留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An innovative and efficient method for the preparation of mesocarbon microbeads and their use in the electrodes of lithium ion batteries and electric double layer capacitors

DONG Si-lin YANG Jian-xiao CHANG Sheng-kai SHI Kui LIU Yue ZOU Jia-ling LI Jun

董斯琳, 杨建校, 常胜凯, 石奎, 刘越, 邹嘉玲, 李君. 毛细管破裂法制备中间相炭微球及其电化学性能. 新型炭材料(中英文), 2023, 38(1): 173-189. doi: 10.1016/S1872-5805(22)60606-1
引用本文: 董斯琳, 杨建校, 常胜凯, 石奎, 刘越, 邹嘉玲, 李君. 毛细管破裂法制备中间相炭微球及其电化学性能. 新型炭材料(中英文), 2023, 38(1): 173-189. doi: 10.1016/S1872-5805(22)60606-1
DONG Si-lin, YANG Jian-xiao, CHANG Sheng-kai, SHI Kui, LIU Yue, ZOU Jia-ling, LI Jun. An innovative and efficient method for the preparation of mesocarbon microbeads and their use in the electrodes of lithium ion batteries and electric double layer capacitors. New Carbon Mater., 2023, 38(1): 173-189. doi: 10.1016/S1872-5805(22)60606-1
Citation: DONG Si-lin, YANG Jian-xiao, CHANG Sheng-kai, SHI Kui, LIU Yue, ZOU Jia-ling, LI Jun. An innovative and efficient method for the preparation of mesocarbon microbeads and their use in the electrodes of lithium ion batteries and electric double layer capacitors. New Carbon Mater., 2023, 38(1): 173-189. doi: 10.1016/S1872-5805(22)60606-1

毛细管破裂法制备中间相炭微球及其电化学性能

doi: 10.1016/S1872-5805(22)60606-1
基金项目: 国家自然科学基金青年科学基金(5172094);湖南省自然科学基金(2020JJ4203,2019JJ50651)
详细信息
    通讯作者:

    杨建校,副教授. E-mail:yangjianxiao@hnu.edu.cn

  • 中图分类号: TQ127.1+1

An innovative and efficient method for the preparation of mesocarbon microbeads and their use in the electrodes of lithium ion batteries and electric double layer capacitors

More Information
  • 摘要: 基于沥青在熔融纺丝过程中的滴落行为和流变学理论,提出了一种新型高效的中间相炭微球(MCMB)制备方法—毛细管破裂法(DCB法)。本实验以中间相沥青为原料,采用DCB法考察了不同接收相(水或THF)对MCMB制备的影响规律,并系统研究了相应MCMB微观结构的演变规律。在此基础上,所制MCMB经750 °C的KOH活化制备了A-MCMB,以及经2800 °C的石墨化制备了G-MCMB,并分别探究了它们作为超级电容器(EDLC)和锂离子电池(LIB)电极材料的电化学性能。结果表明:采用DCB方法所制备的水接收相的MCMB-W和THF接收相的MCMB-T均呈现尺寸约1~2 μm的球形结构特征。此外,A-MCMB-T具有高比表面积1391 m2 g−1、微孔体积0.55 cm3 g−1和中孔体积0.24 cm3 g−1,作为EDLC的电极材料时,其比电容比MP衍生的炭材料提高了30%,且电容保持率也显著提升。同时,G-MCMB-T具有较高的石墨化度0.895和有序的层状结构,作为LIB的负极材料时,在100 mA g−1下进行100次循环后,具有353.5 mAh g−1的高比容量。因此,本文提出并验证了一种新的MCMB制备方法,有望为储能材料的设计和开发提供了一种思路和途径。
  • FIG. 2070.  FIG. 2070.

    FIG. 2070..  FIG. 2070.

