留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu-modified biomass-derived activated carbons for high performance supercapacitors

HU Jia-rong ZHOU Jia-wei JIA Yu-xin LI Shuang

胡家荣, 周佳伟, 贾雨欣, 李爽. 铜改性生物质基分级多孔炭及其电容性能. 新型炭材料(中英文), 2022, 37(2): 412-423. doi: 10.1016/S1872-5805(22)60602-4
引用本文: 胡家荣, 周佳伟, 贾雨欣, 李爽. 铜改性生物质基分级多孔炭及其电容性能. 新型炭材料(中英文), 2022, 37(2): 412-423. doi: 10.1016/S1872-5805(22)60602-4
HU Jia-rong, ZHOU Jia-wei, JIA Yu-xin, LI Shuang. Cu-modified biomass-derived activated carbons for high performance supercapacitors. New Carbon Mater., 2022, 37(2): 412-423. doi: 10.1016/S1872-5805(22)60602-4
Citation: HU Jia-rong, ZHOU Jia-wei, JIA Yu-xin, LI Shuang. Cu-modified biomass-derived activated carbons for high performance supercapacitors. New Carbon Mater., 2022, 37(2): 412-423. doi: 10.1016/S1872-5805(22)60602-4

铜改性生物质基分级多孔炭及其电容性能

doi: 10.1016/S1872-5805(22)60602-4
基金项目: 国家自然科学基金(21878244),煤转化国家重点实验室开放基金(J1920904)
详细信息
    通讯作者:

    李 爽,教授. E-mail:shuangli722@126.com

  • 中图分类号: TB33

Cu-modified biomass-derived activated carbons for high performance supercapacitors

Funds: This work was financially supported by the National Natural Science Foundation of China (21878244) and the Foundation of State Key Laboratory of Coal Conversion (J1920904)
More Information
  • 摘要: 多孔炭由于其较长的循环寿命和前驱体种类繁多而被广泛应用于超级电容器中,但其电容量较低,导致能量密度较低。本文通过简单、高效的炭化和活化方法合成了铜修饰的生物质衍生的分级多孔炭(Cu-AC-x),混合价态(CuO、Cu2O、Cu0)的铜纳米颗粒均匀分散在其表面。作为超级电容器电极材料,由于分级孔结构提供的快速电子/离子转移途径,以及Cu混合价态之间的加速氧化还原反应,Cu-AC-x纳米复合材料表现出良好的电化学性能。在三电极体系中,Cu-AC-2在0.5 A g−1下表现出360 F g−1的高比电容,是AC(163 F g−1)的1.21倍。此外,当将其组装对称电容器时,该器件在0.5 A g−1下的比电容为143.44 F g−1,经6000次循环后的循环稳定性为81.8%。
  • FIG. 1405.  FIG. 1405.

    FIG. 1405.. 

    Figure  1.  SEM images of (a, b) AC-1, (c, d) Cu-AC-1 and (e, f) Cu-AC-2.

    Figure  2.  (a) N2 adsorption/desorption isotherms and (b) pore size distributions (PSD) of AC-1 and Cu-AC-x.

    Figure  3.  (a) XRD patterns and (b) Raman spectra of AC-1 and Cu-AC-x.

    Figure  4.  (a) XPS full survey-scan spectra, (b) high-resolution C 1s spectra, (c) O 1s spectra and (d) N 1s spectra of AC-1 and Cu-AC-x. (e, f) Cu 2p spectra of Cu-AC-1 and Cu-AC-2.

    Figure  5.  (a) CV curves of AC-1 and Cu-AC-x at 10 mV s−1. (b) CV curves of Cu-AC-2 at various scan rates. (c) GCD curves of AC-1 and Cu-AC-x at 0.5 A g−1. (d) GCD curves of Cu-AC-2 at current densities of 0.5-10 A g−1. (e) Rate capability of AC-1 and Cu-AC-x.

    Figure  6.  Nyquist plots of AC-1 and Cu-AC-x.

    Figure  7.  (a) CV curves at different scan rates. (b) GCD curves measured at various current densities. (c) Ragone plot and (d) cycling performance at 10 A g–1 of the symmetrical device.

    Table  1.   Pore volumes and specific areas of AC-1 and Cu-AC-x.

