留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管复合纤维素水凝胶的界面光热净水性能研究

王雪 孙洋 赵冠宇 王旭珍 邱介山

王雪, 孙洋, 赵冠宇, 王旭珍, 邱介山. 碳纳米管复合纤维素水凝胶的界面光热净水性能研究. 新型炭材料(中英文), 2023, 38(1): 162-172. doi: 10.1016/S1872-5805(22)60621-8
引用本文: 王雪, 孙洋, 赵冠宇, 王旭珍, 邱介山. 碳纳米管复合纤维素水凝胶的界面光热净水性能研究. 新型炭材料(中英文), 2023, 38(1): 162-172. doi: 10.1016/S1872-5805(22)60621-8
WANG Xue, SUN Yang, ZHAO Guan-yu, WANG Xu-zhen, QIU Jie-shan. Preparation of carbon nanotube/cellulose hydrogel composites and their uses in interfacial solar-powered water evaporation. New Carbon Mater., 2023, 38(1): 162-172. doi: 10.1016/S1872-5805(22)60621-8
Citation: WANG Xue, SUN Yang, ZHAO Guan-yu, WANG Xu-zhen, QIU Jie-shan. Preparation of carbon nanotube/cellulose hydrogel composites and their uses in interfacial solar-powered water evaporation. New Carbon Mater., 2023, 38(1): 162-172. doi: 10.1016/S1872-5805(22)60621-8

碳纳米管复合纤维素水凝胶的界面光热净水性能研究

doi: 10.1016/S1872-5805(22)60621-8
基金项目: 国家自然科学基金项目(22179017)资助。
详细信息
    作者简介:

    王雪:王 雪,硕士研究生. E-mail:17865572197@163.com

    通讯作者:

    王旭珍,博士,教授. E-mail:xzwang@dlut.edu.cn

  • 中图分类号: TQ352.9

Preparation of carbon nanotube/cellulose hydrogel composites and their uses in interfacial solar-powered water evaporation

Funds: National Natural Science Foundation of China (22179017).
More Information
  • 摘要: 基于低温溶剂法从大宗农林废弃物玉米芯中提取的纤维素,耦合具有优异吸光性能的碳纳米管(CNTs),构筑复合纤维素水凝胶(CNTs-CH),利用纤维素凝胶的高保水性、可降解性,以及碳纳米管的高效光热转换能力、优良的力学性能和生物相容性,将其用于太阳能驱动界面水蒸发净化领域。考察了吸光材料CNTs的不同添加量对CNTs-CH复合水凝胶的太阳能吸收率、机械性能及界面光热水蒸发效率的影响。最优条件下,CNTs添加质量百分数仅需0.2%,此CNTs-CH复合纤维素水凝胶的平均蒸发速率可达到~1.52 kg m−2 h−1,太阳能-蒸汽转换效率约为92%;在海水中连续蒸发8 h,蒸发速率可保持在1.37 kg m−2 h−1左右,且无积盐现象,净化水质远高于世界卫生组织和美国环境保护署对饮用水的标准,说明CNTs-CH抗盐性能较强。此外,CNTs-CH水凝胶在强酸/碱性水溶液体系、染料废水和重金属离子污染水体中的蒸发速率可维持为1.30~1.40 kg m−2 h−1,太阳能-蒸汽效率可达到80%~86%,对污染物及盐分截留率高达99.9%,蒸发效果稳定,说明CNTs-CH光热蒸发器在海水淡化和工业废水净化回用领域有广阔的应用前景。
  • FIG. 2069.  FIG. 2069.

    FIG. 2069..  FIG. 2069.

    1  界面太阳能水蒸发速率测试装置图

    1.  Schematic diagram of device for testing water evaporation rate by interfacial solar driven

    图  1  (a) CNTs-CH复合纤维素水凝胶的制备流程图. (b) CNTs-CH脱模后的宏观照片. (c) 商品纤维素、自制纤维素与纤维素水凝胶(CH)的红外光谱图. (d) 纤维素水凝胶(CH)、复合纤维素水凝胶(CNTs-CH)的承重图(插图为:承重后样品复原图)

    Figure  1.  Preparation, appearance and FTIR characterization of cellulose hydrogels. (a) Flow chart of preparation of CNTs-CH composite cellulose hydrogel. (b) Digital photos of CNTs-CH after demolding. (c) Infrared spectra of commercial cellulose, homemade cellulose and cellulose hydrogel (CH). (d) Load-bearing diagrams of cellulose hydrogel (CH) and composite cellulose hydrogel (CNTs-CH) (the inset is the recovery diagram of the sample after load-bearing)

