留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Review of H2S selective oxidation over carbon-based materials at low temperature: from pollutant to energy storage materials

SUN Ming-hui WANG Xu-zhen ZHAO Zong-bin QIU Jie-shan

孙明慧, 王旭珍, 赵宗彬, 邱介山. 碳基材料在低温硫化氢选择性氧化中的研究进展:从污染物到储能材料. 新型炭材料(中英文), 2022, 37(4): 675-694. doi: 10.1016/S1872-5805(22)60622-X
引用本文: 孙明慧, 王旭珍, 赵宗彬, 邱介山. 碳基材料在低温硫化氢选择性氧化中的研究进展:从污染物到储能材料. 新型炭材料(中英文), 2022, 37(4): 675-694. doi: 10.1016/S1872-5805(22)60622-X
SUN Ming-hui, WANG Xu-zhen, ZHAO Zong-bin, QIU Jie-shan. Review of H2S selective oxidation over carbon-based materials at low temperature: from pollutant to energy storage materials. New Carbon Mater., 2022, 37(4): 675-694. doi: 10.1016/S1872-5805(22)60622-X
Citation: SUN Ming-hui, WANG Xu-zhen, ZHAO Zong-bin, QIU Jie-shan. Review of H2S selective oxidation over carbon-based materials at low temperature: from pollutant to energy storage materials. New Carbon Mater., 2022, 37(4): 675-694. doi: 10.1016/S1872-5805(22)60622-X

碳基材料在低温硫化氢选择性氧化中的研究进展:从污染物到储能材料

doi: 10.1016/S1872-5805(22)60622-X
基金项目: 国家自然科学基金项目(22179017,52172038,U1610105)
详细信息
    通讯作者:

    王旭珍,教授. E-mail:xzwang@dlut.edu.cn

  • 中图分类号: O643.32

Review of H2S selective oxidation over carbon-based materials at low temperature: from pollutant to energy storage materials

Funds: The authors acknowledge the financial support from projects funded by National Natural Science Foundation of China (Grant Nos. 22179017, 52172038, U1610105)
More Information
  • 摘要: 在过去的几十年中,用碳基材料实现室温下硫化氢(H2S)选择性氧化技术受到越来越多的关注。本文综述了近年来碳基脱硫催化剂的研究进展,包括碱改性活性炭、杂原子掺杂或官能团改性的多孔炭以及碳/碱性金属氧化物复合材料。讨论了H2S在各种碳基催化剂上发生选择性氧化生成单质硫(S)的机理,指出了碳基材料的高比表面积、发达的孔隙结构和可调控的表面化学性质等优势在氧化脱硫中所起的重要作用。在此基础上,本文还总结了脱硫后得到的碳/硫复合材料的扩展应用——将其作为高性能锂硫电池(LSBs)的硫正极,进一步实现了含硫污染物的高附加值转化利用。最后,提出了目前碳基材料在低温H2S选择性氧化中面临的主要挑战和未来的应用前景,以期为该技术的进一步发展提供指导。
  • FIG. 1652.  FIG. 1652.

    FIG. 1652..  FIG. 1652.

    Figure  1.  Modulation strategies of carbon-based catalysts for H2S selective oxidation at room temperature.

    Figure  2.  (a) Relationships between saturation sulfur capacity (QS) and pore volume. (b) Relationships between the content of S (SOx) and the ratios V>0.7/Vt and V<0.7/Vt. (c) Schematic diagram of H2S oxidation and sulfur species deposition in the nanopores of ACFs[56]. (Reprinted with permission by American Chemical Society, Copyright 2010).

    Figure  3.  (a) Preparation schematic of AMCs. (b) SEM, TEM and elemental mapping images of pristine AMC-10%. (c) SEM, TEM and XRD pattern of the catalyst after H2S oxidation (AMC-10%-S)[38]. (Reprinted with permission by American Chemical Society, Copyright 2016) (d) H2S breakthrough curves of the catalysts with various alkalic impregnates. (e) Schematic diagram of H2S oxidation over MCSs with MgO and other soluble bases[63]. (Reprinted with permission by Elsevier, Copyright 2016).

    Figure  4.  (a) Schematic diagram of sulfur species disposition upon carbon aerogel with various microstructures[65]. (Copyright 2011, Elsevier) (b, c) FESEM images of typical N-PCNF-1/2-800 sample, the inset in (c) is the TEM image of sample. (d) N2 adsorption-desorption isotherms and pore-size distributions of samples prepared at different temperatures[26]. (Reprinted with permission by Elsevier, Copyright 2019).

