.002
    [49] Choi K M, Jeong H M, Park J H, et al. Supercapacitors of nanocrystalline metal–organic frameworks[J]. ACS nano,2014,8(7):7451-7457. doi: 10.1021/nn5027092
    [50] Azadfalah M, Sedghi A, Hosseini H, et al. Cobalt based metal organic framework/graphene nanocomposite as high performance battery-type electrode materials for asymmetric Supercapacitors[J]. Journal of Energy Storage,2021,33:101925. doi: 10.1016/j.est.2020.101925
    [51] Liu Y, Li S, Wang C, et al. Accordion-like bimetal-organic framework anchoring on the partially-exfoliated graphite paper for high-performance supercapacitors[J]. Applied Surface Science,2020,528:146954. doi: 10.1016/j.apsusc.2020.146954
    [52] Wen P, Gong P, Sun J, et al. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density[J]. Journal of Materials Chemistry A,2015,3(26):13874-13883. doi: 10.1039/C5TA02461G
    [53] Yang J, Li P, Wang L, et al. In-situ synthesis of Ni-MOF@ CNT on graphene/Ni foam substrate as a novel self-supporting hybrid structure for all-solid-state supercapacitors with a high energy density[J]. Journal of Electroanalytical Chemistry,2019,848:113301. doi: 10.1016/j.jelechem.2019.113301
    [54] Fu D, Zhou H, Zhang X M, et al. Flexible solid–state supercapacitor of metal–organic framework coated on carbon nanotube film interconnected by electrochemically‐codeposited PEDOT‐GO[J]. ChemistrySelect,2016,1(2):285-289. doi: 10.1002/slct.201600084
    [55] Chen K, Zhao S, Sun J, et al. Enhanced capacitance performance by coupling 2D conductive metal–organic frameworks and conducting polymers for hybrid supercapacitors[J]. ACS Applied Energy Materials,2021,4(9):9534-9541. doi: 10.1021/acsaem.1c01694
    [56] Wang L, Feng X, Ren L, et al. Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI[J]. Journal of the American Chemical Society,2015,137(15):4920-4923. doi: 10.1021/jacs.5b01613
    [57] Yue T, Hou R, Liu X, et al. Hybrid architecture of a porous polypyrrole scaffold loaded with metal–organic frameworks for flexible solid-state supercapacitors[J]. ACS Applied Energy Materials,2020,3(12):11920-11928. doi: 10.1021/acsaem.0c02062
    [58] Srimuk P, Luanwuthi S, Krittayavathananon A, et al. Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper[J]. Electrochimica Acta,2015,157:69-77. doi: 10.1016/j.electacta.2015.01.082
    [59] Tian D, Ao Y, Li W, et al. General fabrication of metal-organic frameworks on electrospun modified carbon nanofibers for high-performance asymmetric supercapacitors[J]. Journal of Colloid and Interface Science,2021,603:199-209. doi: 10.1016/j.jcis.2021.05.138
    [60] Liu Y, Xu X, Shao Z. Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application[J]. Energy Storage Materials,2020,26:1-22. doi: 10.1016/j.ensm.2019.12.019
    [61] Liu N, Liu X, Pan J. A new rapid synthesis of hexagonal prism Zn-MOF as a precursor at room temperature for energy storage through pre-ionization strategy[J]. Journal of Colloid and Interface Science,2022,606:1364-1373. doi: 10.1016/j.jcis.2021.08.105
    [62] Chen Y, Huang D, Lei L, et al. Hierarchical urchin-like amorphous carbon with Co-adding anchored on nickel foam: A free-standing electrode for advanced asymmetrical supercapacitors and adsorbed Pb (II)[J]. Journal of Colloid and Interface Science,2021,603:58-69. doi: 10.1016/j.jcis.2021.06.080