    图  2  (a) CH、(b) 0.02%CNTs-CH、(c) 0.2%CNTs-CH和(d) 1.0%CNTs-CH水凝胶溶胀、冻干后的SEM照片. (e, f) 代表样品0.2%CNTs-CH的局部放大SEM照片(e中插图显示其网络结构交联处的局部放大图). (g, h)分别为0.2%CNTs-CH的TEM和HRTEM照片.(i) 0.2%CNTs-CH水凝胶溶胀平衡后的DSC曲线

    Figure  2.  (a-d) SEM images of (a)CH, (b)0.02%CNTs-CH, (c)0.2%CNTs-CH, (d)1.0%CNTs-CH hydrogels swollen and freeze-dried at 200 μm size, respectively. (e,f) Local enlarged SEM images of typical 0.2%CNTs-CH at 30 μm and 20 μm size (the inset shows the local enlarged view of the crosslinking of its network structure). (g) TEM and (h) HRTEM image of 0.2%CNTs-CH. (i) DSC curve of 0.2%CNTs-CH hydrogel after swelling equilibrium

    图  3  CH、0.02%CNTs-CH、0.2%CNTs-CH、1.0%CNTs-CH的(a)紫外/可见/近红外反射光谱图和(b)吸收光谱,b图中背底为太阳能全光谱. (c)在一个标准太阳照射下,不同水凝胶蒸发器表面温度随时间的变化. (d)红外热成像仪记录的0.2%CNTs-CH水凝胶表面温度随时间的变化

    Figure  3.  (a) UV/Vis/NIR reflectance spectra and (b) absorption spectra of CH, 0.02%CNTs-CH, 0.2%CNTs-CH, 1.0%CNTs-CH, the background in b is solar energy full spectrum. (c) Change of surface temperature over different hydrogel evaporators with time under a standard solar irradiation. (d) Change of surface temperature over 0.2%CNTs-CH hydrogel recorded by infrared thermal imager with time

    图  4  (a) CH、0.02%CNTs-CH、0.2%CNTs-CH、1.0%CNTs-CH各自在蒸发时水蒸汽的质量变化及(b)其蒸发速率折线图. (c) 0.2%CNTs-CH与其他文章报道的蒸发器蒸发性能对比图. (d) 0.2%CNTs-CH在10天里的蒸发速率图(插图分别为第1天和第10天太阳能蒸发时水蒸气的质量变化)

    Figure  4.  (a) The mass change of water vapor during evaporation and (b) its evaporation rate line graph of CH, 0.02%CNTs-CH, 0.2%CNTs-CH, and 1.0%CNTs-CH, respectively. (c) Comparison of evaporation performance of 0.2%CNTs-CH with others previously reported. (d) Evaporation rates of 0.2%CNTs-CH in 10 days (insets show the mass change of water vapor during solar evaporation on day 1 and day 10, respectively)

    图  5  0.2%CNTs-CH对盐水的界面光热蒸发性能(光照强度:1kW m−2): (a)含NaCl为3.5%、5.0%、10%、20%的模拟盐水与纯水对照的水蒸发速率及太阳能-蒸汽效率. (b)采集的黄海海水蒸发脱盐前后4种主要离子Na+、Mg2+、K+、Ca2+的浓度,并与WHO和EPA所设标准进行比较. (c)在黄海海水中连续8 h的蒸发速率图(插图为固体盐颗粒溶解实验)

    Figure  5.  Interfacial photo-thermal evaporation performance of 0.2% CNTs-CH to brine (light intensity: 1 kW m−2). (a) Water evaporation rate and solar steam efficiency of simulated brine with NaCl mass percentage of 3.5%, 5.0%, 10% and 20% compared with pure water. (b) The concentrations of the four primary ions (Na+, Mg2+, K+, and Ca2+) before and after evaporative desalination of the seawater collected from Yellow Sea, and compared with the standards set by WHO and EPA. (c) Evaporation rate plot in the Yellow Sea seawater for continuous 8 hours (inset is the dissolution experiment of solid salt particle)

    图  6  0.2%CNTs-CH对模拟工业废水的蒸发性能(光照强度:1 kW m−2): (a)酸性体系(0.1、0.3、1.0、3.0 mol L−1 HNO3溶液)和 (b)碱性体系(0.1、0.3、1.0、3.0 mol L-1 NaOH溶液)中的水蒸发速率及其太阳能-蒸汽效率. (c)染料废水10 % RhB溶液蒸发前后的宏观照片及其紫外-可见吸收光谱. (d)重金属溶液(含Cr6+、Cd2+、Cu2+、Zn2+)蒸发前后的重金属离子浓度变化