    Figure  1.  The preparation process of MCMBs by the DCB method

    Figure  2.  SEM images of (a, b) C-MP, (c, d) C-MS-W and (e, f) C-MS-T

    Figure  3.  TG-DSC curves of MP, MS-W, MS-T (a, b) in nitrogen atmosphere and (c, d) in air atmosphere. (e, f) TG-DSC curves of O-MP, O-MS-W, O-MS-T in nitrogen atmosphere

    Figure  4.  FTIR and Raman spectra of (a, d) MP, MS-W, MS-T, (b, e) O-MP, O-MS-W, O-MS-T and (c, f) C-MP, C-MS-W, C-MS-T

    Figure  5.  TEM images of (a) A-MP, (b) A-MS-W, (c) A-MS-T. (d) Nitrogen adsorption isotherms, (e) pore size distributions and (f) Raman spectra of A-MCMBs

    Figure  6.  (a) FTIR and (b) XPS spectra, and (c) the high resolution of C1s XPS spectra and (d) the O1s XPS spectra of A-MCMBs

    Figure  7.  (a) CV curves at the scanning speed of 100 mV s−1, (b) GCD curves at a current density of 0.5 A g−1 and (c) EIS curves of A-MCMBs

    Figure  8.  TEM images of (a, b, c) G-MP, (d, e, f) G-MS-W and (g, h, i) G-MS-T

    Figure  9.  (a) Raman spectra, (b) nitrogen adsorption isotherms and (c) XRD patterns of G-MCMBs

    Figure  10.  (a)The 1st discharge/charge curves between 0.005 and 3.0 V at a current density of 100 mA g−1 . (b) The capacities at current densities from 0.05 to 2 A g−1. (c) Cycling performance and coulombic efficiency at 100 mA g−1 and (d) Nyquist plots of G-MCMBs

    Table  1.   Relevant analysis results of samples

    SamplesYieldTG (in N2)DSC (in air)FTIRRaman
    Td
    (°C)
    WT
    (°C)
    H
    (J/g)
    H/△T IOSICHSIA ID/IGIA/IG
    MP23554%2072911.410.2250.5010.5030.690.40
    MS-W24152%2184051.860.2240.5000.5020.640.35
    MS-T30572%2212090.950.2120.4980.5010.600.32
    O-MP103%29177%0.2430.5000.5000.830.45
    O-MS-W104%29677%0.2410.4950.5010.690.38
    O-MS-T105%30180%0.2390.4940.4990.620.33
    C-MP70%0.2500.4990.5001.140.53
    C-MS-W72%0.2490.4980.4991.120.51
    C-MS-T74%0.2470.4970.4981.080.45
    下载: 导出CSV

    Table  2.   Microstructure and porosity parameters of A-MCMBs

    SamplesRamanParameters of pore structure
    ID/IGIA/IGSBET
    (m2 g−1)
    Vmic
    (cm3 g−1)
    Vmes
    (cm3 g−1)
    Vtot
    (cm3 g−1)
    D
    (nm)
    A-MP0.990.6012220.160.490.655.04
    A-MS-W0.960.7111900.330.170.505.00
    A-MS-T0.940.7213910.370.240.614.19
    下载: 导出CSV

    Table  3.   FTIR and XPS analysis results of A-MCMBs

    SamplesFTIRXPS (at%)percentage of total C1spercentage of total O1s
    IOSICHSIACOC=CC―OC=OCOOHC=OC―OCOOH
    A-MP 0.251 0.500 0.502 90.03 8.70 35.29 23.73 19.85 21.13 31.66 35.91 32.43
    A-MS-W 0.231 0.480 0.482 90.45 8.39 35.26 23.75 19.87 21.12 32.46 36.04 31.50
    A-MS-T 0.220 0.460 0.462 91.28 7.64 34.32 24.28 21.27 20.13 32.96 37.20 29.84
    下载: 导出CSV

    Table  4.   Electrochemical properties of different A-MCMBs

    SamplesSpecific capacitance(F/g)Capacitance retention(%)Rct(Ω)
    0.5 A g−11 A g−12 A g−15 A g−110 A g−1
    A-MP156.9131.1118.8108.5100.063.70.6
    A-MS-W178.6169.5153.4145.0139.077.80.5
    A-MS-T193.5166.2147.0135.5129.066.60.3
    下载: 导出CSV

    Table  5.   Parameters of pore structure and graphite microcrystallite s of G-MCMBs

