留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improving electron and ion transport by constructing 3D graphene nanosheets sandwiched between porous carbon nanolayers produced from resorcinol-formaldehyde resin for high-performance supercapacitor electrodes

SUN Bing TANG Wen XIANG Hui XU Wen-li CONG Ye YUAN Guan-ming ZHU Hui ZHANG Qin LI Xuan-ke

孙兵, 唐文, 向辉, 徐文莉, 丛野, 袁观明, 朱辉, 张琴, 李轩科. 三明治状多孔石墨烯基纳米片用于高性能电容器. 新型炭材料(中英文), 2022, 37(3): 564-574. doi: 10.1016/S1872-5805(22)60604-8
引用本文: 孙兵, 唐文, 向辉, 徐文莉, 丛野, 袁观明, 朱辉, 张琴, 李轩科. 三明治状多孔石墨烯基纳米片用于高性能电容器. 新型炭材料(中英文), 2022, 37(3): 564-574. doi: 10.1016/S1872-5805(22)60604-8
SUN Bing, TANG Wen, XIANG Hui, XU Wen-li, CONG Ye, YUAN Guan-ming, ZHU Hui, ZHANG Qin, LI Xuan-ke. Improving electron and ion transport by constructing 3D graphene nanosheets sandwiched between porous carbon nanolayers produced from resorcinol-formaldehyde resin for high-performance supercapacitor electrodes. New Carbon Mater., 2022, 37(3): 564-574. doi: 10.1016/S1872-5805(22)60604-8
Citation: SUN Bing, TANG Wen, XIANG Hui, XU Wen-li, CONG Ye, YUAN Guan-ming, ZHU Hui, ZHANG Qin, LI Xuan-ke. Improving electron and ion transport by constructing 3D graphene nanosheets sandwiched between porous carbon nanolayers produced from resorcinol-formaldehyde resin for high-performance supercapacitor electrodes. New Carbon Mater., 2022, 37(3): 564-574. doi: 10.1016/S1872-5805(22)60604-8

三明治状多孔石墨烯基纳米片用于高性能电容器

doi: 10.1016/S1872-5805(22)60604-8
基金项目: 国家自然科学基金 (51902232,52072275)
详细信息
    通讯作者:

    张 琴,博士,副教授. E-mail:zhangqin627@wust.edu.cn

    李轩科,博士,教授. E-mail:xkli8524@sina.com

  • 中图分类号: TQ152

Improving electron and ion transport by constructing 3D graphene nanosheets sandwiched between porous carbon nanolayers produced from resorcinol-formaldehyde resin for high-performance supercapacitor electrodes

More Information
  • 摘要: 理想的电极结构应由具有较短传输距离的三维互穿电子和离子通道组成。本文通过在石墨烯表面构建厚度可调的间苯二酚-甲醛树脂碳,制备石墨烯纳米片三明治状多孔石墨烯基电极,并通过化学活化进一步提高树脂碳孔隙率。三维交联结构为离子提供丰富的输运通道,同时缩短离子扩散路径。此外,石墨烯网络增强电导率,促进电子传输。基于其结构特点,具有较薄树脂碳层的三明治状多孔石墨烯基纳米片电极在电流密度为0.2 A g−1的情况下,其比电容最高可达324 F g−1。与初始电容相比,在5 A g−1的大电流密度下,经过8000次充放电后,仍具有99%的容量保持率,具有良好的循环稳定性。研究结构揭示了其结构与电化学性能之间的关系,为开发高电子和离子输运效率的电极材料提供了有效策略。
  • FIG. 1539.  FIG. 1539.

    FIG. 1539.. 

    Figure  1.  (a) Schematic illustration of preparation process of sandwich–like and hierarchical porous carbon/graphene nanosheets, (b) macroscopic feature of CGS, (c) SEM image of original CGS, (d) SEM image of KACGS, (e–f) TEM images of KACGS, (g) HRTEM image of KACGS.

    Figure  2.  (a) Raman spectra and (b) XRD patterns of GO, CGS and KACGS, (c) N2 adsorption/desorption isotherms and (d) pore size distribution curves of CGS and KACGS.

    Figure  3.  SEM images of CGSs with different thicknesses of RFC, (a, b) CGS, (c, d) 4d–CGS and (e, f) 8d–CGS.

    Figure  4.  (a) Galvanostatic charge/discharge cycling at constant currents of 1 A g–1, (b) cyclic voltammograms at scan rate of 10 mV s–1, (c, d) Nyquist plots of the experimental impedance data for GO, RFC, CGS and KACGS.