    Figure  6.  Evaporation performance of 0.2% CNTs-CH on simulated industrial wastewater (light intensity: 1 kW m−2). Water evaporation rates and their solar-steam efficiency in (a) acidic systems (0.1, 0.3, 1.0, 3.0 mol L−1 HNO3 solutions) and (b) alkaline systems (0.1, 0.3, 1.0, 3.0 mol L−1 NaOH solutions). (c) Digital photo and UV-Vis absorption spectra of 10% RhB dye wastewater before and after evaporation. (d) Change of heavy metal ion concentration before and after evaporation of heavy metal solution (including Cr6+, Cd2+, Cu2+, Zn2+)

  • [1] ZHOU Xing-yi, GUO You-hong, ZHAO Fei, et al. Hydrogels as an emerging material platform for solar water purification[J]. Accounts of Chemical Research,2019,52(11):3244-3253. doi: 10.1021/acs.accounts.9b00455
    [2] Kevin Bethke, Sinem Palantöken, Virgil Andrei, et al. Functionalized cellulose for water purification, antimicrobial applications, and sensors[J]. Advanced Functional Materials,2018,28(23):1-14.
    [3] ZHANG Xiao-lei, CHAI Xue-di, LIU Jian-xin, et al. Interfacial characteristics in membrane filtration for oil-in-water treatment processes[J]. Journal of Membrane Science,2021,623:1-10.
    [4] Bartholomew T V, Siefert N S, Mauter M S. Cost optimization of osmotically assisted reverse osmosis[J]. Environmental Science & Technology,2018,52(20):11813-11821.
    [5] WANG Xun, GAN Qi-mao, CHEN Rong, et al. Water delivery channel design in solar evaporator for efficient and durable water evaporation with salt rejection[J]. ACS Sustainable Chemistry & Engineering,2020,8(21):7753-7761.
    [6] SHI Miao, YU Bing-song, ZHANG Jin-chuan, et al. Evolution of organic pores in marine shales undergoing thermocompression: A simulation experiment using hydrocarbon generation and expulsion[J]. Journal of Natural Gas Science and Engineering,2018,59:406-413. doi: 10.1016/j.jngse.2018.09.008
    [7] WANG Tian-yi, HUANG Heng-bo, LI Hao-liang, et al. Carbon materials for solar-powered seawater desalination[J]. New Carbon Materials,2021,36(4):683-701. doi: 10.1016/S1872-5805(21)60066-5
    [8] Ghasemi H, Ni G, Marconnet A M, et al. Solar steam generation by heat localization[J]. Nature Communications,2014,5:4449-4455. doi: 10.1038/ncomms5449
    [9] CHEN Chao-ji, KUANG Yu-di, HU Liang-bing. Challenges and opportunities for solar evaporation[J]. Joule,2019,3(3):683-718.
    [10] 张辰, 唐全骏, 陶莹, 等. 碳基功能材料在海洋领域中的应用进展[J]. 新型炭材料,2018,33(5):385-391. doi: 10.1016/S1872-5805(18)30007-6