    SamplesSBETaSmicrobSmesocVtotald
    (m2 g−1)(m2 g−1)(m2 g−1)(cm3 g−1)
    AC-110286633650.39
    Cu-AC-17896461430.17
    Cu-AC-26615081530.19
    Note: ${ S_{\rm{BET} }^{\rm{a}}}$ was based on BET method. $ { S_{\rm{micro} }^{\rm{b}}}$ and ${ S_{\rm{meso} }^{\rm{c}}} $ was microporous and mesoporous surface area, respectively. $ { V_{\rm{total} }^{\rm{d}}} $ was calculated at p/p0=0.996.
    下载: 导出CSV

    Table  2.   A comparison of electrochemical performance of Cu-AC-2 electrode and other copper-based carbon electrodes.

    Electrode materialsElectrolyteSpecific capacitance (F g−1)ConditionRef.
    CuOx@ heteroatom-doped carbon3 mol L−1 KOH1471 A g−1[36]
    EG/CuO@carbon6 mol L−1 KOH33510 mV s−1[38]
    Cu7S4/MOF-derived carbon1 mol L−1 H2SO4321.90.5 A g−1[56]
    CuO/GO1 mol L−1 Na2SO42111 A g−1[57]
    Cu2O/CuO/RGO6 mol L−1 KOH173.41 A g−1[58]
    CuO/mesoporous carbon1 mol L−1 Na2SO43801 mA cm−2[59]
    Cu-AC-26 mol L−1 KOH3600.5 A g−1This work
    下载: 导出CSV
  • [1] Zupan I, Sunde V, Ban Z, et al. Algorithm with temperature-dependent maximum charging current of a supercapacitor module in a tram regenerative braking system[J]. Journal of Energy Storage,2021,36:102378. doi: 10.1016/j.est.2021.102378
    [2] Raj C J, Manikandan R, Rajesh M, et al. Cornhusk mesoporous activated carbon electrodes and seawater electrolyte: The sustainable sources for assembling retainable supercapacitor module[J]. Journal of Power Sources,2021,490:229518. doi: 10.1016/j.jpowsour.2021.229518
    [3] WANG Shuai, GUO Yu-zhe, WANG Fang-xiao, et al. Research progress on metal and covalent organic framework-based materials for high-performance supercapacitors[J]. New Carbon Materials,2022,37(1):109-135.
    [4] Huang Y X, Peng L L, Liu Y, et al. Biobased nano porous active carbon fibers for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces,2016,8(24):15205-15215. doi: 10.1021/acsami.6b02214
    [5] Zhu S, Sheng J, Jia G D, et al. Monolithic flexible supercapacitors drawn with nitrogen-doped carbon nanotube-graphene ink[J]. Materials Research Bulletin,2021,139:111266. doi: 10.1016/j.materresbull.2021.111266
    [6] Yang K Y, Xing J C, Xu P P, et al. Activated carbon microsphere from sodium lignosulfonate for Cr(VI) adsorption evaluation in wastewater treatment[J]. Polymers,2020,12(1):236. doi: 10.3390/polym12010236
    [7] Kung C Y, Wang T L, Lin H Y, et al. A high-performance covalently bonded self-doped polyaniline–graphene assembly film with superior stability for supercapacitors[J]. Journal of Power Sources,2021,490:229538. doi: 10.1016/j.jpowsour.2021.229538
    [8] Gao X, Zhang H W, Guo E J, et al. Hybrid two-dimensional nickel oxide-reduced graphene oxide nanosheets for supercapacitor electrodes[J]. Microchemical Journal,2021,164:105979. doi: 10.1016/j.microc.2021.105979
    [9] Wang Q F, Ma Y, Liang X, et al. Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode[J]. Chemical Engineering Journal,2019,371:145-153. doi: 10.1016/j.cej.2019.04.021
    [10] Luo X D, Li S L, Xu H Y, et al. Hierarchically porous carbon derived from potassium-citrate-loaded poplar catkin for high performance supercapacitors[J]. Journal of Colloid and Interface Science,2021,582:940-949. doi: 10.1016/j.jcis.2020.08.088
    [11] Li J, Luo F L, Lin T, et al. Pomelo peel-based N, O-codoped hierarchical porous carbon material for supercapacitor application[J]. Chemical Physics Letters,2020,753:137597. doi: 10.1016/j.cplett.2020.137597
    [12] Zheng L H, Chen M H, Liang S X, et al. Oxygen-rich hierarchical porous carbon derived from biomass waste-kapok flower for supercapacitor electrode[J]. Diamond and Related Materials,2021,113:108267. doi: 10.1016/j.diamond.2021.108267
    [13] Wang C J, Wu D P, Wang H J, et al. Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance[J]. Journal of colloid and interface science,2018,523:133-143. doi: 10.1016/j.jcis.2018.03.009
