留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Incorporating TiO2 nanoparticles into the multichannels of electrospun carbon fibers to increase the adsorption of polysulfides in room temperature sodium-sulfur batteries

YE Xin LI Zhi-qi SUN Hao WU Ming-xia AN Zhong-xun PANG Yue-peng YANG Jun-he ZHENG Shi-you

叶鑫, 李质奇, 孙皓, 吴明霞, 安仲勋, 庞越鹏, 杨俊和, 郑时有. 纳米TiO2构筑于多通道炭纤维实现室温钠-硫电池中多硫化物的高效吸附. 新型炭材料(中英文), 2022, 37(6): 1116-1124. doi: 10.1016/S1872-5805(22)60607-3
引用本文: 叶鑫, 李质奇, 孙皓, 吴明霞, 安仲勋, 庞越鹏, 杨俊和, 郑时有. 纳米TiO2构筑于多通道炭纤维实现室温钠-硫电池中多硫化物的高效吸附. 新型炭材料(中英文), 2022, 37(6): 1116-1124. doi: 10.1016/S1872-5805(22)60607-3
YE Xin, LI Zhi-qi, SUN Hao, WU Ming-xia, AN Zhong-xun, PANG Yue-peng, YANG Jun-he, ZHENG Shi-you. Incorporating TiO2 nanoparticles into the multichannels of electrospun carbon fibers to increase the adsorption of polysulfides in room temperature sodium-sulfur batteries. New Carbon Mater., 2022, 37(6): 1116-1124. doi: 10.1016/S1872-5805(22)60607-3
Citation: YE Xin, LI Zhi-qi, SUN Hao, WU Ming-xia, AN Zhong-xun, PANG Yue-peng, YANG Jun-he, ZHENG Shi-you. Incorporating TiO2 nanoparticles into the multichannels of electrospun carbon fibers to increase the adsorption of polysulfides in room temperature sodium-sulfur batteries. New Carbon Mater., 2022, 37(6): 1116-1124. doi: 10.1016/S1872-5805(22)60607-3

纳米TiO2构筑于多通道炭纤维实现室温钠-硫电池中多硫化物的高效吸附

doi: 10.1016/S1872-5805(22)60607-3
基金项目: 国家自然科学基金(51971146,51971147,52171218),上海市教委创新计划重大项目(2019-01-07-00-07-E00015),上海市科委项目(21010503100,20ZR1438400)和启明星计划(20QA1407100),以及广西电子信息材料构效关系重点实验室(桂林电子科技大学)(201017-K)资助
详细信息
    通讯作者:

    郑时有,教授. E-mail:syzheng@usst.edu.cn

  • 中图分类号: TB33

Incorporating TiO2 nanoparticles into the multichannels of electrospun carbon fibers to increase the adsorption of polysulfides in room temperature sodium-sulfur batteries

More Information
    Author Bio:

    叶 鑫、李质奇为共同第一作者

    Corresponding author: ZHENG Shi-you, Professor. E-mail: syzheng@usst.edu.cn
  • 摘要: 随着电动汽车和大规模储能电网的快速发展,锂离子电池将不可避免地面临有限的能量密度无法满足日益增长的需求和成本不断上升的两大困境。 室温钠-硫电池因具有高能量密度和低成本的优势而备受关注,但其存在多硫化钠的“穿梭效应”导致电池的循环性能较差的问题,亟需解决。 在此,本文提出将纳米TiO2颗粒构筑于多通道炭纤维以稳定硫,从而实现室温钠-硫电池电化学性能的提高。首先通过静电纺丝和热处理技术制得有纳米TiO2负载的多通道炭纤维载体材料,后续采用熔融扩散载硫方法制备出硫基复合正极材料。纳米TiO2颗粒的加入可增强了对多硫化物的吸附力,同时促进其向Na2S2和Na2S的快速转化。 在0.1 A g−1电流密度条件下,电极材料经循环100次后的比容量为445.1 mAh g−1,库仑效率接近100%; 即使在电流密度为2 A g−1时,经500次循环,该电极材料仍保持有300.5 mAh g−1的容量,显现出优异的倍率和循环性能。 通过表征测试手段与理论计算相结合,验证了纳米TiO2颗粒的加入可增强碳基材料对多硫化物的吸附作用。这项工作有望为高性能室温钠-硫电池正极材料的优化设计提供理论依据与技术指导。
  • FIG. 1959.  FIG. 1959.

    FIG. 1959..  FIG. 1959.