    SamplesID/IGID’/IGSBET
    (m2 g−1)
    d002
    (nm)
    Lc
    (nm)
    La
    (nm)
    N
    (n)
    G
    G-MP0.210.051.600.33660.65821.39762.960.861
    G-MS-W0.180.042.250.33660.69731.98623.070.861
    G-MS-T0.140.023.530.33630.56802.45562.690.895
    下载: 导出CSV

    Table  6.   Cycle performance of different G-MCMBs

    SamplesSpecific capacity (mAh g−1)ICE
    (%)

    Capacity retention
    (%)
    Rct
    (Ω)
    D1C1D2D3D100
    G-MP329.4277.6285.1277.1255.384.2777.50295.9
    G-MS-W401.4346.9354.0349.6313.686.4278.13301.9
    G-MS-T408.1353.0366.6362.4353.586.5086.6295.5
    下载: 导出CSV
  • [1] Xia H Y, Wang J P, Huang B, et al. The influence of ball-milling on improving the performance of mesocarbon microbeads based carbon blocks[J]. Materials Science & Engineering A,2011,529:282-288.
    [2] Lin X B, Hui C, Wu J, et al. TiC-modified CNTs as reinforcing fillers for isotropic graphite produced from mesocarbon microbeads[J]. New Carbon Materials,2021,36(5):961-969. doi: 10.1016/S1872-5805(21)60067-7
    [3] Zhao G Y, Wei Z H, Zhang N Q, et al. Enhanced low temperature performances of expanded commercial mesocarbon microbeads (MCMB) as lithium ion battery anodes[J]. Materials Letters,2012,89:243-246. doi: 10.1016/j.matlet.2012.07.066
    [4] Li F H, Chi W D, Shen Z M, et al. Activation of mesocarbon microbeads with different textures and their application for supercapacitor[J]. Fuel Processing Technology,2010,91(1):17-24. doi: 10.1016/j.fuproc.2009.08.020
    [5] Ji Y B, Li T H, Zhu L, et al. Preparation of activated carbons by microwave heating KOH activation[J]. Applied Surface Science,2007,254(2):506-512. doi: 10.1016/j.apsusc.2007.06.034
    [6] Liu Y C, Qiu X P, Zhu W T, et al. Impedance studies on mesocarbon microbeads supported Pt-Ru catalytic anode[J]. Journal of Power Sources,2003,114(1):10-14. doi: 10.1016/S0378-7753(02)00527-X
    [7] Wu B, Gong Q M, Song H H, et al. Prickly structure of multi-walled carbon nanotube reinforced mesocarbon microbead composite with high strength at elevated temperature[J]. Composites Part B-Engineering,2014,56:876-881. doi: 10.1016/j.compositesb.2013.09.033
    [8] Cheng Y L, Li T H, Fang C Q, et al. In situ preparation and mechanical properties of CNTs/MCMBs composites[J]. Composites Part B-Engineering,2013,47:290-297. doi: 10.1016/j.compositesb.2012.11.009
    [9] Chaudhary A, Teotia S, Kumar R, et al. Multi-component framework derived SiC composite paper to support efficient thermal transport and high EMI shielding performance[J]. Composites Part B-Engineering,2019,176:11.
    [10] Yong-Gang, Wang, And, et al. Microstructure of mesocarbon microbeads prepared from synthetic isotropic naphthalene pitch in the presence of carbon black[J]. Carbon,1999,37(2):307-314. doi: 10.1016/S0008-6223(98)00179-1
    [11] Li F H, Shen Z M, Xue R S, et al. Study on mesocarbon microbeads prepared by the emulsion method[J]. New Carbon Materials,2004,19(1):21-27.
    [12] Korai Y, Ishida S, Yoon S H, et al. Preparation of mesocarbon microbeads by dispersing mesophase pitch in isotropic pitches[J]. Carbon,1997,35(10):1503-1515.
    [13] Brooks J D, Taylor G H. Formation of graphitizing carbons from the liquid phase[J]. Nature,1965,3(2):185, IN189, 187-186, IN118, 193.
    [14] Wang Y G, Chang Y C, Ishida S, et al. Preparation of mesocarbon microbeads from a synthetic isotropic pitch through two stage heat treatment in the presence of carbon black[J]. Carbon,1998,36(36):1231-1233.