    Figure  5.  (a) The configuration of N in NMC prepared at different temperatures. (b) Relationship between sulfur capacity and pyridinic-N content. (c) Schematic diagram of H2S oxidation and sulfur deposition on NMC[27]. (Reprinted with permission by American Chemical Society, Copyright 2013).

    Figure  6.  (a) Schematic diagram of H2S oxidation and sulfur deposition on MCNs-PEI-25. (b) EPR spectra of various catalysts under different conditions[46]. (Reprinted with permission by Elsevier, Copyright 2016) (c) Comparison of the desulfurization performance between NH2-PLCNFs and PLCNFs[25]. (Reprinted with permission by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim, Copyright 2022).

    Figure  7.  (a) A proposed mechanism of Na2CO3 deposition on graphene nanosheets. (b) Schematic diagram of H2S oxidation and sulfur deposition on AGAs[47]. (Reprinted with permission by Elsevier, Copyright 2020).

    Figure  8.  (a) Binding energy of O2•− radical on the surface of various catalysts, the inset in (a) is the front view of the adsorption model. (b) Comparison of the binding energy of O2 and O2•− radical adsorbed on various surfaces. EPR spectra of (c) different systems and (d) various alkali-modified PC catalysts in an airflow. (e) Schematic diagram of H2S oxidation and sulfur deposition on PC/MgO catalysts[24]. (Reprinted with permission by American Chemical Society, Copyright 2021).

    Figure  9.  (a) Preparation schematic and (b) SEM image of HRGO/S composite. (c) XRD patterns, and (d) Raman spectra of different samples. (e) CV curves (scan rate: 0.1 mV s–1), and (f) discharge/charge profiles of HRGO/S cathode. (g) Rate performance of different S cathodes[78]. (Reprinted with permission by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim, Copyright 2013)

    Figure  10.  (a) Preparation schematic of WDS. (b) SEM and (c) TEM images of S-38/MWCNT, the inset in (b) is a photograph of the membrane. (d) Cycling performance (current density: 1.0 A g–1), and (e) rate performance of S/MWCNT cathode, the inset in (d) is the schematic of coin cell composition[85]. (Reprinted with permission by Elsevier Copyright 2017)

    Figure  11.  (a) Schematic diagram of the in-situ fabrication of LSB cathodes by H2S selective oxidation. (b) Cycling performance (current density: 1 C), and (c) rate performance of various S cathodes[25]. (Reprinted with permission by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim, Copyright 2022).

    Table  1.   Carbon-based catalysts for the selective oxidation of H2S to elemental sulfur at low temperature.

