留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In-situ observation of electrolyte-dependent interfacial change of the graphite anode in sodium-ion batteries by atomic force microscopy

ZHANG Xin-ren YANG Jia-ying REN Zeng-ying XIE Ke-yu YE Qian XU Fei LIU Xing-rui

张馨壬, 杨佳迎, 任增英, 谢科予, 叶谦, 徐飞, 刘兴蕊. 原位AFM探索钠离子电池溶剂依赖型石墨界面演绎过程. 新型炭材料(中英文), 2022, 37(2): 371-380. doi: 10.1016/S1872-5805(22)60601-2
引用本文: 张馨壬, 杨佳迎, 任增英, 谢科予, 叶谦, 徐飞, 刘兴蕊. 原位AFM探索钠离子电池溶剂依赖型石墨界面演绎过程. 新型炭材料(中英文), 2022, 37(2): 371-380. doi: 10.1016/S1872-5805(22)60601-2
ZHANG Xin-ren, YANG Jia-ying, REN Zeng-ying, XIE Ke-yu, YE Qian, XU Fei, LIU Xing-rui. In-situ observation of electrolyte-dependent interfacial change of the graphite anode in sodium-ion batteries by atomic force microscopy. New Carbon Mater., 2022, 37(2): 371-380. doi: 10.1016/S1872-5805(22)60601-2
Citation: ZHANG Xin-ren, YANG Jia-ying, REN Zeng-ying, XIE Ke-yu, YE Qian, XU Fei, LIU Xing-rui. In-situ observation of electrolyte-dependent interfacial change of the graphite anode in sodium-ion batteries by atomic force microscopy. New Carbon Mater., 2022, 37(2): 371-380. doi: 10.1016/S1872-5805(22)60601-2

原位AFM探索钠离子电池溶剂依赖型石墨界面演绎过程

doi: 10.1016/S1872-5805(22)60601-2
基金项目: 国家自然科学基金(51972270,21603175);陕西省自然科学基金(2020JZ-07);陕西省重点研发项目(2019TSLGY07-03);凝固技术国家重点实验室研究基金资助项目(2021-TS-03);固体润滑国家重点实验室研究基金项目(LSL-2007)
详细信息
    通讯作者:

    谢科予,博士,教授. E-mail:kyxie@nwpu.edu.cn

    徐 飞,博士,研究员. E-mail:feixu@nwpu.edu.cn

    刘兴蕊,博士,助理研究员. E-mail:liuxingrui@nwpu.edu.cn

  • 中图分类号: TQ127.1+1

In-situ observation of electrolyte-dependent interfacial change of the graphite anode in sodium-ion batteries by atomic force microscopy

Funds: This work was supported by the National Natural Science Foundation of China (51972270, 21603175), Natural Science Foundation of Shaanxi Province (2020JZ-07), the Key Research and Development Program of Shaanxi Province (2019TSLGY07-03), the Research Fund of the State Key Laboratory of Solidification Processing (NPU), China (2021-TS-03), and the Research Fund of the State Key Laboratory of Solid Lubrication (CAS), China (LSL-2007)
More Information
  • 摘要: 石墨在碳酸酯基电解液中储钠活性很低,因此被认为不合适作为钠离子电池负极材料。而最近的研究表明,在以线性醚为溶剂的钠离子电解液中,石墨具有高的储钠容量和首圈库伦效率。因此,探索这种溶剂依赖型的石墨界面演绎过程具有重要的意义。本研究采用原位原子力显微镜(Atomic force microscopy,AFM)实时观测石墨在碳酸酯基和线性醚基电解液下的界面微观动态过程。结果表明:在线性醚溶剂下,石墨电极界面没有固体电解质界面膜(Solid electrolyte interphase,SEI)形成,且溶剂化钠离子可以在石墨层间进行可逆的插入和脱出,AFM结果从界面角度解释了其具有高初始库伦效率的内在原因。然而在碳酸酯溶剂中,可以观察到石墨电极表面出现明显的沉积物,对应SEI的生长;并且在充电过程中SEI逐渐减少,表明碳酸酯溶剂下形成的SEI不稳定,造成不可逆的容量损失和低库伦效率。此外,石墨表面未出现明显的台阶变化,反映了没有钠离子的脱嵌过程。上述研究结果为石墨负极界面反应动态过程提供了见解,从微观尺度揭示了溶剂依赖的石墨负极储钠行为及其界面反应机理,为高性能钠离子电池体系的设计与发展提供了理论依据。
  • FIG. 1401.  FIG. 1401.

    FIG. 1401.. 

    Figure  1.  Galvanostatic discharge-charge curves of the graphite electrode in (a) carbonate and (b) diglyme electrolytes, at the current density of 100 mA g−1. (c) Long-term cycling performance and Coulombic efficiency of diglyme electrolyte at 100 mA g−1. (d) CV curves in diglyme electrolyte at 0.1 mV s−1.