    [15] Ma Z C, Lin Q L, Cai Q H, et al. Effect of rosin addition on preparation of mesocarbon microbeads[J]. Gongneng Cailiao/Journal of Functional Materials,2012,43(8):1052-1055.
    [16] Yang Y S, Wang C Y, Chen M M. Preparation and structure analysis of nano-iron/mesocarbon microbead composites made from a coal tar pitch with addition of ferrocene[J]. Journal of Physics and Chemistry of Solids,2009,70(10):1344-1347. doi: 10.1016/j.jpcs.2009.07.023
    [17] Li T Q, Wang C Y, Liu X J, et al. Characteristics of mesocarbon microbeads generated from a coal tar pitch with addition of micro-alumina powder[J]. Fuel Processing Technology,2005,87(1):77-83. doi: 10.1016/j.fuproc.2005.07.003
    [18] Yang Y S, Wang C Y, Chen M M, et al. The role of primary quinoline insoluble on the formation of mesocarbon microbeads[J]. Fuel Processing Technology,2011,92(1):154-157. doi: 10.1016/j.fuproc.2010.08.024
    [19] Cheng Y L, Li T H, Hou X L, et al. Effects of AlCl3-NaCl content on the formation of mesocarbon microbeads[J]. International Journal of Chemical Reactor Engineering,2010,8:13.
    [20] Cheng Y L, Li T H, Li F J, et al. Preparation of mesocarbon microbeads with silicone oil/pitch emulsion[J]. Journal of Materials Engineering,2010,24(3):56-59.
    [21] Qiu H S, Li Y F, Wang Y P, et al. A novel form of carbon micro-balls from coal[J]. Carbon,2003,41(4):767-772. doi: 10.1016/S0008-6223(02)00392-5
    [22] Zhang D K, Zhang L Z, Fang X L, et al. Enhancement of mesocarbon microbead (MCMB) preparation through supercritical fluid extraction and fractionation[J]. Fuel,2019,237:753-762. doi: 10.1016/j.fuel.2018.10.054
    [23] Kim Y, Hossain A, Nakamura Y. Numerical modeling of melting and dripping process of polymeric material subjected to moving heat flux: Prediction of drop time[J]. Proceedings of the Combustion Institute,2015,35:2555-2562. doi: 10.1016/j.proci.2014.05.068
    [24] Kim Y, Hossain A, Nakamura Y. Numerical study of effect of thermocapillary convection on melting process of phase change material subjected to local heating[J]. Journal of Thermal Science and Technology,2013,8(1):136-151. doi: 10.1299/jtst.8.136
    [25] Kim Y, Hossain A, Nakamura Y. Numerical study of melting of a phase change material (PCM) enhanced by deformation of a liquid-gas interface[J]. International Journal of Heat and Mass Transfer,2013,63:101-112. doi: 10.1016/j.ijheatmasstransfer.2013.03.052
    [26] Lu Y, Hussein A, Li D Z, et al. Properties of bio-pitch and its wettability on coke[J]. Acs Sustainable Chemistry & Engineering,2020,8(40):15366-15374.
    [27] Li S Z, Tian Y M, Zhong Y J, et al. Formation mechanism of carbon foams derived from mesophase pitch[J]. Carbon,2011,49(2):618-624. doi: 10.1016/j.carbon.2010.10.007
    [28] Watanabe F, Korai Y, Mochida I, et al. Structure of melt-blown mesophase pitch-based carbon fiber[J]. Carbon,2000,38(5):741-747. doi: 10.1016/S0008-6223(99)00148-7
    [29] Yu R, Liu D, Lou B, et al. The effect of solvent extraction on petroleum pitch compositions and their pyrolysis behaviors[J]. Fuel,2019,247:97-107. doi: 10.1016/j.fuel.2019.03.041
    [30] Li M, Liu D, Lv R Q, et al. Preparation of the mesophase pitch by hydrocracking tail oil from a naphthenic vacuum residue[J]. Energy & Fuels,2015,29(7):4193-4200.
    [31] Yoon S H, Park Y D, Mochida I. Preparation of carbonaceous spheres from suspensions of pitch materials[J]. Carbon,1992,30(5):781-786. doi: 10.1016/0008-6223(92)90162-P