    CatalystsReaction conditions${{\boldsymbol{Q}}_{\bf{S}}({\bf{g}}_{{{\bf{H}}_{\bf{2}}}{\bf{S}}}/{\bf{g}}_{{\bf{catalyst}}} )}$Reference
    Na2CO3-impregnated activated carbon fibersH2S 1000×10−6; O2 1%; RH 80%; 30 °C;
    flow rate 150 mL min−1.
    0.2-0.8[56]
    Alkaline mesoporous carbonsH2S 1000×10−6; O2 1%; RH 80%; 25 °C;
    flow rate 150 mL min−1.
    4.49[38]
    Na2CO3-impregnated carbon aerogelsH2S 1000×10−6; O2 1%; RH 80%; 30 °C;
    flow rate 150 mL min−1.
    2.26[65]
    Millimeter-sized mesoporous carbon spheresH2S 1000×10−6; O2 1%; RH 80%; 30 °C;
    flow rate 150 mL min−1.
    2.46[63]
    N-rich mesoporous carbonH2S 1000×10−6; O2 1%; RH 80%; 30 °C;
    flow rate 150 mL min−1.
    2.77[27]
    N-doped porous carbon nanofibersH2S 1000×10−6; O2 2%; RH 70%; 25 °C;
    flow rate 100 mL min−1.
    3.57[26]
    N-doped mesoporous carbon nanosheetsH2S 1000×10−6; O2 2%; RH 70%; room temperature;
    flow rate 200 mL min−1.
    1.37[39]
    Graphene aerogelsH2S 1000×10−6; O2 1%; RH 80%; 30 °C;
    flow rate 150 mL min−1.
    3.19[47]
    N-functionalized mesoporous carbon nanosheetsH2S 1000×10−6; O2 1%; RH 80%; 25 °C;
    flow rate 150 mL min−1.
    0.47[46]
    Amino-functionalized lotus-root-like carbon nanofibersH2S 1000×10−6; O2 1%; RH 80%; 25 °C;
    flow rate 25 mL min−1.
    3.46[25]
    ZnO/N-modified ACH2S 600 mg/m3; pre-humidified for 1.5 h using the moist N2
    (ca. 3% moisture); 30 °C; flow rate 100 mL min−1.
    0.06[79]
    MgO-loaded porous carbonH2S 1000×10−6; O2 1%; RH 80%; 30 °C;
    flow rate 150 mL min−1.
    2.40[24]
    ZnO-MgO/activated carbonH2S 850 mg/m3; pre-humidified for 1.5 h using the moist N2
    (ca. 3% moisture); 30 °C; flow rate 100 mL min−1.
    0.11[83]
    CaO/carbon nanosheetsH2S 1000×10−6; O2 1%; RH, 80%; 30 °C;
    flow rate 150 mL min−1.
    9.10[71]
    下载: 导出CSV
  • [1] Ghosh T K, Tollefson E L. A continuous process for recovery of sulfur from natural-gas containing low concentrations of hydrogen-sulfide[J]. Canadian Journal of Chemical Engineering,1986,64(6):960-968. doi: 10.1002/cjce.5450640612
    [2] Seredych M, Bandosz T J. Desulfurization of digester gas on catalytic carbonaceous adsorbents: Complexity of interactions between the surface and components of the gaseous mixture[J]. Industrial & Engineering Chemistry Research,2006,45(10):3658-3665.
    [3] Bandosz T J, Le Q. Evaluation of surface properties of exhausted carbons used as H2S adsorbents in sewage treatment plants[J]. Carbon,1998,36(1-2):39-44. doi: 10.1016/S0008-6223(97)00148-6
    [4] Turk A, Mahmood K, Mozaffari J. Activated carbon for air purification in New-York-City sewage-treatment plants[J]. Water Science and Technology,1993,27(7-8):121-126. doi: 10.2166/wst.1993.0542
    [5] Bandosz T J, Block K A. Removal of hydrogen sulfide on composite sewage sludge-industrial sludge-based adsorbents[J]. Industrial & Engineering Chemistry Research,2006,45(10):3666-3672.
    [6] Ni J Q, Heber A J, Diehl C A, et al. Ammonia, hydrogen sulphide and carbon dioxide release from pig manure in under-floor deep pits[J]. Journal of Agricultural Engineering Research,2000,77(1):53-66. doi: 10.1006/jaer.2000.0561
    [7] Hendrickson R G, Chang A, Hamilton R J. Co-worker fatalities from hydrogen sulfide[J]. American Journal of Industrial Medicine,2004,45(4):346-350. doi: 10.1002/ajim.10355
    [8] Zhang X, Tang Y Y, Qu S Q, et al. H2S-selective catalytic oxidation: catalysts and processes[J]. Acs Catalysis,2015,5(2):1053-1067. doi: 10.1021/cs501476p
    [9] Rebolledo-Libreros M E, Trejo A. Gas solubility of H2S in aqueous solutions of N-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-1-propanol at 313, 343, and 393 K in the range 2.5-1036 kPa[J]. Fluid Phase Equilibr,2004,224(1):83-88. doi: 10.1016/j.fluid.2004.06.049
    [10] Sidi-Boumedine R, Horstmann S, Fischer K, et al. Experimental determination of hydrogen sulfide solubility data in aqueous alkanolamine solutions[J]. Fluid Phase Equilibr,2004,218(1):149-155. doi: 10.1016/j.fluid.2003.11.020