    Figure  5.  Electrochemical performances of KACGS, (a) cyclic voltammograms at different scan rates, (b) galvanostatic charge/discharge cycling at different currents densities, (c) nyquist plots of the experimental impedance data, the inset shows the expanded high–frequency region of the plots (10 mHz to 100 kHz, ac amplitude, 5 mV). (d) cycling stability tests (8000 cycles) at current density of 5 A g–1 within the potential window range from 0 to –1 V.

    Figure  6.  Schematic showing rapid transport of electrons and charged ions effectively adsorbed in the layer of KACGS.

    Table  1.   Comparison of electrochemical performance of KACGS with some representative active carbon-based electrodes for supercapacitors (All were tested in three electrode system).

    ElectrodeElectrolyteSpecific capacitance (F g–1)Ref.
    Sandwich–like hierarchical porous carbon/graphene/carbon 6 mol L−1 KOH 324 (0.2 A g−1)
    224 (1A g−1)
    This work
    N-doped ordered
    mesoporous carbon
    6 mol L−1 KOH 227 (0.2 A g−1) [33]
    KOH-activated carbon 6 mol L−1 KOH 152.6 (0.5 A g−1) [34]
    Hollow porous carbon spheres 6 mol L−1 KOH 303.9 (0.1 A g−1) [35]
    N-containing hierarchical
    porous carbon spheres
    7 mol L−1 KOH 276 (0.1 A g−1) [36]
    N/S-co-doped carbon nanobowls 6 mol L−1 KOH 279 (0.1 A g−1) [37]
    MXene-bonded activated carbon 1 mol L−1 Et4NBF4/AN 126 (0.1 A g−1) [38]
    N-doped mesoporous carbon 6 mol L−1 KOH 218 (0.5 A g−1) [39]
    3D Carbon aerogels 6 mol L−1 KOH 151 (0.5 A g−1) [40]
    Branched carbon nanotube/carbon nanofiber composite 1 mol L−1 H2SO4 207 (1 A g−1) [41]
    下载: 导出CSV
  • [1] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
    [2] Conway B E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications[M]. Springer Science & Business Media, 2013.
    [3] Wang Y, Shi Z, Huang Y, et al. Supercapacitor devices based on graphene materials[J]. Journal of Physical Chemistry C, 2009, 113(30): 13103-13107.
    [4] Zhang L L, Zhou R, Zhao X S. Graphene-based materials as supercapacitor electrodes[J]. Journal of Materials Chemistry, 2010, 20(29): 5983-5992.
    [5] Chen H, Müller M B, Gilmore K J, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper[J]. Advanced Materials, 2008, 20(18): 3557-3561.
    [6] Kovalenko I, Bucknall D G, Yushin G. Detonation nanodiamond and onion-like-carbon-embedded polyaniline for supercapacitors[J]. Advanced Functional Materials, 2010, 20(22): 3979-3986.
    [7] Xie Q, Zhou S, Zheng A, et al. Sandwich-like nitrogen-enriched porous carbon/graphene composites as electrodes for aqueous symmetric supercapacitors with high energy density[J]. Electrochimica Acta, 2016, 189: 22-31.
    [8] Zhang J, Zhao X S. Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes[J]. The Journal of Physical Chemistry C, 2012, 116(9): 5420-5426.
    [9] Liu A, Li C, Bai H, et al. Electrochemical deposition of polypyrrole/sulfonated graphene composite films[J]. Journal of Physical Chemistry C, 2010, 114(51): 22783-22789.
    [10] Zhao Y, Zhang Z, Ren Y, et al. Vapor deposition polymerization of aniline on 3D hierarchical porous carbon with enhanced cycling stability as supercapacitor electrode[J]. Journal of Power Sources, 2015, 286: 1-9.
    [11] Wang Y, Song Y, Xia Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21): 5925-5950.
    [12] Huang Y, Tao J, Meng W, et al. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability[J]. Nano Energy, 2015, 11: 518-525.
    [13] Snook G A, Kao P, Best A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196(1): 1-12.
    [14] Wang L, Sun L, Tian C, et al. A novel soft template strategy to fabricate mesoporous carbon/graphene composites as high-performance supercapacitor electrodes[J]. RSC Advances, 2012, 2(22): 8359-8367.
    [15] Pei F, Lin L, Ou D, et al. Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries[J]. Nature Communications, 2017, 8(1): 482-491.
    [16] Zhu J, Yang X, Fu Z, et al. Three-dimensional macroassembly of sandwich-like, hierarchical, porous carbon/graphene nanosheets towards ultralight, superhigh surface area, multifunctional aerogels[J]. Chemistry, 2016, 22(7): 2515-2524.
    [17] Hao G P, Lu A H, Dong W, et al. Sandwich-type microporous carbon nanosheets for enhanced supercapacitor performance[J]. Advanced Energy Materials, 2013, 3(11): 1421-1427.
