留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N/S co-doped interconnected porous carbon nanosheets as high-performance supercapacitor electrode materials

WEI Yu-chen ZHOU Jian YANG Lei GU Jing CHEN Zhi-peng HE Xiao-jun

魏雨晨, 周健, 杨磊, 顾敬, 陈志鹏, 何孝军. 高性能超级电容器用N/S共掺杂多孔炭纳米片电极材料. 新型炭材料(中英文), 2022, 37(4): 707-715. doi: 10.1016/S1872-5805(22)60595-X
引用本文: 魏雨晨, 周健, 杨磊, 顾敬, 陈志鹏, 何孝军. 高性能超级电容器用N/S共掺杂多孔炭纳米片电极材料. 新型炭材料(中英文), 2022, 37(4): 707-715. doi: 10.1016/S1872-5805(22)60595-X
WEI Yu-chen, ZHOU Jian, YANG Lei, GU Jing, CHEN Zhi-peng, HE Xiao-jun. N/S co-doped interconnected porous carbon nanosheets as high-performance supercapacitor electrode materials. New Carbon Mater., 2022, 37(4): 707-715. doi: 10.1016/S1872-5805(22)60595-X
Citation: WEI Yu-chen, ZHOU Jian, YANG Lei, GU Jing, CHEN Zhi-peng, HE Xiao-jun. N/S co-doped interconnected porous carbon nanosheets as high-performance supercapacitor electrode materials. New Carbon Mater., 2022, 37(4): 707-715. doi: 10.1016/S1872-5805(22)60595-X

高性能超级电容器用N/S共掺杂多孔炭纳米片电极材料

doi: 10.1016/S1872-5805(22)60595-X
基金项目: 国家自然科学基金(52072002, 51872005, U1710116和U1508201)和皖江学者项目资助
详细信息
    通讯作者:

    何孝军, 教授. E-mail: xjhe@ahut.edu.cn

  • 中图分类号: TQ536.9

N/S co-doped interconnected porous carbon nanosheets as high-performance supercapacitor electrode materials

More Information
  • 摘要: 如何采用无酸工艺合成高性能超级电容器(SCs)用多孔炭纳米片电极材料是一个大的挑战。本文报道了一种简便且无酸的由煤焦油沥青(CTP)构建N/S共掺杂相互连接的多孔炭纳米片(NS-IPCNs)的新方法。制备的NS-IPCN800具有相互连接的三维结构,这些三维结构由含有大量分级孔的二维炭纳米片组成。其中,丰富的微孔增加了离子吸附所需的活性位点,而短的中孔为离子传输提供了通道。此外,相互连接的三维结构为电子的快速传递提供了通道;掺杂的杂原子为NS-IPCNs电极提供了额外的赝电容。受益于这些优点, NS-IPCN800电极在6 mol L−1 KOH电解液中,在0.05 A g−1电流密度下的比电容达302 F g−1。另外,NS-IPCN800电容器在功率密度为25.98 W kg−1下其能量密度达9.71 Wh kg−1。更重要的是,NS-IPCN800电容器在10 000次循环充放电后电容保持率为94.2%,表现出优异的循环稳定性。这项工作为由CTP构建高性能储能装置用NS-IPCNs开辟了一种危害较小的策略。
  • FIG. 1654.  FIG. 1654.

    FIG. 1654..  FIG. 1654.

    Figure  1.  Schematic diagram for the preparation of sheet-like NS-IPCNs from CTP.

    Figure  2.  FESEM images of (a) NS-IPCN750, (b) NS-IPCN800, (c) NS-IPCN850, (d) N-IPCN800 and (e) S-IPCN800. TEM images of (f) NS-IPCN750, (g) NS-IPCN800 and (h) NS-IPCN850.

    Figure  3.  (a) Nitrogen adsorption/desorption isotherms of IPCNs, (b) Micropores and part mesopores size distribution curves of IPCNs.

    Figure  4.  (a) Raman spectra of IPCNs, (b) Full XPS spectra of IPCNs.

    Figure  5.  (a) CV curves of IPCN electrodes at scan rate of 10 mV s−1 and (b) NS-IPCN800 electrode at scan rates of 2-500 mV s−1.

    Figure  6.  (a) GCD curves of IPCN electrodes at 1 A g−1 in 6 mol L−1 of KOH electrolyte, (b) GCD curves of NS-IPCN800 electrode at different current densities in 6 mol L−1 of KOH electrolyte, (c) Specific capacitance of IPCN capacitors at different current densities, (d) Ragone plots of IPCN capacitors, (e) Nyquist plots of IPCN capacitors, and (f) Cycle stability of NS-IPCN800 capacitor measured at 5 A g−1.