    ZHANG Chen, TANG Quan-jun, TAO Ying, et al. Functional carbon materials in marine science and technology[J]. New Carbon Materials,2018,33(5):385-391. doi: 10.1016/S1872-5805(18)30007-6
    [11] Chandrashekara M, Avadhesh Y. Experimental study of exfoliated graphite solar thermal coating on a receiver with a scheffler dish and latent heat storage for desalination[J]. Solar Energy,2017,151:129-145. doi: 10.1016/j.solener.2017.05.027
    [12] WANG Xin-zhi, HE Yu-rong, CHENG Gong, et al. Direct vapor generation through localized solar heating via carbon-nanotube nanofluid[J]. Energy Conversion and Management,2016,130:176-183. doi: 10.1016/j.enconman.2016.10.049
    [13] Kim K, YU S, AN C, et al. Mesoporous three-dimensional graphene networks for highly efficient solar desalination under 1 sun illumination[J]. ACS Applied Materials & Interfaces,2018,10(18):15602-15608.
    [14] LI Tian, LIU He, ZHAO Xin-peng, et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport[J]. Advanced Functional Materials,2018,28(16):1707134. doi: 10.1002/adfm.201707134
    [15] XU N, HU X, XU W, et al. Mushrooms as efficient solar steam-generation devices[J]. Advanced Materials,2017,29(28):1606762. doi: 10.1002/adma.201606762
    [16] JIN M, WU Z, GUAN F, et al. Hierarchically designed three-dimensional composite structure on a cellulose-based solar steam generator[J]. ACS Applied Materials & Interfaces,2022,14(10):12284-12294.
    [17] ZHANG Qian, XU Wei-lin, WANG Xian-bao, et al. Carbon nanocomposites with high photothermal conversion efficiency[J]. Science China Materials,2018,61(7):905-914. doi: 10.1007/s40843-018-9250-x
    [18] JIANG F, LIU H, LI Y, et al. Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation[J]. ACS Applied Materials & Interfaces,2018,10(1):1104-1112.
    [19] ZHAO F, ZHOU X, SHI Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels[J]. Nature Nanotechnology,2018,13(6):489-495. doi: 10.1038/s41565-018-0097-z
    [20] ZHOU Xing-yi, ZHAO Fei, YU Gui-hua, et al. Architecting highly hydratable polymer networks tune the water state for solar water purification[J]. Science Advances,2019,5:1-7.
    [21] Youssef Habibi, Lucian A. Lucia, Orlando J Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications[J]. Chemical Reviews,2010,110(6):3479-3500. doi: 10.1021/cr900339w
    [22] ZHANG X, YU H, YANG H, et al. Graphene oxide caged in cellulose microbeads for removal of malachite green dye from aqueous solution[J]. Journal of Colloid and Interface Science,2015,437:277-282. doi: 10.1016/j.jcis.2014.09.048
    [23] PING Z H, Nguyen Q T, CHEN S M, et al. States of water in different hydrophilic polymers-DSC and FTIR studies[J]. Polymer,2001,42:8461-8467. doi: 10.1016/S0032-3861(01)00358-5
    [24] Kudo K, Ishida J, Syuu G, et al. Structural changes of water in poly(vinyl alcohol) hydrogel during dehydration[J]. Journal of Chemical Physics,2014,140(4):1-9.
    [25] Sekine Y, Ikeda-Fukazawa T. Structural changes of water in a hydrogel during dehydration[J]. Journal of Chemical Physics,2009,130(3):1-8.
    [26] 王红彦, 张轩铭, 王道龙, 等. 中国玉米芯资源量估算及其开发利用[J]. 中国农业资源与区划,2016,37(1):1-8.

    WANG Hong-yan, ZHANG Xuan-ming, WANG Dao-long, et al. Estimation of China's corn cob resources and its development and utilization[J]. Chinese Journal of Agricultural Resources and Regional Planning,2016,37(1):1-8.
    [27] 李昌文, 张丽华, 纵伟, 等. 玉米芯的综合利用研究技术进展[J]. 食品研究与开发,2015,36(15):139-143. doi: 10.3969/j.issn.1005-6521.2015.15.034

    LI Chang-wen, ZHANG Li-hua, ZONG Wei, et al. Research progress of comprehensive utilization of corncob[J]. Food Research And Development,2015,36(15):139-143. doi: 10.3969/j.issn.1005-6521.2015.15.034
    [28] CAI Jie, ZHANG Li-na, ZHOU Jin-ping, et al. Novel fibers prepared from cellulose in NaOH/Urea aqueous solution[J]. Macromolecular Rapid Communications,2004,25(17):1558-1562. doi: 10.1002/marc.200400172
    [29] CAI Jie, ZHANG Li-na. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions[J]. Macromolecular Bioscience,2005,5(6):539-548. doi: 10.1002/mabi.200400222
    [30] LI Xiu-qiang, George Ni, Thomas Cooper, et al. Measuring conversion efficiency of solar vapor generation[J]. Joule,2019,3(8):1798-1803. doi: 10.1016/j.joule.2019.06.009
    [31] WANG L, HU S, Ullah M W, et al. Enhanced cell proliferation by electrical stimulation based on electroactive regenerated bacterial cellulose hydrogels[J]. Carbohydrate Polymers,2020,249:1-11.
    [32] CUI X, Lee J J L, CHEN W N. Eco-friendly and biodegradable cellulose hydrogels produced from low cost okara: towards non-toxic flexible electronics[J]. Scientific Reports,2019,9(1):1-9. doi: 10.1038/s41598-018-37186-2
    [33] ZHAO Dan, HUANG Jun-chao, ZHONG Yi, et al. High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking[J]. Advanced Functional Materials,2016,26(34):6279-6287. doi: 10.1002/adfm.201601645
    [34] LIU Yun-fang, SHEN Zeng-min, Kiyoshi Yokogawa, et al. Study of preparation and structures of the activated carbon nanotubes[J]. New Carbon Materials,2004,19(3):197-203.
    [35] 闫学杰, 常东军, 李智辉, 等. (Pt/Sn)-碳纳米管复合物的电催化性能. 新型炭材料, 2011, 26(3): 229-236.