    [63] He F, Li K, Cong S, et al. Design and synthesis of N-doped carbon skeleton assembled by carbon nanotubes and graphene as a high-performance electrode material for supercapacitors[J]. ACS Applied Energy Materials,2021,4(8):7731-7742. doi: 10.1021/acsaem.1c01094
    [64] Pokharel J, Gurung A, Baniya A, et al. MOF-derived hierarchical carbon network as an extremely-high-performance supercapacitor electrode[J]. Electrochimica Acta,2021,394:139058. doi: 10.1016/j.electacta.2021.139058
    [65] Gang X, Krishnamoorthy M, Jiang W, et al. A novel in-situ preparation of N-rich spherical porous carbon as greatly enhanced material for high-performance supercapacitors[J]. Carbon,2021,171:62-71. doi: 10.1016/j.carbon.2020.09.004
    [66] Zeng S, Huang X, Ma Y, et al. A review of covalent organic framework electrode materials for rechargeable metal-ion batteries[J]. New Carbon Materials,2021,36(1):1-18. doi: 10.1016/S1872-5805(21)60001-X
    [67] Arjun H, Meena G, Abdul K M, et al. Interlayer hydrogen-bonded covalent organic frameworks as high-performance supercapacitors[J]. Journal of the American Chemical Society,2018,140(35):10941-10945. doi: 10.1021/jacs.8b06460
    [68] Abdul K M, Vidyanand V, Suvendu K, et al. Convergent covalent organic framework thin sheets as flexible supercapacitor electrodes[J]. ACS Applied Materials & Interfaces,2018,10(33):28139-28146.
    [69] Li L, Lu F, Xue R, et al. Ultrastable triazine-based covalent organic framework with an interlayer hydrogen bonding for supercapacitor applications[J]. ACS Applied Materials & Interfaces,2019,11(29):26355-26363.
    [70] Xiong S, Liu J, Wang Y, et al. Solvothermal synthesis of triphenylamine-based covalent organic framework nanofibers with excellent cycle stability for supercapacitor electrodes[J]. Journal of Applied Polymer Science,2022,139(3):51510. doi: 10.1002/app.51510
    [71] Ahmed F M E, Ying-Hui H, Tharwat H M, et al. Synthesis of [3 + 3] β-ketoenamine-tethered covalent organic frameworks (COFs) for high-performance supercapacitance and CO2 storage[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,103:199-208. doi: 10.1016/j.jtice.2019.07.016
    [72] Kandambeth S, Jia J, Wu H, et al. Covalent organic frameworks as negative electrodes for high‐performance asymmetric supercapacitors[J]. Advanced Energy Materials,2020,10(38):2001673. doi: 10.1002/aenm.202001673
    [73] Li T, Yan X, Zhang W D, et al. A 2D donor-acceptor covalent organic framework with charge transfer for supercapacitors[J]. Chemical Communications,2020,56(91):14187-14190. doi: 10.1039/D0CC04109B
    [74] Li T, Yan X, Liu Y, et al. A 2D covalent organic framework involving strong intramolecular hydrogen bonds for advanced supercapacitors[J]. Polymer Chemistry,2020,11(1):47-52. doi: 10.1039/C9PY01623F
    [75] Li L, Lu F, Guo H, et al. A new two-dimensional covalent organic framework with intralayer hydrogen bonding as supercapacitor electrode material[J]. Microporous and Mesoporous Materials,2021,312:110766. doi: 10.1016/j.micromeso.2020.110766
    [76] Zhuang X D, Zhao W X, Zhang F, et al. A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton[J]. Polymer Chemistry,2016,7:4176. doi: 10.1039/C6PY00561F
    [77] Xu J S, He Y F, Bi S, et al. An olefin-linked covalent organic framework as a flexible thin-film electrode for a high-performance micro-supercapacitor[J]. Angew. Chem Int Ed,2019,58:12065.