    Table  1.   Pore structure parameters of IPCNs.

    SamplesDap (nm)SBET (m2 g−1)Vt (cm3 g−1)Vmic (cm3 g−1)
    NS-IPCN7502.5210190.850.38
    NS-IPCN8002.6320001.310.60
    NS-IPCN8502.8419771.450.45
    N-IPCN8002.2116220.880.21
    S-IPCN8002.3516820.980.28
    Dap: average pore diameter; SBET: Brunauer–Emmett–Teller (BET) surface area; Vt: total pore volume; Vmic: micropores volume.
    下载: 导出CSV

    Table  2.   Contents of C, O, N and S elements in IPCNs.

    SamplesC 1s (%)O 1s (%)N 1s (%)S 2p (%)O 1s
    C=O (%)C―O (%)―OH (%)
    NS-IPCN75089.637.531.990.844.443.080.01
    NS-IPCN80093.954.630.990.432.412.210.01
    NS-IPCN85094.923.880.870.332.011.860.01
    N-IPCN80091.714.883.41-2.512.360.01
    S-IPCN80090.646.45-3.043.433.010.01
    下载: 导出CSV

    Table  3.   Comparison of the specific capacitance of NS-IPCN800 electrode.

    SampleElectrolyte (mol L−1)Current density (A g−1)Cg (F g−1)Energy density (Wh kg−1)Ref.
    PB/rGO 1.0 Na2SO4 0.3 286 45.4 [34]
    GGI 6.0 KOH 0.5 301 9.1 [35]
    Carbon nanobowls 6.0 KOH 0.1 279 9.6 [36]
    ACS 6.0 KOH 1.0 208 9.2 [37]
    HPCNT 6.0 KOH 0.1 286 8.45 [38]
    SNPCNs 6.0 KOH 0.5 286 5.9 [39]
    RGO 1.0 Na2SO4 0.5 147.5 3.3 [40]
    HGNs 6.0 KOH 1.0 295 9.4 [41]
    NPS-HCS 6.0 KOH 0.5 274 8.4 [42]
    NS-IPCN800 6.0 KOH 0.05 302 9.71 This work
    下载: 导出CSV
  • [1] Deng W W, Qian J F, Cao Y L, et al. Graphene-wrapped Na2C12H6O4 nanoflowers as high-performance anodes for sodium-ion batteries[J]. Small,2016,12:583-587. doi: 10.1002/smll.201502278
    [2] Kajiyama S, Szabova L, Sodeyama K, et al. Sodium-ion intercalation mechanism in MXene nanosheets[J]. ACS Nano,2016,10:3334-3341. doi: 10.1021/acsnano.5b06958
    [3] Qiu X, Wang N, Wang Z, et al. Towards high-performance zinc-based hybrid supercapacitors via macropores-based charge storage in organic electrolytes[J]. Angewandte Chemie International Edition,2021,60:9610-9617. doi: 10.1002/anie.202014766
    [4] Feng J Z, Wang Y, Xu Y T, et al. Construction of supercapacitor-based ionic diodes with adjustable bias directions by using poly (ionic liquid) electrolytes[J]. Advanced Materials,2021,24:2100887.
    [5] Jayaramulu K, Dubal D P, Nagar B, et al. Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage[J]. Advanced Materials,2018,30:1705789. doi: 10.1002/adma.201705789
    [6] Lee J H, Chae J S, Jeong J H, et al. An ionic liquid incorporated in a quasi-solid-state electrolyte for high-temperature supercapacitor applications[J]. Chemical Communications,2019,55:15081-15084. doi: 10.1039/C9CC07784G
    [7] He X J, Zhang H B, Zhang H, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. Journal of Materials Chemistry A,2014,2:19633-19640. doi: 10.1039/C4TA03323J
    [8] Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin?[J]. Science,2014,343:1210-1211. doi: 10.1126/science.1249625
    [9] Rafieerad A, Amiri A, Sequiera L G, et al. Development of fluorine-free tantalum carbide MXene hybrid structure as a biocompatible material for supercapacitor electrodes[J]. Advanced Functional Materials,2021,31:2100015. doi: 10.1002/adfm.202100015
    [10] Liu Y C, Hung Y H, Sutarsis, et al. Effects of surface functional groups of coal-tar-pitch-derived nanoporous carbon anodes on microbial fuel cell performance[J]. Renewable Energy,2021,171:87-94. doi: 10.1016/j.renene.2021.01.149
    [11] Zang L M, Liu Q F, Qiu J H, et al. Design and fabrication of an all-solid-state polymer supercapacitor with highly mechanical flexibility based on polypyrrole hydrogel[J]. ACS Applied Materials Interfaces,2017,9:33941-33947. doi: 10.1021/acsami.7b10321
    [12] Liang X, Nie K W, Ding X, et al. Highly compressible carbon sponge supercapacitor electrode with enhanced performance by growing nickel-cobalt sulfide nanosheets[J]. ACS Applied Materials Interfaces,2018,10:10087-10095. doi: 10.1021/acsami.7b19043