    Figure  1.  Schematic illustration of the preparation of the S/TiO2@MCCFs

    Figure  2.  (a-b) SEM images of S/TiO2@MCCFs. (c-d) TEM images of TiO2@MCCFs. (e) Elemental mapping of the S/TiO2@MCCFs

    Figure  3.  (a) XRD patterns of MCCFs and TiO2@MCCFs. (b) XRD patterns of TiO2@MCCFs and S/TiO2@MCCFs. (c) Raman spectrum of TiO2@MCCFs. (d) Raman spectra of MCCFs and TiO2@MCCFs (1000-2000 cm−1). (e) TG curves of the S/MCCFs and S/TiO2@MCCFs. (f) High-resolution XPS spectrum of S2p of S/TiO2@MCCFs

    Figure  4.  (a) Cycling test of S/TiO2@MCCFs and S/MCCFs at 0.1 A g−1. (b) Discharge/charge profiles of S/TiO2@MCCFs at 0.1 A g−1. (c) CV curves of S/TiO2@MCCFs. (d) Rate capabilities of S/TiO2@MCCFs at different current densities. (e) Discharge/charge profiles of S/TiO2@MCCFs at different current densities. (f) Long-term performance of S/TiO2@MCCFs at 2 A g−1

    Figure  5.  (a) Optimized configurations of Na2S2 and Na2S4 binding to TiO2. (b) Optimized configurations of Na2S2 and Na2S4 binding to MCCFs