    [78] Zhang F, Wei S C, Wei W W, et al. Trimethyltriazine-derived olefin-linked covalent organic framework with ultralong nanofibers[J]. Science Bulletin,2020,65(19):1659-1666. doi: 10.1016/j.scib.2020.05.033
    [79] Yang Z, Liu J, Li Y, et al. Arylamine‐linked 2D covalent organic frameworks for efficient pseudocapacitive energy storage[J]. Angewandte Chemie International Edition,2021,60(38):20754-20759. doi: 10.1002/anie.202108684
    [80] Wu Y, Yan D, Zhang Z, et al. Electron highways into nanochannels of covalent organic frameworks for high electrical conductivity and energy storage[J]. ACS applied materials & interfaces,2019,11(8):7661-7665.
    [81] Liu S, Yao L, Lu Y, et al. All-organic covalent organic framework/polyaniline composites as stable electrode for high-performance supercapacitors[J]. Materials Letters,2019,236:354-357. doi: 10.1016/j.matlet.2018.10.131
    [82] Peng H, Raya J, Richard F, et al. Synthesis of robust MOFs@ COFs porous hybrid materials via an Aza‐diels–alder reaction: Towards high‐performance supercapacitor materials[J]. Angewandte Chemie International Edition,2020,59(44):19602-19609. doi: 10.1002/anie.202008408
    [83] Colson J W, Woll A R, Mukherjee A, et al. Oriented 2D covalent organic framework thin films on single-layer graphene[J]. Science,2011,332(6026):228-231. doi: 10.1126/science.1202747
    [84] Wang C, Liu F, Chen J, et al. A graphene-covalent organic framework hybrid for high-performance supercapacitors[J]. Energy Storage Materials,2020,32:448-457. doi: 10.1016/j.ensm.2020.07.001
    [85] An N, Guo Z, Xin J, et al. Hierarchical porous covalent organic framework/graphene aerogel electrode for high-performance supercapacitors[J]. Journal of Materials Chemistry A,2021,9(31):16824-16833. doi: 10.1039/D1TA04313G
    [86] Wang P, Wu Q, Han L, et al. Synthesis of conjugated covalent organic frameworks/graphene composite for supercapacitor electrodes[J]. Rsc advances,2015,5(35):27290-27294. doi: 10.1039/C5RA02251G
    [87] Zha Z, Xu L, Wang Z, et al. 3D graphene functionalized by covalent organic framework thin film as capacitive electrode in alkaline media[J]. ACS applied materials & interfaces,2015,7(32):17837-17843.
    [88] Zhao X, Sajjad M, Zheng Y, et al. Covalent organic framework templated ordered nanoporous C60 as stable energy efficient supercapacitor electrode material[J]. Carbon,2021,182:144-154. doi: 10.1016/j.carbon.2021.05.061
    [89] Tang J, Cao Q, Tulevski G, et al. Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays[J]. Nature Electronics,2018,1(3):191-196. doi: 10.1038/s41928-018-0038-8
    [90] Fu J, Das S, Xing G, et al. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2[J]. Journal of the American Chemical Society,2016,138(24):7673-7680. doi: 10.1021/jacs.6b03348
    [91] Wang Y, Qu Q, Gao S, et al. Biomass derived carbon as binder-free electrode materials for supercapacitors[J]. Carbon,2019,155:706-726. doi: 10.1016/j.carbon.2019.09.018
    [92] Duan Q, Wang S, Wang Q, et al. Simultaneous improvement on strength, modulus, and elongation of carbon nanotube films functionalized by hyperbranched polymers[J]. ACS applied materials & interfaces,2019,11(39):36278-36285.