    [11] Pieplu A, Saur O, Lavalley J C, et al. Claus catalysis and H2S selective oxidation[J]. Catalysis Reviews-Science and Engineering,1998,40(4):409-450. doi: 10.1080/01614949808007113
    [12] Duan H Q, Yan R, Koe L C C, et al. Combined effect of adsorption and biodegradation of biological activated carbon on H2S biotrickling filtration[J]. Chemosphere,2007,66(9):1684-1691. doi: 10.1016/j.chemosphere.2006.07.020
    [13] Xiao Y H, Wang S D, Wu D Y, et al. Catalytic oxidation of hydrogen sulfide over unmodified and impregnated activated carbon[J]. Separation and Purification Technology,2008,59(3):326-332. doi: 10.1016/j.seppur.2007.07.042
    [14] Seredych M, Bandosz T J. Role of microporosity and nitrogen functionality on the surface of activated carbon in the process of desulfurization of digester gas[J]. Journal of Physical Chemistry C,2008,112(12):4704-4711. doi: 10.1021/jp710271w
    [15] Keller N, Pham-Huu C, Crouzet C, et al. Direct oxidation of H2S into S. New catalysts and processes based on SiC support[J]. Catalysis Today,1999,53(4):535-542. doi: 10.1016/S0920-5861(99)00141-8
    [16] Wu X X, Kercher A K, Schwartz V, et al. Activated carbons for selective catalytic oxidation of hydrogen sulfide to sulfur[J]. Carbon,2005,43(5):1087-1090. doi: 10.1016/j.carbon.2004.11.033
    [17] Bandosz T J, Bagreev A, Adib F, et al. Unmodified versus caustics-impregnated carbons for control of hydrogen sulfide emissions from sewage treatment plants[J]. Environmental Science & Technology,2000,34(6):1069-1074.
    [18] Zou H K, Sheng M P, Sun X F, et al. Removal of hydrogen sulfide from coke oven gas by catalytic oxidative absorption in a rotating packed bed[J]. Fuel,2017,204:47-53. doi: 10.1016/j.fuel.2017.05.017
    [19] Lee E K, Jung K D, Joo O S, et al. Support effects in catalytic wet oxidation of H2S to sulfur on supported iron oxide catalysts[J]. Applied Catalysis a-General,2005,284(1-2):1-4. doi: 10.1016/j.apcata.2004.12.034
    [20] Huang G, He E Y, Wang Z D, et al. Synthesis and characterization of gamma-Fe2O3 for H2S removal at low temperature[J]. Industrial & Engineering Chemistry Research,2015,54(34):8469-8478.
    [21] Wang J, Wang L J, Fan H L, et al. Highly porous copper oxide sorbent for H2S capture at ambient temperature[J]. Fuel,2017,209:329-338. doi: 10.1016/j.fuel.2017.08.003
    [22] Pahalagedara L R, Poyraz A S, Song W Q, et al. Low temperature desulfurization of H2S: High sorption capacities by mesoporous cobalt oxide via increased H2S diffusion[J]. Chemistry of Materials,2014,26(22):6613-6621. doi: 10.1021/cm503405a
    [23] Yang C, Kou J W, Fan H L, et al. Facile and versatile sol-gel strategy for the preparation of a high-loaded ZnO/SiO2 adsorbent for room-temperature H2S removal[J]. Langmuir,2019,35(24):7759-7768. doi: 10.1021/acs.langmuir.9b00853
    [24] Pan Y K, Xu H, Chen M Q, et al. Unveiling the nature of room-temperature O2 activation and O2·- enrichment on MgO-loaded porous carbons with efficient H2S oxidation[J]. Acs Catalysis,2021,11(10):5974-5983. doi: 10.1021/acscatal.1c00857
    [25] Sun M H, Wang X Z, Li Y, et al. Integration of desulfurization and lithium-sulfur batteries enabled by amino-functionalized porous carbon nanofibers [J]. Energy Environmental Materials, 2022,DOI: 10.1002/eem2.12369.
    [26] Sun M H, Wang X Z, Pan X, et al. Nitrogen-rich hierarchical porous carbon nanofibers for selective oxidation of hydrogen sulfide[J]. Fuel Processing Technology,2019,191:121-128. doi: 10.1016/j.fuproc.2019.03.020
    [27] Sun F G, Liu J, Chen H C, et al. Nitrogen-rich mesoporous carbons: Highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S[J]. Acs Catalysis,2013,3(5):862-870. doi: 10.1021/cs300791j
    [28] Chen Q J, Wang J T, Liu X J, et al. Alkaline carbon nanotubes as effective catalysts for H2S oxidation[J]. Carbon,2011,49:3773-3780. doi: 10.1016/j.carbon.2011.05.011