    [13] Wei F, Zhang H F, He X J, et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Materials,2019,34:132-139. doi: 10.1016/S1872-5805(19)60006-5
    [14] He X J, Zhang N, Shao X L, et al. A layered-template-nanospace-confinement strategy for production of corrugated graphene nanosheets from petroleum pitch for supercapacitors[J]. Chemical Engineer Journal,2016,297:121-127. doi: 10.1016/j.cej.2016.03.153
    [15] Ma T, Liao L X, Zhang X, et al. Hierarchical pores from microscale to macroscale boost ultrahigh lithium intercalation pseudocapacitance of biomass carbon[J]. Journal of Energy Storage,2021,33:102068. doi: 10.1016/j.est.2020.102068
    [16] Deshagani S, Maity D, Das A, et al. NiMoO4@NiMnCo2O4 heterostructure: A poly (3, 4-propylenedioxythiophene) composite-based supercapacitor powers an electrochromic device[J]. ACS Applied Materials Interfaces,2021,13:34518-34532. doi: 10.1021/acsami.1c07064
    [17] Sun L, Zhou H, Li L, et al. Double soft-template synthesis of nitrogen/sulfur-codoped hierarchically porous carbon materials derived from protic ionic liquid for supercapacitor[J]. ACS Applied Materials Interfaces,2017,9:26088-26095. doi: 10.1021/acsami.7b07877
    [18] Chen M H, Fan H, Zhang Y, et al. Coupling PEDOT on mesoporous vanadium nitride arrays for advanced flexible all-solid-state supercapacitors[J]. Small,2020,16:2003434. doi: 10.1002/smll.202003434
    [19] Zhang P P, Wang M C, Liu Y N, et al. Dual-redox-sites enable two-dimensional conjugated metal-organic frameworks with large pseudocapacitance and wide potential window[J]. Journal of the American Chemical Society,2021,143:10168-10176. doi: 10.1021/jacs.1c03039
    [20] Fu W W, Zou T, Liang X H, et al. Characterization and thermal performance of microencapsulated sodium thiosulfate pentahydrate as phase change material for thermal energy storage[J]. Solar Energy Materials Solar Cells,2019,193:149-156. doi: 10.1016/j.solmat.2019.01.007
    [21] Pang J, Zhang W F, Zhang J L, et al. Facile and sustainable synthesis of sodium lignosulfonate derived hierarchical porous carbons for supercapacitors with high volumetric energy densities[J]. Green Chemistry,2017,19:3916-3926. doi: 10.1039/C7GC01434A
    [22] He T, Huang Z H, Yuan S, et al. Kinetically controlled reticular assembly of a chemically stable mesoporous Ni(II)-pyrazolate metal-organic framework[J]. Journal of the American Chemical Society,2021,142:13491-13499.
    [23] Sun H H, Liu H Y, Hou Z D, et al. Edge-terminated MoS2 nanosheets with an expanded interlayer spacing on graphene to boost supercapacitive performance[J]. Chemical Engineering Journal,2020,387:124204. doi: 10.1016/j.cej.2020.124204
    [24] Lv T, Liu M X, Zhu D Z, et al. Nanocarbon-based materials for flexible all-solid-state supercapacitors[J]. Advanced Materials,2018,30:1705489. doi: 10.1002/adma.201705489
    [25] Zhao X, Wang S J, Wu Q. Nitrogen and phosphorus dual-doped hierarchical porous carbon with excellent supercapacitance performance[J]. Electrochimica Acta,2017,247:1140-1146. doi: 10.1016/j.electacta.2017.07.077
    [26] Qi F L, Xia Z X, Wei W, et al. Nitrogen/sulfur co-doping assisted chemical activation for synthesis of hierarchical porous carbon as an efficient electrode material for supercapacitors[J]. Electrochimica Acta,2017,246:59-67. doi: 10.1016/j.electacta.2017.05.192
    [27] Wan L, Wang J L, Xie L J, et al. Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors[J]. ACS Applied Materials Interfaces,2014,6:15583-15596. doi: 10.1021/am504564q
    [28] Ran F T, Yang X B, Xu X Q, et al. Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor[J]. Chemical Engineering Journal,2021,412:128673. doi: 10.1016/j.cej.2021.128673
    [29] Lo C T, Lin K W, Wang T P, et al. Differentiating between the effects of nitrogen plasma and hydrothermal treatment on electrospun carbon fibers used as supercapacitor electrodes[J]. Electrochimica Acta,2021,381:138255. doi: 10.1016/j.electacta.2021.138255