    [14] Fuertes A B, Sevilla M. Hierarchical microporous/mesoporous carbon nanosheets for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces,2015,7(7):4344-4353. doi: 10.1021/am508794f
    [15] Li X Y, Wang Z B, Guo L J, et al. Manganese oxide/hierarchical porous carbon nanocomposite from oily sludge for high-performance asymmetric supercapacitors[J]. Electrochimica Acta,2018,265:71-77. doi: 10.1016/j.electacta.2018.01.156
    [16] Wang J G, Ren L B, Hou Z D, et al. Flexible reduced graphene oxide/prussian blue films for hybrid supercapacitors[J]. Chemical Engineering Journal,2020,397:125521. doi: 10.1016/j.cej.2020.125521
    [17] Wu X L, Wang Y H, Zhong R Q, et al. Nitrogen and sulfur dual-doped hierarchical porous carbon derived from bacterial cellulose for high performance supercapacitor[J]. Diamond and Related Materials,2021,116:108447. doi: 10.1016/j.diamond.2021.108447
    [18] Wang H F, Yang L J, Liu G H, et al. Tobacco‐stem‐derived nitrogen‐enriched hierarchical porous carbon for high‐energy supercapacitor[J]. ChemistrySelect,2021,6(4):532-537. doi: 10.1002/slct.202004193
    [19] Yorgun Sait, Vural Naile, Demiral Hakan. Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation[J]. Microporous & Mesoporous Materials,2009,122(1-3):189-194. doi: 10.1016/j.micromeso.2009.02.032
    [20] Goel Chirag, Mohan Sooraj, Dinesha P. CO2 capture by adsorption on biomass-derived activated char: A review[J]. Science of the Total Environment,2021,798:149296. doi: 10.1016/j.scitotenv.2021.149296
    [21] Ajay K M, Dinesh M N, Byatarayappa G, et al. Electrochemical investigations on low cost KOH activated carbon derived from orange-peel and polyaniline for hybrid supercapacitors[J]. Inorganic Chemistry Communications,2021,127:108523. doi: 10.1016/j.inoche.2021.108523
    [22] WANG C S, LIU T Z. Nori-based N, O, S, Cl co-doped carbon materials by chemical activation of ZnCl2 for supercapacitor[J]. Journal of Alloys and Compounds,2017,696:42-50. doi: 10.1016/j.jallcom.2016.11.206
    [23] LIU H L, XIE Y X, LIU J B, et al. Laser-induced and KOH-activated 3D graphene: A flexible activated electrode fabricated via direct laser writing for in-plane micro-supercapacitors[J]. Chemical Engineering Journal,2020,393:124672. doi: 10.1016/j.cej.2020.124672
    [24] Zhu Z H, Liu Y J, Ju Z J, et al. Synthesis of diverse green carbon nanomaterials through fully utilizing biomass carbon source assisted by KOH[J]. ACS Applied Materials & Interfaces,2019,11(27):24205-24211. doi: 10.1021/acsami.9b08420
    [25] Asim S, Javed S M, Hussain S, et al. RuO2 nanorods decorated CNTs grown carbon cloth as a free standing electrode for supercapacitor and lithium ion batteries[J]. Electrochimica Acta,2019,326:135009. doi: 10.1016/j.electacta.2019.135009
    [26] Zhang G N, Zhang J H, Yang H J, et al. In-situ redox reaction derived porous nanosheets of MnO2 for supercapacitors[J]. Materials Letters,2021,306:130858. doi: 10.1016/j.matlet.2021.130858
    [27] Chang K H, Hu C C. Hydrothermal synthesis of binary Ru–Ti oxides with excellent performances for supercapacitors[J]. Electrochimica Acta,2007,52(4):1749-1757. doi: 10.1016/j.electacta.2006.01.076
    [28] Nie G D, Lu X F, Chi M Q, et al. General synthesis of hierarchical C/MOx@MnO2 (M=Mn, Cu, Co) composite nanofibers for high-performance supercapacitor electrodes[J]. Journal of Colloid Interface Science,2018,509:235-244. doi: 10.1016/j.jcis.2017.09.017
    [29] Huang M J, Chen W S, Cheng C, et al. Integration of RuO2/conductive fiber composites within carbonized micro-electrode array for supercapacitors[J]. Journal of Alloys and Compounds,2021,869:159300. doi: 10.1016/j.jallcom.2021.159300
    [30] Wen T, Wu X L, Zhang S W, et al. Core-shell carbon-coated CuO nanocomposites: A highly stable electrode material for supercapacitors and lithium-ion batteries[J]. Chemistry-An Asian Journal,2015,10(3):595-601. doi: 10.1002/asia.201403295