    [93] Xu Z, Liu Y, Wu Z, et al. Construction of extensible and flexible supercapacitors from covalent organic framework composite membrane electrode[J]. Chemical Engineering Journal,2020,387:124071. doi: 10.1016/j.cej.2020.124071
    [94] Sun B, Liu J, Cao A, et al. Interfacial synthesis of ordered and stable covalent organic frameworks on amino-functionalized carbon nanotubes with enhanced electrochemical performance[J]. Chemical Communications,2017,53(47):6303-6306. doi: 10.1039/C7CC01902E
    [95] Yang Y, Zhang P, Hao L, et al. Grotthuss proton‐conductive covalent organic frameworks for efficient proton pseudocapacitors[J]. Angewandte Chemie,2021,133(40):22009-22016. doi: 10.1002/ange.202105725
    [96] Zhu X, Tian C, Veith G M, et al. In situ doping strategy for the preparation of conjugated triazine frameworks displaying efficient CO2 capture performance[J]. Journal of the American Chemical Society,2016,138(36):11497-11500. doi: 10.1021/jacs.6b07644
    [97] Yu S Y, Mahmood J, Noh H J, et al. Direct synthesis of a covalent triazine‐based framework from aromatic amides[J]. Angewandte Chemie International Edition,2018,57(28):8438-8442. doi: 10.1002/anie.201801128
    [98] Lu C, Yang J, Wei S, et al. Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for carbon dioxide conversion[J]. Advanced Functional Materials,2019,29(10):1806884. doi: 10.1002/adfm.201806884
    [99] Liu M, Guo L, Jin S, et al. Covalent triazine frameworks: Synthesis and applications[J]. Journal of Materials Chemistry A,2019,7(10):5153-5172. doi: 10.1039/C8TA12442F
    [100] Talapaneni S N, Hwang T H, Je S H, et al. Elemental‐sulfur‐mediated facile synthesis of a covalent triazine framework for high‐performance lithium–sulfur batteries[J]. Angewandte Chemie International Edition,2016,55(9):3106-3111. doi: 10.1002/anie.201511553
    [101] Kuhn P, Antonietti M, Thomas A. Porous, covalent triazine‐based frameworks prepared by ionothermal synthesis[J]. Angewandte Chemie International Edition,2008,47(18):3450-3453. doi: 10.1002/anie.200705710
    [102] Li Y, Zheng S, Liu X, et al. Conductive microporous covalent triazine‐based framework for high‐performance electrochemical capacitive energy storage[J]. Angewandte Chemie,2018,130(27):8124-8128. doi: 10.1002/ange.201711169
    [103] Deka N, Patidar R, Kasthuri S, et al. Triazine based polyimide framework derived N-doped porous carbons: A study of their capacitive behaviour in aqueous acidic electrolyte[J]. Materials Chemistry Frontiers,2019,3(4):680-689. doi: 10.1039/C8QM00641E
    [104] Hao L, Ning J, Luo B, et al. Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors[J]. Journal of the American Chemical Society,2015,137(1):219-225. doi: 10.1021/ja508693y
    [105] Wu C, Zhang H, Hu M, et al. In situ nitrogen‐doped covalent triazine‐based multiporous cross‐linking framework for high‐performance energy storage[J]. Advanced Electronic Materials,2020,6(7):2000253. doi: 10.1002/aelm.202000253
    [106] Gao Y, Zhi C, Cui P, et al. Halogen-functionalized triazine-based organic frameworks towards high performance supercapacitors[J]. Chemical Engineering Journal,2020,400:125967. doi: 10.1016/j.cej.2020.125967
    [107] Mohapatra J, Elkins J, Xing M, et al. Magnetic-field-induced self-assembly of FeCo/CoFe2O4 core/shell nanoparticles with tunable collective magnetic properties[J]. Nanoscale,2021,13(8):4519-4529. doi: 10.1039/D1NR00136A
    [108] Vadiyar M M, Liu X, Ye Z. Macromolecular polyethynylbenzonitrile precursor-based porous covalent triazine frameworks for superior high-rate high-energy supercapacitors[J]. ACS applied materials & interfaces,2019,11(49):45805-45817.
    [109] Wang D G, Wang H, Lin Y, et al. Synthesis and morphology evolution of ultrahigh content nitrogen‐doped, micropore‐dominated carbon materials as high‐performance supercapacitors[J]. ChemSusChem,2018,11(22):3932-3940. doi: 10.1002/cssc.201801892
    [110] Li L, Lu F, Xue R, et al. Ultrastable triazine-based covalent organic framework with an interlayer hydrogen bonding for supercapacitor applications[J]. ACS applied materials & interfaces,2019,11(29):26355-26363.