    Figure  2.  (a) Schematic of the in situ AFM setup. (b-j) In situ AFM images of HOPG electrode in 1 mol L−1 diglyme electrolyte during the first discharging cycle from 1.84 to 0.51 V. The long white arrows indicate the scan directions.

    Figure  3.  (a-i) In situ AFM images of HOPG electrode in 1 mol L−1 diglyme electrolyte during the first charging cycle from 0.02 to 1.96 V.

    Figure  4.  (a) 3D AFM morphology images of HOPG surface in 1 mol L−1 diglyme electrolyte. (b) Schematic of the in situ Raman setup and in situ Raman spectra of graphite electrode in diglyme electrolyte during cycling.

    Figure  5.  (a-l) In situ AFM images of HOPG electrode in 1 mol L−1 diglyme electrolyte during the first discharging cycle from 0.80 to 0.16 V. Height cross-section profiles of cracke (h’) A and (i’) B.

    Figure  6.  In situ AFM images of HOPG electrode in 1 mol L−1 carbonate electrolyte (a) during the first discharging cycle from 2.54 to 0.09 V and (b) during the first charging cycle from 0.01 to 2.50 V.

    Figure  7.  (a) Schematic of interfacial and internal mechanism of graphite electrode during the first charge and discharge process for SIBs. (b) Interfacial behaviors of graphite electrode in different electrolytes for LIBs.