    [31] Zhang Q Y, Huang L H, Kang S F, et al. CuO/Cu2O nanowire arrays grafted by reduced graphene oxide: Synthesis, characterization, and application in photocatalytic reduction of CO2[J]. RSC Advances,2017,7(69):43642-43647. doi: 10.1039/c7ra07310k
    [32] Moosavifard S E, Kaverlavania S K, Shamsi J, et al. Hierarchical multi-shelled nanoporous mixed copper cobalt phosphide hollow microspheres as a novel advanced electrode for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A,2017,5(35):18429-18433. doi: 10.1039/c7ta06514k
    [33] Wang Q S, Zhang Y F, Xiao J Q, et al. Copper oxide/cuprous oxide/hierarchical porous biomass-derived carbon hybrid composites for high-performance supercapacitor electrode[J]. Journal of Alloys and Compounds,2018,782:1103-1113. doi: 10.1016/j.jallcom.2018.12.235
    [34] Zhang L L, Candelaria S L, Tian J J, et al. Copper nanocrystal modified activated carbon for supercapacitors with enhanced volumetric energy and power density[J]. Journal of Power Sources,2013,236:215-223. doi: 10.1016/j.jpowsour.2013.02.036
    [35] Li Z X, Yang B L, Kong L J, et al. Novel porous carbon nanosheet derived from a 2D Cu-MOF: Ultrahigh porosity and excellent performances in the supercapacitor cell[J]. Carbon,2019,144:540-548. doi: 10.1016/j.carbon.2018.12.061
    [36] Wang J, Rao M M, Ye C C, et al. Cu-MOF derived Cu-C nanocomposites towards high performance electrochemical supercapacitors[J]. RSC Advances,2020,10(8):4621-4629. doi: 10.1039/c9ra09738d
    [37] Sirisomboonchai S, Kongparakul S, Nueangnoraj K, et al. Enhanced electrochemical performances with a copper/xylose-based carbon composite electrode[J]. Applied Surface Science,2018,436:639-645. doi: 10.1016/j.apsusc.2017.12.073
    [38] Zhou Y B, Ren J, Xia L, et al. Nitrogen-doped hierarchical porous carbon framework derived from waste pig nails for high-performance supercapacitors[J]. Chemelectrochem,2017,4(12):3181-3187. doi: 10.1002/celc.201700810
    [39] Thirukumaran P, Atchudan R, Parveen A S, et al. Polybenzoxazine originated N-doped mesoporous carbon ropes as an electrode material for high-performance supercapacitors[J]. Journal of Alloys & Compounds,2018,750:384-391. doi: 10.1016/j.jallcom.2018.04.034
    [40] Yuan S X, Yang M H, Lu C X, et al. Synthesis of a rGO/NiO composite with a hierarchical porous structure by self-assemblyand its electrochemical performance as a supercapacitor electrode[J]. New Carbon Materials,2020,35(6):731-738. doi: 10.1016/S1872-5805(20)60525-X
    [41] Zhou Y H, Ren X, Du Y Y, et al. In-situ template cooperated with urea to construct pectin-derived hierarchical porous carbon with optimized pore structure for supercapacitor[J]. Electrochimica Acta,2020,355:136801. doi: 10.1016/j.electacta.2020.136801
    [42] Nathan D, Muthu G T, Boby S, et al. One-pot hydrothermal preparation of Cu2O-CuO/rGO nanocomposites with enhanced electrochemical performance for supercapacitor applications[J]. Applied Surface Science,2018,449:474-484. doi: 10.1016/j.apsusc.2017.12.199
    [43] Niveditha C V, Fatima J M J, Ramanarayanan R, et al. Effect of number of cycles in potentiodynamic deposition of p-type copper oxide and its supercapacitor applications[J]. Materials Today Proceedings,2018,5(8):16433-16442. doi: 10.1016/j.matpr.2018.05.142
    [44] Yakaboylu G A, Jiang C L, Yumak T, et al. Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors[J]. Renewable Energy,2020,163:276-287. doi: 10.1016/j.renene.2020.08.092
    [45] Zhao T K, Yang W B, Ji X L, et al. In-situ synthesis of expanded graphite embedded with CuO nanospheres coated with carbon for supercapacitors[J]. Applied Surface Science,2017,460:58-64. doi: 10.1016/j.apsusc.2017.09.046
    [46] Qi J W, Wei G P, Yan Y B, et al. Simultaneous elimination of multicomponent toxic industrial chemicals by Cu-carbon beads[J]. Journal of Cleaner Production,2019,227:1044-1053. doi: 10.1016/j.jclepro.2019.04.259
    [47] Jafari E A, Moradi M, Hajati S, et al. Electrophoretic deposition of mixed copper oxide/GO as cathode and N-doped GO as anode for electrochemical energy storage[J]. Electrochimica Acta,2018,268:392-402. doi: 10.1016/j.electacta.2018.02.122