    [18] Humers W, Offeman R. Preparation of graphitic oxide[J]. Journal of American Chemical Society, 1958, 80(6): 1334-1339.
    [19] Lei Q, Song H, Zhou D, et al. Morphology control and supercapacitor performance of resorcinol–formaldehyde-based carbon particles upon Ni loading in an inverse emulsion system[J]. RSC Advances, 2015, 5(96): 78526-78533.
    [20] Zheng C, Zhou X, Cao H, et al. Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material[J]. Journal of Power Sources, 2014, 258: 290-296.
    [21] Jäckel N, Rodner M, Schreiber A, et al. Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation[J]. Journal of Power Sources, 2016, 326: 660-671.
    [22] Lu W, Liu M, Miao L, et al. Nitrogen-containing ultramicroporous carbon nanospheres for high performance supercapacitor electrodes[J]. Electrochimica Acta, 2016, 205: 132-141.
    [23] Li D, Zhang L, Chen H, et al. Graphene-based nitrogen-doped carbon sandwich nanosheets: a new capacitive process controlled anode material for high-performance sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(22): 8630-8635.
    [24] Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information[J]. Carbon, 2005, 43(8): 1731-1742.
    [25] Yang D, Bock C. Laser reduced graphene for supercapacitor applications[J]. Journal of Power Sources, 2017, 337: 73-81.
    [26] Yuan K, Hu T, Xu Y, et al. Nitrogen-doped porous carbon/graphene nanosheets derived from two-dimensional conjugated microporous polymer sandwiches with promising capacitive performance[J]. Materials Chemistry Frontiers, 2017, 1(2): 278-285.
    [27] Wu S, Chen G, Kim N Y, et al. Creating pores on graphene platelets by low-temperature KOH activation for enhanced electrochemical performance[J]. Small, 2016, 12(17): 2376-2384.
    [28] Inal I I G, Holmes S M, Banford A, et al. The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea[J]. Applied Surface Science, 2015, 357: 696-703.
    [29] Yang X, Fu Z, Jiao X, et al. Preparation and study of ultra-low density carbon aerogel[J]. Atomic Energy Science and Technology, 2012, 46(8): 996-1000.
    [30] Galhena D T, Bayer B C, Hofmann S, et al. Understanding capacitance variation in sub-nanometer pores by in situ tuning of interlayer constrictions[J]. ACS nano, 2015, 10(1): 747-754.
    [31] Li W, Zhang F, Dou Y, et al. A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes[J]. Advanced Energy Materials, 2011, 1(3): 382-386.
    [32] Huang Z D, Zhang B, Liang R, et al. Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers[J]. Carbon, 2012, 50(11): 4239-4251.
    [33] Wei J, Zhou D, Sun Z, et al. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors[J]. Advanced Functional Materials,2013,23(18):2322-2328.
    [34] Yu M, Li J, Wang L. KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption[J]. Chemical Engineering Journal,2017,310:300-306.
    [35] Liu J, Wang X, Gao J, et al. Hollow porous carbon spheres with hierarchical nanoarchitecture for application of the high performance supercapacitors[J]. Electrochimica Acta,2016,211:183-192.
    [36] Pang J, Zhang W, Zhang H, et al. Sustainable nitrogen-containing hierarchical porous carbon spheres derived from sodium lignosulfonate for high-performance supercapacitors[J]. Carbon,2018,132:280-293.
    [37] Wang J G, Liu H, Zhang X, et al. Elaborate construction of N/S-co-doped carbon nanobowls for ultrahigh-power supercapacitors[J]. Journal of Materials Chemistry A,2018,6(36):17653-17661.
    [38] Yu L, Hu L, Anasori B, et al. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors[J]. ACS Energy Letters,2018,3(7):1597-1603.
    [39] Wu K, Liu Q. Nitrogen-doped mesoporous carbons for high performance supercapacitors[J]. Applied Surface Science,2016,379:132-139.
    [40] Xu Y, Ren B, Wang S, et al. Carbon aerogel-based supercapacitors modified by hummers oxidation method[J]. Journal of Colloid and Interface Science,2018,527:25-32.
    [41] Zhou Y, Zhou X, Ge C, et al. Branched carbon nanotube/carbon nanofiber composite for supercapacitor electrodes[J]. Materials Letters,2019,246:174-177.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  372
  • HTML全文浏览量:  224
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-10
  • 修回日期:  2020-10-14
  • 网络出版日期:  2022-03-04
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回