    YAN Xue-jie, CHANG Dong-jun, LI Zhi-hui, et al. Electrocatalytic properties of (Pt/Sn)-carbon nanotube composites[J]. New Carbon Materials, 2011, 26(3): 229-236.
    [36] LI Shuai, HE Ying-ying, GUAN Yu-peng, et al. Cellulose nanofibril-stabilized pickering emulsion and in situ polymerization lead to hybrid aerogel for high-efficiency solar steam generation[J]. ACS Applied Polymer Materials,2020,2(11):4581-4591. doi: 10.1021/acsapm.0c00674
    [37] 李帅, 基于纤维素凝胶的太阳能水蒸发器的结构设计及其性能研究[D]. 2021, 桂林理工大学.

    LI Shuai, Structure design and performance research of solar vapor generator based on cellulose gel[D]. 2021, Guilin university of technology.
    [38] GUO Y, de Vasconcelos L S, Manohar N, et al. Highly elastic interconnected porous hydrogels through self-assembled templating for solar water purification[J]. Angewandte Chemie International Edition in English,2022,61(3):1-7.
    [39] 郭明晰, 武晶斌, 李风海, 等. 用于太阳能驱动蒸汽发生的低成本荷叶基炭膜[J]. 2020, 35(4): 436-443.

    GUO Ming-xi, WU Jing-bin, Li Feng-hai, et al. A low-cost lotus leaf-based carbon film for solar-driven steam generation[J]. New Carbon Materials, 2020, 35(4): 436-443.
    [40] LI J, DU M, LV G, et al. Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization[J]. Advanced Materials,2018,30(49):1-7.
    [41] LI Ji-yan, ZHOU Xu, ZHANG Jia-yi, et al. Migration crystallization device based on biomass photothermal materials for efficient salt-rejection solar steam generation[J]. ACS Applied Energy Materials,2020,3(3):3024-3032. doi: 10.1021/acsaem.0c00126
    [42] WU Xuan, George Y Chen, ZHANG Wei, et al. A plant-transpiration-process-inspired strategy for highly efficient solar evaporation[J]. Advanced Sustainable Systems,2017,1(6):1770102.
    [43] Seema Singh, Nitzan Shauloff, Raz Jelinek. Solar-enabled water remediation via recyclable carbon dot/hydrogel composites[J]. ACS Sustainable Chemistry & Engineering,2019,7(15):13186-13194.
    [44] ZHAO Xin-zhen, LIU Chang-kun. Overcoming salt crystallization with ionic hydrogel for accelerating solar evaporation[J]. Desalination,2020,482:114385.
    [45] YIN X, ZHANG Y, GUO Q, et al. Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination[J]. ACS Applied Materials & Interfaces,2018,10(13):10998-11007.
    [46] SUN Yu, GAO Jian-ping, LIU Yu, et al. Copper sulfide-macroporous polyacrylamide hydrogel for solar steam generation[J]. Chemical Engineering Science,2019,207:516-526. doi: 10.1016/j.ces.2019.06.044
    [47] ZHANG Chang, XIAO Peng, NI Feng, et al. Converting pomelo peel into eco-friendly and low-consumption photothermic biomass sponge toward multifunctioal solar-to-heat conversion[J]. ACS Sustainable Chemistry & Engineering,2020,8(13):5328-5337.
    [48] YANG Lin, CHEN Guo-liang, ZHANG Nan, et al. Sustainable biochar-based solar absorbers for high-performance solar-driven steam generation and water purification[J]. ACS Sustainable Chemistry & Engineering,2019,7(23):19311-19320.
    [49] JIA Juan, LIANG Wei-dong, SUN Han-xue, et al. Fabrication of bilayered attapulgite for solar steam generation with high conversion efficiency[J]. Chemical Engineering Journal,2019,361:999-1006. doi: 10.1016/j.cej.2018.12.157
    [50] LIU Yi-zhen, LIU Zhi-peng, HUANG Qi-chen, et al. A high-absorption and self-driven salt-resistant black gold nanoparticle-deposited sponge for highly efficient, salt-free, and long-term durable solar desalination[J]. Journal of Materials Chemistry A,2019,7(6):2581-2588. doi: 10.1039/C8TA10227A
  • 加载中
图(8)
计量
  • 文章访问数:  1000
  • HTML全文浏览量:  739
  • PDF下载量:  188
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-06-12
  • 网络出版日期:  2022-06-16
  • 刊出日期:  2023-01-06

目录

    /

    返回文章
    返回