  • [1] Balogun M S, Yang H, Luo Y, et al. Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core-double-shell electrodes[J]. Energy and Environmental Science,2018,11:1859-1869. doi: 10.1039/C8EE00522B
    [2] Sun Y, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy,2016,1:16071. doi: 10.1038/nenergy.2016.71
    [3] Turcheniuk K, Bondarev D, Singhal V, et al. Ten years left to redesign lithium-ion batteries[J]. Nature,2018,559:467-470. doi: 10.1038/d41586-018-05752-3
    [4] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science,2011,334:928-935. doi: 10.1126/science.1212741
    [5] Wang X, Huang R Q, Niu S Z, et al. Research progress on graphene-based materials for high-performance lithium-metal batteries[J]. New Carbon Materials,2021,36:711-728. doi: 10.1016/S1872-5805(21)60081-1
    [6] Beaudin M, Zareipour H, Schellenberglabe A, et al. Energy storage for mitigating the variability of renewable electricity sources: An updated review[J]. Energy for Sustainable Development,2010,14:302-314. doi: 10.1016/j.esd.2010.09.007
    [7] Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry,2015,7:19. doi: 10.1038/nchem.2085
    [8] Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials,2009,8:500-506. doi: 10.1038/nmat2460
    [9] Li X, Wang X Y, Sun J. Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries[J]. New Carbon Materials,2021,36:106-116. doi: 10.1016/S1872-5805(21)60008-2
    [10] Salama M, Rosy, Attias R, et al. Metal-sulfur batteries: Overview and research methods[J]. ACS Energy Letters,2019,4:436-446. doi: 10.1021/acsenergylett.8b02212
    [11] Yu X, Manthiram A. Capacity enhancement and discharge mechanisms of room-temperature sodium-sulfur batteries[J]. ChemElectroChem,2014,1:1275-1280. doi: 10.1002/celc.201402112
    [12] Kim H, Jeong G, Kim Y U, et al. Metallic anodes for next generation secondary batteries[J]. Chemical Society Reviews,2013,42:9011-9034. doi: 10.1039/c3cs60177c
    [13] Yang Y, Zheng G, Cui Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews,2013,42:3018-3032. doi: 10.1039/c2cs35256g
    [14] Lu Y, Liang J, Hu Y, et al. Accurate control multiple active sites of carbonaceous anode for high performance sodium storage: insights into capacitive contribution mechanism[J]. Advanced Energy Materials,2020,10:1903312. doi: 10.1002/aenm.201903312
    [15] Chung S H, Manthiram A. Current status and future prospects of metal-sulfur batteries[J]. Advanced Materials,2019,31:1901125. doi: 10.1002/adma.201901125
    [16] Wang Y X, Lai W H, Chou S L, et al. Remedies for polysulfide dissolution in room-temperature sodium-sulfur batteries[J]. Advanced Materials,2020,32:1903952. doi: 10.1002/adma.201903952
    [17] Hueso K B, Armand M, Rojo T. High temperature sodium batteries: Status, challenges and future trends[J]. Energy and Environmental Science,2013,6:734-749. doi: 10.1039/c3ee24086j
    [18] Manthiram A, Yu X. Ambient temperature sodium-sulfur batteries[J]. Small,2015,11:2108-2114. doi: 10.1002/smll.201403257
    [19] Wang Y X, Zhang B, Lai W, Xu Y, et al. Room-temperature sodium-sulfur batteries: A comprehensive review on research progress and cell chemistry[J]. Advanced Energy Materials,2017,7:1602829. doi: 10.1002/aenm.201602829
    [20] Yang F, Mousavie S M A, et al. Sodium-sulfur flow battery for low-cost electrical storage[J]. Advanced Energy Materials,2018,8:1701991. doi: 10.1002/aenm.201701991
    [21] Yin Y X, Xin S, Guo Y G, et al. Lithium-sulfur batteries: Electrochemistry, materials, and prospects[J]. Angewandte Chemie - International Edition,2013,52:13186-13200. doi: 10.1002/anie.201304762
    [22] Seh Z W, Sun J, Sun Y, et al. A highly reversible room-temperature sodium metal anode[J]. ACS Central Science,2015,1:449-455. doi: 10.1021/acscentsci.5b00328
    [23] Ma D, Li Y, Yang J, et al. New strategy for polysulfide protection based on atomic layer deposition of TiO2 onto ferroelectric-encapsulated cathode: Toward ultrastable free-standing room temperature sodium-sulfur batteries[J]. Advanced Functional Materials,2018,28:1705537. doi: 10.1002/adfm.201705537
    [24] Yu X, Manthiram A. Highly reversible room-temperature sulfur/long-chain sodium polysulfide batteries[J]. The Journal of Physical Chemistry Letters,2014,5:1943-1947. doi: 10.1021/jz500848x
    [25] Ryu H, Kim T, Kim K, et al. Discharge reaction mechanism of room-temperature sodium-sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte[J]. Journal of Power Sources,2011,196:5186-5190. doi: 10.1016/j.jpowsour.2011.01.109
    [26] Wang Y, Zhou D, Palomares V, et al. Revitalising sodium–sulfur batteries for non-high-temperature operation: a crucial review[J]. Energy and Environmental Science,2020,13:3848-3879. doi: 10.1039/D0EE02203A
    [27] Zhang S, Yao Y, Yu Y. Frontiers for room-temperature sodium–sulfur batteries[J]. ACS Energy Letters,2021,6:529-536. doi: 10.1021/acsenergylett.0c02488
    [28] Du W, Wu Y, Yang T, et al. Rational construction of rGO/VO2 nanoflowers as sulfur multifunctional hosts for room temperature Na-S batteries[J]. Chemical Engineering Journal,2020,379:122359. doi: 10.1016/j.cej.2019.122359
    [29] Hwang T H, Jung D S, Kim J S, et al. One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature[J]. Nano Letters,2013,13:4532-4538. doi: 10.1021/nl402513x
    [30] Zhang B W, Sheng T, Liu Y D, et al. Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries[J]. Nature Communications,2018,9:4082. doi: 10.1038/s41467-018-06144-x
    [31] Yang J Y, Han H J, Repich H, et al. Recent progress on the design of hollow carbon spheres to host sulfur in room-temperature sodium–sulfur batteries[J]. New Carbon Materials,2020,35:630-645. doi: 10.1016/S1872-5805(20)60519-4
    [32] Chen S, Bao P, Wang G. Synthesis of Fe2O3-CNT-graphene hybrid materials with an open three-dimensional nanostructure for high capacity lithium storage[J]. Nano Energy,2013,2:425-434. doi: 10.1016/j.nanoen.2012.11.012
    [33] Chen Y, Shi L, Guo S, et al. A general strategy towards carbon nanosheets from triblock polymers as high-rate anode materials for lithium and sodium ion batteries[J]. Journal of Materials Chemistry A,2017,5:19866-19874. doi: 10.1039/C7TA06453E
    [34] Xiong S, Fan J, Wang Y, et al. A facile template approach to nitrogen-doped hierarchical porous carbon nanospheres from polydopamine for high-performance supercapacitors[J]. Journal of Materials Chemistry A,2017,5:18242-18252. doi: 10.1039/C7TA05880B
    [35] Wu H B, Wei S, Zhang L, et al. Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries[J]. Chemistry,2013,19:10804-10808. doi: 10.1002/chem.201301689
    [36] Xu Y, Yuan T, Zhao Y H, et al. Constructing multichannel carbon fibers as freestanding anodes for potassium-ion battery with high capacity and long cycle life[J]. Advanced Materials Interfaces,2020,7:1901829. doi: 10.1002/admi.201901829
    [37] Xu X, Zhou D, Qin X, et al. A room-temperature sodium-sulfur battery with high capacity and stable cycling performance[J]. Nature Communications,2018,9:3870. doi: 10.1038/s41467-018-06443-3
    [38] Ryu J, Kumar R S, Son Y A. Robust photodegradation of methylene blue with the biphenyl-porphyrin/TiO2 photocatalyst under visible light condition[J]. Journal of Nanoscience and Nanotechnology,2020,20:6266-6273. doi: 10.1166/jnn.2020.18518
    [39] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Mater,2002,14:2717-2744. doi: 10.1088/0953-8984/14/11/301
    [40] Fan F Y, Carter W C, Chiang Y M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries[J]. Advanced Materials,2015,27:5203-5209. doi: 10.1002/adma.201501559
  • Supporting Information-20210292.pdf
  • 加载中
图(6)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  236
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-03
  • 修回日期:  2022-03-15
  • 网络出版日期:  2022-04-01
  • 刊出日期:  2022-11-28

目录

    /

    返回文章
    返回