    [29] Chiang H L, Tsal J H, Tsal C L, et al. Adsorption characteristics of alkaline activated carbon exemplified by water vapor, H2S, and CH3SH gas[J]. Separation Science and Technology,2000,35(6):903-918.
    [30] Wild M, O'Neill L, Zhang T, et al. Lithium sulfur batteries, a mechanistic review[J]. Energy & Environmental Science,2015,8(12):3477-3494.
    [31] Peng H J, Huang J Q, Cheng X B, et al. Review on high-loading and high-energy lithium-sulfur batteries[J]. Advanced Energy Materals,2017,7(24):1700260. doi: 10.1002/aenm.201700260
    [32] Pang Q, Liang X, Kwok C Y, et al. A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density[J]. Advanced Energy Materals,2017,7(6):1601630. doi: 10.1002/aenm.201601630
    [33] Bagreev A, Bandosz T J. On the mechanism of hydrogen sulfide removal from moist air on catalytic carbonaceous adsorbents[J]. Industrial & Engineering Chemistry Research,2005,44(3):530-538.
    [34] Bandosz T J. On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures[J]. Journal of Colloid and Interface Science,2002,246(1):1-20. doi: 10.1006/jcis.2001.7952
    [35] Everett D H, Powl J C. Adsorption in slit-like and cylindrical micropores in Henrys Law region-model for microporosity of carbons[J]. Journal of the Chemical Society-Faraday Transactions I,1976,72:619-636.
    [36] Brennan J K, Bandosz T J, Thomson K T, et al. Water in porous carbons[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2001,187:539-568.
    [37] Kante K, Nieto-Delgado C, Rangel-Mendez J R, et al. Spent coffee-based activated carbon: Specific surface features and their importance for H2S separation process[J]. Journal of Hazardous Materials,2012,201:141-147.
    [38] Zhang Z X, Jiang W Y, Long D H, et al. A General silica-templating synthesis of alkaline mesoporous carbon catalysts for highly efficient H2S oxidation at room temperature[J]. ACS Applied Materials & Interfaces,2017,9(3):2477-2484.
    [39] Yu Z F, Wang X Z, Hou Y N, et al. Nitrogen-doped mesoporous carbon nanosheets derived from metal-organic frameworks in a molten salt medium for efficient desulfurization[J]. Carbon,2017,117:376-382. doi: 10.1016/j.carbon.2017.02.100
    [40] Wei D C, Liu Y Q, Wang Y, et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Lett.,2009,9(5):1752-1758. doi: 10.1021/nl803279t
    [41] Sun C L, Wang H W, Hayashi M, et al. Atomic-scale deformation in N-doped carbon nanotubes[J]. Journal of the American Chemical Society,2006,128(26):8368-8369. doi: 10.1021/ja0587852
    [42] Kurak K A, Anderson A B. Nitrogen-treated graphite and oxygen electroreduction on pyridinic edge sites[J]. Journal of Physical Chemistry C,2009,113(16):6730-6734. doi: 10.1021/jp811518e
    [43] Kim D P, Lin C L, Mihalisin T, et al. Electronic-properties of nitrogen-doped graphite flakes[J]. Chemistry of Materials,1991,3(4):686-692. doi: 10.1021/cm00016a023
    [44] Maldonado S, Stevenson K J. Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes[J]. Journal of Physical Chemistry B,2005,109(10):4707-4716. doi: 10.1021/jp044442z
    [45] Gong K P, Du F, Xia Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science,2009,323(5915):760-764. doi: 10.1126/science.1168049
    [46] Wang J T, Ke C Y, Jia X F, et al. Polyethyleneimine-functionalized mesoporous carbon nanosheets as metal-free catalysts for the selective oxidation of H2S at room temperature[J]. Applied Catalysis B-Environmental,2021,283:119650. doi: 10.1016/j.apcatb.2020.119650
    [47] Pan Y K, Chen M Q, Hu M F, et al. Probing the room-temperature oxidative desulfurization activity of three-dimensional alkaline graphene aerogel[J]. Applied Catalysis B-Environmental,2020,262:118266. doi: 10.1016/j.apcatb.2019.118266
    [48] Pirozzi D, Imparato C, D'Errico G, et al. Three-year lifetime and regeneration of superoxide radicals on the surface of hybrid TiO2 materials exposed to air[J]. Journal of Hazardous Materials,2020,387:121716. doi: 10.1016/j.jhazmat.2019.121716