    [32] Shi K, Zhang X X, Wu W, et al. Effect of the oxygen content and the functionality of spinnable pitches derived from ethylene tar by distillation on the mechanical properties of carbon fibers[J]. New Carbon Materials,2019,34(1):84-92. doi: 10.1016/S1872-5805(19)60003-X
    [33] Dungen P, Schlogl R, Heumann S. Non-linear thermogravimetric mass spectrometry of carbon materials providing direct speciation separation of oxygen functional groups[J]. Carbon,2018,130:614-622. doi: 10.1016/j.carbon.2018.01.047
    [34] Yuan M, Cao B, Meng C Y, et al. Preparation of pitch-based carbon microbeads by a simultaneous spheroidization and stabilization process for lithium-ion batteries[J]. Chemical Engineering Journal,2020,400:9.
    [35] Dauché F M, Bolaños G, Blasig A, et al. Control of mesophase pitch properties by supercritical fluid extraction[J]. Carbon,1998,36(7-8):953-961. doi: 10.1016/S0008-6223(97)00212-1
    [36] Gong X, Lou B, Yu R, et al. Carbonization of mesocarbon microbeads prepared from mesophase pitch with different anisotropic contents and their application in lithium-ion batteries[J]. Fuel Processing Technology,2021,217:13.
    [37] ALillo-Ródenas M, Cazorla-Amorós D, Linares-Solano A. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism[J]. Carbone,2003,41(2):267-275.
    [38] Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science,2006,313(5794):1760-1763. doi: 10.1126/science.1132195
    [39] Shen Z, Xue R. Preparation of activated mesocarbon microbeads with high mesopore content[J]. Fuel Processing Technology,2003,84(1-3):95-103. doi: 10.1016/S0378-3820(03)00050-X
    [40] Xie L J, Sun G H, Su F Y, et al. Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications[J]. Journal of Materials Chemistry A,2016,4(5):1637-1646. doi: 10.1039/C5TA09043A
    [41] Liu F Y, Wang Z X, Zhang H T, et al. Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin[J]. Carbon,2019,149:105-116. doi: 10.1016/j.carbon.2019.04.023
    [42] Lei Y, Huang Z H, Yang Y, et al. Porous mesocarbon microbeads with graphitic shells: constructing a high-rate, high-capacity cathode for hybrid supercapacitor[J]. Scientific Reports,2013,3:6.
    [43] Biscoe J, Warren B E. An X‐Ray Study of Carbon Black[J]. Journal of Applied Physics,1942,13(6):364-371. doi: 10.1063/1.1714879
    [44] Guo A, Wang F, Jiao S, et al. Preparation of mesocarbon microbeads as anode material for lithium-ion battery by thermal polymerization of a distillate fraction from an FCC slurry oil after hydrofining with suspended catalyst[J]. Fuel,2020,276:11.
    [45] Zhang Y P, Wang J X, Zhao P Y, et al. Anode performance of NaOH-etched mesocarbon microbeads for sodium-ion batteries[J]. Materials Science and Engineering:B,2021,264:6.
    [46] Yang S B, Song H H, Chen X H. Expansion of mesocarbon microbeads[J]. Carbon,2006,44(4):730-733. doi: 10.1016/j.carbon.2005.09.019
    [47] Wang Y X, Tian W, Wang L H, et al. A tunable molten-salt route for scalable synthesis of ultrathin amorphous carbon nanosheets as high-performance anode materials for lithium-ion batteries[J]. Acs Applied Materials & Interfaces,2018,10(6):5577-5585.
    [48] Zhong M, Yan J W, Wu H X, et al. Multilayer graphene spheres generated from anthracite and semi-coke as anode materials for lithium-ion batteries[J]. Fuel Processing Technology,2020,198:8.
  • Supporting Information ——20220001.pdf
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  639
  • HTML全文浏览量:  334
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-04
  • 修回日期:  2022-03-15
  • 网络出版日期:  2022-04-01
  • 刊出日期:  2023-01-06

目录

    /

    返回文章
    返回