    [111] El‐Mahdy A F M, Hung Y H, Mansoure T H, et al. A hollow microtubular triazine‐and benzobisoxazole‐based covalent organic framework presenting sponge‐like shells that functions as a high‐performance supercapacitor[J]. Chemistry–An Asian Journal,2019,14(9):1429-1435. doi: 10.1002/asia.201900296
    [112] Bhanja P, Bhunia K, Das S K, et al. A new triazine‐based covalent organic framework for high‐performance capacitive energy storage[J]. ChemSusChem,2017,10(5):921-929. doi: 10.1002/cssc.201601571
    [113] Wang Y, Hao L, Zeng Y, et al. Three-dimensional hierarchical porous carbon derived from resorcinol formaldehyde-zinc tatrate/poly (styrene-maleic anhydride) for high performance supercapacitor electrode[J]. Journal of Alloys and Compounds,2021,886:161176. doi: 10.1016/j.jallcom.2021.161176
    [114] Zhao Y, Bu N, Shao H, et al. A carbonized porous aromatic framework to achieve customized nitrogen atoms for enhanced supercapacitor performance[J]. New Journal of Chemistry,2019,43(46):18158-18164. doi: 10.1039/C9NJ04038B
    [115] Kim G, Yang J, Nakashima N, et al. Highly microporous nitrogen‐doped carbon synthesized from azine‐linked covalent organic framework and its supercapacitor function[J]. Chemistry–A European Journal,2017,23(69):17504-17510. doi: 10.1002/chem.201702805
    [116] Zhu D, Jiang J, Sun D, et al. A general strategy to synthesize high-level N-doped porous carbons via Schiff-base chemistry for supercapacitors[J]. Journal of Materials Chemistry A,2018,6(26):12334-12343. doi: 10.1039/C8TA02341G
    [117] Xue R, Gou H, Liu Y, et al. A layered triazinyl-COF linked by− NH− linkage and resulting N-doped microporous carbons: preparation, characterization and application for supercapacitance[J]. Journal of Porous Materials,2021,28(3):895-903. doi: 10.1007/s10934-021-01046-8
    [118] Huang Y B, Pachfule P, Sun J K, et al. From covalent–organic frameworks to hierarchically porous B-doped carbons: a molten-salt approach[J]. Journal of Materials Chemistry A,2016,4(11):4273-4279. doi: 10.1039/C5TA10170K
    [119] Umezawa S, Douura T, Yoshikawa K, et al. Supercapacitor electrode with high charge density based on boron-doped porous carbon derived from covalent organic frameworks[J]. Carbon,2021,184:418-425. doi: 10.1016/j.carbon.2021.08.022
    [120] Zhou Z, Zhang X, Xing L, et al. Copper-assisted thermal conversion of microporous covalent melamine-boroxine frameworks to hollow B, N-codoped carbon capsules as bifunctional metal-free electrode materials[J]. Electrochimica Acta,2019,298:210-218. doi: 10.1016/j.electacta.2018.12.080
    [121] Li T, Zhang W D, Liu Y, et al. A two-dimensional semiconducting covalent organic framework with nickel (ii) coordination for high capacitive performance[J]. Journal of Materials Chemistry A,2019,7(34):19676-19681. doi: 10.1039/C9TA07194F
    [122] Romero J, Rodriguez-San-Miguel D, Ribera A, et al. Metal-functionalized covalent organic frameworks as precursors of supercapacitive porous N-doped graphene[J]. Journal of Materials Chemistry A,2017,5(9):4343-4351. doi: 10.1039/C6TA09296A
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  2255
  • HTML全文浏览量:  1815
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-02
  • 修回日期:  2022-01-04
  • 网络出版日期:  2022-01-06
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回