    [49] Hayyan M, Mjalli F S, Hashim M A, et al. Long term stability of superoxide ion in piperidinium, pyrrolidinium and phosphonium cations-based ionic liquids and its utilization in the destruction of chlorobenzenes[J]. Journal of Electroanalytical Chemistry,2012,664:26-32. doi: 10.1016/j.jelechem.2011.10.008
    [50] Vasudevan D, Wendt H. Electroreduction of oxygen in aprotic media[J]. Journal of Electroanalytical Chemistry,1995,392(1-2):69-74. doi: 10.1016/0022-0728(95)04044-O
    [51] Gonchar A, Risse T, Freund H J, et al. Activation of oxygen on MgO: O2·- radical ion formation on thin, metal-supported MgO (001) films[J]. Angewandte Chemie-International Edition,2011,50(11):2635-2638. doi: 10.1002/anie.201005729
    [52] Wang D, Zhao L X, Ma H Y, et al. Quantitative analysis of reactive oxygen species photogenerated on metal oxide nanoparticles and their bacteria toxicity: The role of superoxide radicals[J]. Environmental Science & Technology,2017,51(17):10137-10145.
    [53] Li L, Sun T H, Shu C H, et al. Low temperature H2S removal with 3-D structural mesoporous molecular sieves supported ZnO from gas stream[J]. Journal of Hazardous Materials,2016,311:142-150. doi: 10.1016/j.jhazmat.2016.01.033
    [54] Steijns M, Derks F, Verloop A, et al. The mechanism of the catalytic oxidation of hydrogen sulfide: II. Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur[J]. Applied Catalysis A-General,1976,42(1):87-95.
    [55] Steijns M, Mars P. Role of sulfur trapped in micropores in catalytic partial oxidation of hydrogen-sulfide with oxygen[J]. Journal of Catalysis,1974,35(1):11-17. doi: 10.1016/0021-9517(74)90177-8
    [56] Chen Q J, Wang Z, Long D H, et al. Role of pore structure of activated carbon fibers in the catalytic oxidation of H2S[J]. Industrial & Engineering Chemistry Research,2010,49(7):3152-3159.
    [57] Nhut J M, Nguyen P, Pham-Huu C, et al. Carbon nanotubes as nanosized reactor for the selective oxidation of H2S into elemental sulfur[J]. Catalysis Today,2004,91-92:91-97. doi: 10.1016/j.cattod.2004.03.015
    [58] Bagreev A, Bandosz T J. A role of sodium hydroxide in the process of hydrogen sulfide adsorption/oxidation on caustic-impregnated activated carbons[J]. Industrial & Engineering Chemistry Research,2002,41(4):672-679.
    [59] Wang M, Yao L W, Wang J T, et al. Adsorption and regeneration study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO2 capture[J]. Applied Energy,2016,168:282-290. doi: 10.1016/j.apenergy.2016.01.085
    [60] Li W C, Zhang Z X, Wang J T, et al. Low temperature catalytic combustion of ethylene over cobalt oxide supported mesoporous carbon spheres[J]. Chemical Engineering Journal,2016,293:243-251. doi: 10.1016/j.cej.2016.02.089
    [61] Sun F G, Wang J T, Chen H C, et al. Bottom-up catalytic approach towards nitrogen-enriched mesoporous carbons/sulfur composites for superior Li-S cathodes[J]. Scientific Reports,2013,3:2823. doi: 10.1038/srep02823
    [62] Long D H, Chen Q J, Qiao W M, et al. Three-dimensional mesoporous carbon aerogels: ideal catalyst supports for enhanced H2S oxidation[J]. Chemical Communications,2009 (26):3898-3900.
    [63] Zhang Z X, Wang J T, Li W C, et al. Millimeter-sized mesoporous carbon spheres for highly efficient catalytic oxidation of hydrogen sulfide at room temperature[J]. Carbon,2016,96:608-615. doi: 10.1016/j.carbon.2015.10.001
    [64] Yan R, Chin T, Ng Y L, et al. Influence of surface properties on the mechanism of H2S removal by alkaline activated carbons[J]. Environmental Science & Technology,2004,38(1):316-323.
    [65] Chen Q J, Wang J T, Liu X J, et al. Structure-dependent catalytic oxidation of H2S over Na2CO3 impregnated carbon aerogels[J]. Microporous and Mesoporous Materials,2011,142(2-3):641-648. doi: 10.1016/j.micromeso.2011.01.011
    [66] Wu Z X, Webley P A, Zhao D Y. Post-enrichment of nitrogen in soft-templated ordered mesoporous carbon materials for highly efficient phenol removal and CO2 capture[J]. Journal of Materials Chemistry,2012,22(22):11379-11389. doi: 10.1039/c2jm16183d