    [30] Yang P H, Mai W J. Flexible solid-state electrochemical supercapacitors[J]. Nano Energy,2014,8:274-290. doi: 10.1016/j.nanoen.2014.05.022
    [31] Xu K L, Liu J, Yan Z X, et al. Synthesis and use of hollow carbon spheres for electric double-layer capacitors[J]. New Carbon Materials,2021,36:794-809. doi: 10.1016/S1872-5805(20)60517-0
    [32] Benzigar R M, Talapaneni N S, Joseph S, et al. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications[J]. Chemical Society Reviews,2018,47:2680-2721. doi: 10.1039/C7CS00787F
    [33] He X J, Xie X Y, Wang J X, et al. From fluorene molecules to ultrathin carbon nanonets with an enhanced charge transfer capability for supercapacitors[J]. Nanoscale,2019,11:6610-6619. doi: 10.1039/C9NR00068B
    [34] Wang J G, Ren L B, Hou Z D, et al. Flexible reduced graphene oxide/prussian blue films for hybrid supercapacitors[J]. Chemical Engineering Journal,2020,397:125521. doi: 10.1016/j.cej.2020.125521
    [35] Yan Y, Hao X F, Gao L G, et al. Highly accessible hierarchical porous carbon from a bi-functional ionic liquid bulky gel: High-performance electrochemical double layer capacitors[J]. Journal of Materials Chemistry A,2019,7:25297. doi: 10.1039/C9TA07820G
    [36] Wang J G, Liu H Z, Zhang X Y, et al. Elaborate construction of N/S-co-doped carbon nanobowls for ultrahigh-power supercapacitors[J]. Journal of Materials Chemistry A,2018,6:17653. doi: 10.1039/C8TA07573E
    [37] Zhang X, Wang Y Z, Yu X W, et al. High-performance discarded separator-based activated carbon for the application of supercapacitors[J]. Journal of Energy Storage,2021,44:103378. doi: 10.1016/j.est.2021.103378
    [38] Wang J G, Liu H Z, Zhang X Y, et al. Green synthesis of hierarchically porous carbon nanotubes as advanced materials for high-efficient energy storage[J]. Small,2018,4:1703950.
    [39] Chen C, Zhao M K, Cai Y Y, et al. Scalable synthesis of strutted nitrogen doped hierarchical porous carbon nanosheets for supercapacitors with both high gravimetric and volumetric performances[J]. Carbon,2021,179:458-468. doi: 10.1016/j.carbon.2021.04.062
    [40] Oyedotun K O, Masikhwa T M, Lindberg S, et al. Comparison of ionic liquid electrolyte to aqueous electrolytes on carbon nanofibres supercapacitor electrode derived from oxygen-functionalized graphene[J]. Chemical Engineering Journal,2019,375:121906. doi: 10.1016/j.cej.2019.121906
    [41] Wang J, Park T, Yi J W, et al. Scalable synthesis of holey graphite nanosheets for supercapacitors with high volumetric capacitance[J]. Nanoscale Horizons,2019,4:526-530. doi: 10.1039/C8NH00375K
    [42] Yan L J, Li D, Yan T T, et al. N, P, S-codoped hierarchically porous carbon spheres with well-balanced gravimetric/volumetric capacitance for supercapacitors[J]. ACS Sustainable Chemistry Engineering,2018,6:5265-5272. doi: 10.1021/acssuschemeng.7b04922
    [43] Wei F, He X J, Ma L B, et al. 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors[J]. Nano-Micro Letters,2020,12:82. doi: 10.1007/s40820-020-00416-2
    [44] Choi J, Nam D, Shin D, et al. Charge-transfer-modulated transparent supercapacitor using multidentate molecular linker and conductive transparent nanoparticle assembly[J]. ACS Nano,2019,13:12719-12731. doi: 10.1021/acsnano.9b04594
    [45] Cai D, Lu M J, Li L, et al. A highly conductive MOF of graphene analogue Ni3(HITP)2 as a sulfur host for high-performance lithium-sulfur batteries[J]. Small,2019,15:1902605. doi: 10.1002/smll.201902605
    [46] Yang F, Zhang S K, Yang Y, et al. Heteroatoms doped carbons derived from crosslinked polyphosphazenes for supercapacitor electrodes[J]. Electrochimica Acta,2019,328:135064. doi: 10.1016/j.electacta.2019.135064
  • 20210234-Supporting Information.pdf
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  780
  • HTML全文浏览量:  346
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-06
  • 修回日期:  2021-12-09
  • 网络出版日期:  2022-01-05
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回