  • [1] Xu Z L, Yoon G, Park K Y, et al. Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries[J]. Nature Communications,2019,10(1):2598. doi: 10.1038/s41467-019-10551-z
    [2] Xu X, Xu Y, Xu F, et al. Black BiVO4: size tailored synthesis, rich oxygen vacancies, and sodium storage performance[J]. Journal of Materials Chemistry A,2020,8(4):1636-1645. doi: 10.1039/C9TA13021G
    [3] Xu F, Qiu Y, Han H, et al. Manipulation of carbon framework from the microporous to nonporous via a mechanical-assisted treatment for structure-oriented energy storage[J]. Carbon,2020,159:140-148. doi: 10.1016/j.carbon.2019.12.005
    [4] Yang J Y, Han H J, Repich H, et al. Recent progress on the design of hollow carbon spheres to host sulfur in room-temperature sodium-sulfur batteries[J]. New Carbon Materials,2020,35(6):630-645. doi: 10.1016/S1872-5805(20)60519-4
    [5] Xu F, Han H, Qiu Y, et al. Facile regulation of carbon framework from the microporous to low-porous via molecular crosslinker design and enhanced Na storage[J]. Carbon,2020,167:896-905. doi: 10.1016/j.carbon.2020.05.081
    [6] Yoshio M, Wang H, Fukuda K. Spherical carbon-coated natural graphite as a lithium-ion battery-anode material[J]. Angewandte Chemie International Edition,2003,42(35):4203-4206. doi: 10.1002/anie.200351203
    [7] Nishi Y. Lithium ion secondary batteries; past 10 years and the future[J]. Journal of Power Sources,2001,100(1):101-106.
    [8] Ge P, Fouletier M. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics,1988,28-30:1172-1175. doi: 10.1016/0167-2738(88)90351-7
    [9] Nobuhara K, Nakayama H, Nose M, et al. First-principles study of alkali metal-graphite intercalation compounds[J]. Journal of Power Sources,2013,243:585-587. doi: 10.1016/j.jpowsour.2013.06.057
    [10] Yoon G, Kim H, Park I, et al. Conditions for reversible Na intercalation in graphite: Theoretical studies on the interplay among guest ions, solvent, and graphite host[J]. Advanced Energy Materials,2017,7(2):1601519. doi: 10.1002/aenm.201601519
    [11] Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition,2014,53(38):10169-10173. doi: 10.1002/anie.201403734
    [12] Goktas M, Bolli C, Berg E J, et al. Graphite as cointercalation electrode for sodium-ion batteries: Electrode dynamics and the missing solid electrolyte interphase (SEI)[J]. Advanced Energy Materials,2018,8(16):1702724. doi: 10.1002/aenm.201702724
    [13] Kim H, Hong J, Yoon G, et al. Sodium intercalation chemistry in graphite[J]. Energy & Environmental Science,2015,8(10):2963-2969.
    [14] Zhu Z, Cheng F, Hu Z, et al. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries[J]. Journal of Power Sources,2015,293:626-634. doi: 10.1016/j.jpowsour.2015.05.116
    [15] Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews,2014,114(23):11503-11618. doi: 10.1021/cr500003w
    [16] Zhang J, Wang D W, Lv W, et al. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase[J]. Energy & Environmental Science,2017,10(1):370-376.
    [17] Liu M, Xing L, Xu K, et al. Deciphering the paradox between the co-intercalation of sodium-solvent into graphite and its irreversible capacity[J]. Energy Storage Materials,2020,26:32-39. doi: 10.1016/j.ensm.2019.12.026
    [18] Stevens D A, Dahn J. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of The Electrochemical Society,2001,148(8):A803. doi: 10.1149/1.1379565
    [19] Kim H, Hong J, Park Y U, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Advanced Functional Materials,2015,25(4):534-541. doi: 10.1002/adfm.201402984
    [20] Liang H J, Hou B H, Li W H, et al. Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: in operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries[J]. Energy & Environmental Science,2019,12(12):3575-3584.
    [21] Seidl L, Bucher N, Chu E, et al. Intercalation of solvated Na-ions into graphite[J]. Energy & Environmental Science,2017,10(7):1631-1642.
    [22] Cohn A P, Share K, Carter R, et al. Ultrafast solvent-assisted sodium ion intercalation into highly crystalline few-layered graphene[J]. Nano Letters,2016,16(1):543-548. doi: 10.1021/acs.nanolett.5b04187
    [23] Kajita T, Itoh T. Mixed ether-based solvents provide a long cycle life with high rate capability to graphite anodes for Na-ion batteries[J]. Physical Chemistry Chemical Physics,2018,20(4):2188-2195. doi: 10.1039/C7CP06998G
    [24] Leifer N, Greenstein M F, Mor A, et al. NMR-detected dynamics of sodium co-intercalation with diglyme solvent molecules in graphite anodes linked to prolonged cycling[J]. The Journal of Physical Chemistry C,2018,122(37):21172-21184. doi: 10.1021/acs.jpcc.8b06089
    [25] Liu S, Peng J, Chen L, et al. In-situ STM and AFM studies on electrochemical interfaces in imidazolium-based ionic liquids[J]. Electrochimica Acta,2019,309:11-17. doi: 10.1016/j.electacta.2019.04.066
    [26] Esat T, Friedrich N, Tautz F S, et al. A standing molecule as a single-electron field emitter[J]. Nature,2018,558(7711):573-576. doi: 10.1038/s41586-018-0223-y
    [27] Larson A M, van Baren J, Kintigh J, et al. Lateral standing of the pentacene derivative 5, 6, 7-trithiapentacene-13-one on gold: a combined STM, DFT, and NC-AFM study[J]. The Journal of Physical Chemistry C,2018,122(22):11938-11944. doi: 10.1021/acs.jpcc.8b03633
    [28] Vernisse L, Guillermet O, Gourdon A, et al. Interaction between perylene-derivated molecules observed by low temperature scanning tunneling microscopy[J]. Surface Science,2018,669:87-94. doi: 10.1016/j.susc.2017.11.008
    [29] Liu X R, Wang L, Wan L J, et al. In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide[J]. ACS Applied Materials & Interfaces,2015,7(18):9573-9580.
    [30] Wan J, Hao Y, Shi Y, et al. Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries[J]. Nature Communications,2019,10(1):3265. doi: 10.1038/s41467-019-11197-7
    [31] Gross L, Mohn F, Moll N, et al. Bond-order discrimination by atomic force microscopy[J]. Science,2012,337(6100):1326. doi: 10.1126/science.1225621
    [32] Liu X, Wang D, Wan L. Progress of electrode/electrolyte interfacial investigation of Li-ion batteries via in situ scanning probe microscopy[J]. Science Bulletin,2015,60(9):839-849. doi: 10.1007/s11434-015-0763-6
    [33] Jandt K D. Atomic force microscopy of biomaterials surfaces and interfaces[J]. Surface Science,2001,491(3):303-332. doi: 10.1016/S0039-6028(01)01296-1
    [34] Wang Z, Yang H, Liu Y, et al. Analysis of the stable interphase responsible for the excellent electrochemical performance of graphite electrodes in sodium-ion batteries[J]. Small,2020,16(51):2003268. doi: 10.1002/smll.202003268
    [35] Zhou M, Gan H, Yang X, et al. Ultrahigh rate sodium ion storage with nitrogen-doped expanded graphite oxide in ether-based electrolyte[J]. Journal of Materials Chemistry A,2018,6:1582-1589. doi: 10.1039/C7TA09631C
    [36] Shakourian-Fard M, Kamath G, Smith K, et al. Trends in Na-ion solvation with alkyl-carbonate electrolytes for sodium-ion batteries: insights from first-principles calculations[J]. The Journal of Physical Chemistry C,2015,119:22747-22759. doi: 10.1021/acs.jpcc.5b04706
    [37] Xing L, Zheng X, Schroeder M, et al. Deciphering the ethylene carbonate-propylene carbonate mystery in Li-ion batteries[J]. Accounts of Chemical Research,2018,51(2):282-289. doi: 10.1021/acs.accounts.7b00474
    [38] Xu K. Electrolytes and interphasial chemistry in Li ion devices[J]. Energies,2010,3(1):135-154. doi: 10.3390/en3010135
    [39] An S J, Li J, Daniel C, et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon,2016,105:52-76. doi: 10.1016/j.carbon.2016.04.008
  • 加载中
图(8)
计量
  • 文章访问数:  1017
  • HTML全文浏览量:  611
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26
  • 修回日期:  2021-12-17
  • 网络出版日期:  2022-02-28
  • 刊出日期:  2022-03-30

目录

    /

    返回文章
    返回