    [67] Yang S B, Feng X L, Wang X C, et al. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Angewandte Chemie-International Edition,2011,50(23):5339-5343. doi: 10.1002/anie.201100170
    [68] Shao Y Y, Sui J H, Yin G P, et al. Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell[J]. Applied Catalysis B-Environmental,2008,79(1-2):89-99.
    [69] Lai L F, Potts J R, Zhan D, et al. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction[J]. Energy & Environmental Science,2012,5(7):7936-7942.
    [70] Mochida I, Korai Y, Shirahama M, et al. Removal of SOx and NOx over activated carbon fibers[J]. Carbon,2000,38(2):227-239. doi: 10.1016/S0008-6223(99)00179-7
    [71] Pan Y K, Chen M Q, Su Z, et al. Two-dimensional CaO/carbon heterostructures with unprecedented catalytic performance in room-temperature H2S oxidization[J]. Applied Catalysis B-Environmental,2021,280:119444. doi: 10.1016/j.apcatb.2020.119444
    [72] Yoo E, Okata T, Akita T, et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface[J]. Nano Letters,2009,9(6):2255-2259. doi: 10.1021/nl900397t
    [73] Li Y G, Wang H L, Xie L M, et al. MoS2 Nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society,2011,133(19):7296-7299. doi: 10.1021/ja201269b
    [74] Liao G F, Gong Y, Zhang L, et al. Semiconductor polymeric graphitic carbon nitride photocatalysts: the "holy grail" for the photocatalytic hydrogen evolution reaction under visible light[J]. Energy & Environmental Science,2019,12(7):2080-2147.
    [75] Song Y J, Qu K G, Zhao C, et al. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection[J]. Advanced Materials,2010,22(19):2206-2210. doi: 10.1002/adma.200903783
    [76] Su C L, Loh K P. Carbocatalysts: Graphene oxide and its derivatives[J]. Accounts of Chemical Research,2013,46(10):2275-2285. doi: 10.1021/ar300118v
    [77] Gao Y J, Tang P, Zhou H, et al. Graphene oxide catalyzed C-H bond activation: The importance of oxygen functional groups for biaryl construction[J]. Angewandte Chemie-International Edition,2016,55(9):3124-3128. doi: 10.1002/anie.201510081
    [78] Zhang C, Lv W, Zhang W G, et al. Reduction of graphene oxide by hydrogen sulfide: A promising strategy for pollutant control and as an electrode for Li-S batteries[J]. Advanced Energy Materials,2014,4(7):1301565. doi: 10.1002/aenm.201301565
    [79] Yang C, Yang S, Fan H L, et al. Tuning the ZnO-activated carbon interaction through nitrogen modification for enhancing the H2S removal capacity[J]. Journal of Colloid and Interface Science,2019,555:548-557. doi: 10.1016/j.jcis.2019.08.014
    [80] McCluskey M D, Jokela S J. Defects in ZnO[J]. Journal of Applied Physics,2009,106(7):071101. doi: 10.1063/1.3216464
    [81] Wang L J, Fan H L, Ju S G, et al. Design of a sorbent to enhance reactive adsorption of hydrogen sulfide[J]. ACS Applied Materials & Interfaces,2014,6(23):21167-21177.
    [82] Yang C, Wang J, Fan H L, et al. Contributions of tailored oxygen vacancies in ZnO/Al2O3 composites to the enhanced ability for H2S removal at room temperature[J]. Fuel,2018,215:695-703. doi: 10.1016/j.fuel.2017.11.037
    [83] Chao Y, Wang Y S, Fan H L, et al. Bifunctional ZnO-MgO/activated carbon adsorbents boost H2S room temperature adsorption and catalytic oxidation[J]. Applied Catalysis B-Environmental,2020,266:118674. doi: 10.1016/j.apcatb.2020.118674
    [84] Zhang C, Liu D H, Lv W, et al. A high-density graphene-sulfur assembly: A promising cathode for compact Li-S batteries[J]. Nanoscale,2015,7(13):5592-5597. doi: 10.1039/C4NR06863G
    [85] Liu D H, Zhang C, Xu Z, et al. H2S + SO2 produces water-dispersed sulfur nanoparticles for lithium-sulfur batteries[J]. Nano Energy,2017,41:665-673. doi: 10.1016/j.nanoen.2017.10.020
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1011
  • HTML全文浏览量:  650
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-06-11
  • 网络出版日期:  2022-06-17
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回