    [48] Zhang D B, Shan Y, Kong X G, et al. Hierarchical carbon-decorated Fe3O4 on hollow CuO nanotube array: Fabrication and used as negative material for ultrahigh-energy density hybrid supercapacitor[J]. Chemical Engineering Journal,2018,349:491-499. doi: 10.1016/j.cej.2018.05.120
    [49] Xin G X, Wang M M, Zhang W H, et al. Preparation of high-capacitance N, S co-doped carbon nanospheres with hierarchical pores as supercapacitors[J]. Electrochimica Acta,2018,291:168-176. doi: 10.1016/j.electacta.2018.08.137
    [50] Li Z, Wei J J, Ren J, et al. Hierarchical construction of high-performance all-carbon flexible fiber supercapacitors with graphene hydrogel and nitrogen-doped graphene quantum dots[J]. Carbon,2019,154:410-419. doi: 10.1016/j.carbon.2019.08.040
    [51] Zuo P X, Du J, Yu Y F, et al. N-doped mesoporous thin carbon tubes obtained by exhaust directional deposition for supercapacitor[J]. Chemical Engineering Science,2021,240:116651. doi: 10.1016/j.ces.2021.116651
    [52] Liu W, Mei J, Liu G L, et al. Nitrogen-doped hierarchical porous carbon from wheat straw for supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2018,6(9):11595-11605. doi: 10.1021/acssuschemeng.8b01798
    [53] Liu S D, Yin Y, Hui K S, et al. High-performance flexible quasi-solid-state supercapacitors realized by molybdenum dioxide@nitrogen-doped carbon and copper cobalt sulfide tubular nanostructures[J]. Advanced Science,2018,5(10):1800733. doi: 10.1002/advs.201800733
    [54] Li C X, He P, Jia L P, et al. Facile synthesis of 3D CuS micro-flowers grown on porous activated carbon derived from pomelo peel as electrode for high-performance supercapacitors [J]. Electrochimica Acta, 2019, 299: 253-261. 10.1016/j. electacta. 2019.01. 004.
    [55] Teng S, Siegel G, Prestgard M C, et al. Synthesis and characterization of copper-infiltrated carbonized wood monoliths for supercapacitor electrodes[J]. Electrochimica Acta,2015,161:343-350. doi: 10.1016/j.electacta.2015.02.117
    [56] Li L, Liu Y P, Han Y H, et al. Metal-organic framework-derived carbon coated copper sulfide nanocomposites as a battery-type electrode for electrochemical capacitors[J]. Materials Letters,2019,236:131-134. doi: 10.1016/j.matlet.2018.10.093
    [57] Song Z X, Liu W, Sun N X, et al. One-step self-assembly fabrication of three-dimensional copper oxide/graphene oxide aerogel composite material for supercapacitors[J]. Solid State Communications,2019,287:27-30. doi: 10.1016/j.ssc.2018.10.007
    [58] Wang K, Dong X M, Zhao C J, et al. Facile synthesis of Cu2O/CuO/RGO nanocomposite and its superior cyclability in supercapacitor[J]. Electrochimica Acta,2015,152:433-442. doi: 10.1016/j.electacta.2014.11.171
    [59] Prasad K P S, Dhawale D S, Joseph S, et al. Post-synthetic functionalization of mesoporous carbon electrodes with copper oxide nanoparticles for supercapacitor application[J]. Microporous and Mesoporous Materials,2013,172:77-86. doi: 10.1016/j.micromeso.2013.01.023
    [60] Liu Y N, Wang H T, Kang X H, et al. Cotton fabric and zeolitic imidazolate framework (ZIF-8) derived hierarchical nitrogen-doped porous carbon nanotubes/carbon fabric electrodes for all-solid-state supercapacitors[J]. Journal of Power Sources,2018,402:413-421. doi: 10.1016/j.jpowsour.2018.09.052
    [61] Li J M, Li H Z, Li J H, et al. A Single-walled carbon nanotubes/poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate)/copper hexacyanoferrate hybrid film for high-volumetric performance flexible supercapacitors[J]. Journal of Power Sources,2018,386:96-105. doi: 10.1016/j.jpowsour.2018.03.046
  • 20210253-支撑材料.pdf
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  619
  • HTML全文浏览量:  286
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-23
  • 修回日期:  2021-11-27
  • 网络出版日期:  2022-02-28
  • 刊出日期:  2022-03-30

目录

    /

    返回文章
    返回