留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-performance Zn microbattteries based on a NiCo-LDH@ITO nanowire/carbon cloth composite

LI Xi-juan LIU Guo WU Qing-feng WANG Xu-kun SUI Xin-yi WANG Xin-ge FAN Zi-ye XIE Er-qing ZHANG Zhen-xing

李喜娟, 刘国, 吴青峰, 王旭坤, 隋心翼, 王鑫格, 范紫烨, 谢二庆, 张振兴. 基于镍钴层状双氢氧化物生长在氧化铟锡纳米线和炭布复合物上的高性能微型锌电池. 新型炭材料(中英文), 2022, 37(5): 968-977. doi: 10.1016/S1872-5805(22)60629-2
引用本文: 李喜娟, 刘国, 吴青峰, 王旭坤, 隋心翼, 王鑫格, 范紫烨, 谢二庆, 张振兴. 基于镍钴层状双氢氧化物生长在氧化铟锡纳米线和炭布复合物上的高性能微型锌电池. 新型炭材料(中英文), 2022, 37(5): 968-977. doi: 10.1016/S1872-5805(22)60629-2
LI Xi-juan, LIU Guo, WU Qing-feng, WANG Xu-kun, SUI Xin-yi, WANG Xin-ge, FAN Zi-ye, XIE Er-qing, ZHANG Zhen-xing. High-performance Zn microbattteries based on a NiCo-LDH@ITO nanowire/carbon cloth composite. New Carbon Mater., 2022, 37(5): 968-977. doi: 10.1016/S1872-5805(22)60629-2
Citation: LI Xi-juan, LIU Guo, WU Qing-feng, WANG Xu-kun, SUI Xin-yi, WANG Xin-ge, FAN Zi-ye, XIE Er-qing, ZHANG Zhen-xing. High-performance Zn microbattteries based on a NiCo-LDH@ITO nanowire/carbon cloth composite. New Carbon Mater., 2022, 37(5): 968-977. doi: 10.1016/S1872-5805(22)60629-2

基于镍钴层状双氢氧化物生长在氧化铟锡纳米线和炭布复合物上的高性能微型锌电池

doi: 10.1016/S1872-5805(22)60629-2
基金项目: 国家自然基金(51972154),甘肃省自然科学基金(20JR5RA244)
详细信息
    通讯作者:

    张振兴,教授. E-mail:zhangzx@lzu.edu.cn

  • 中图分类号: TB33

High-performance Zn microbattteries based on a NiCo-LDH@ITO nanowire/carbon cloth composite

Funds: This work was supported by National Natural Science Foundation of China (51972154), and Natural Science Foundation of Gansu Province (20JR5RA244).
More Information
  • 摘要: 人类需求推动了微型储能器件的快速发展,开发高性能、绿色和安全的小型化电子器件势在必行。近年来,平面叉指型可充电锌微电池(MB)因其易于串并联集成、灵活性和可去除传统隔膜而受到广泛关注。本文使用激光蚀刻技术合成了一种水基高安全性的负极Zn、正极NiCo-LDH@ITO NWs@CC的微型锌电池。由于使用高导电性的ITO NWs@CC集流体,基于锌箔负极和NiCo-LDH正极的叉指型微型电池表现出优异的性能。平面叉指微型电池在碱性水系电解质中、电流密度1 mA cm−2 下具有453.5 mAh g−1(对应于0.56 mAh cm−2)的高比容量。值得注意的是,微型锌电池表现出优异的能量密度(798.4 μWh cm−2,对应于649.9 Wh kg−1)和功率密度(4.1 mW cm−2,对应于 3282.7 mW kg− 1)。微型电池也表现出非常好的长期循环稳定性(在5 mA cm−2 下经4 000次循环后容量保持率为216%)。此外,串并联测试进一步表明微型电池良好的一致性。
  • FIG. 1820.  FIG. 1820.

    FIG. 1820..  FIG. 1820.

    Figure  1.  Schematical illustration of the fabrication processes of Zn//NiCo-LDH@ITO NWs@CC MBs.

    Figure  2.  XRD patterns of (a) CC and ITO NWs@CC, (b) NiCo-LDH@ITO NWs@CC. XPS survey spectra of (c) CC and ITO NWs@CC, (d) NiCo-LDH@ITO NWs@CC. XPS fine spectra of (e) Ni2p, (f) Co2p of the NiCo-LDH@ITO NWs@CC.

    Figure  3.  SEM images of (a) CC, (b) ITO NWs@CC, (c) NiCo-LDH@ITO NWs@CC. (d-e) TEM and (f) HRTEM images, (g) HAADF-STEM, (h-j) STEM-EDS elemental mapping images of NiCo-LDH@ITO NWs@CC composite.

    Figure  4.  The electrochemical behavior of the Zn//NiCo-LDH@ITO NWs@CC MBs: (a) CV profiles from 1 to 10 mV s−1. (b) Linear fitting of log (current) versus log (scan rate) at oxidation peaks. (c) Normalized contribution ratio of diffusion control and capacitance at various scan rates. (d) Charge/discharge profiles from 1 to 3 mA cm−2. (e) Rate performance and (f) Ragone plot. (g) CV and (h) GCD curves of 2 ZMBs in parallel and series. (i) Charge curve of two ZMBs in series at 3 mA cm−2 (inset: digital photo of two ZMBs in series lighting up 36 different parallel LEDs).

    Figure  5.  Cycling stability of Zn//NiCo-LDH@ITO NWs@CC MBs: (a) 1 mA cm−2, (b) 5 mA cm−2. (c) Charge-discharge curves of 1st, 1 000th, 2 000th, 3 000th, and 4 000th cycles at 5 mA cm−2. (d) GCD curve of the cycling process at 5 mA cm−2 (inset: charge-discharge curve (Ⅰ) from 210 to 220 h and (Ⅱ) from 390 to 400 h). (e-h) SEM images of the cathode after 4000 cycles.

  • [1] Y Chen, M Guo, L Xu, et al. In-situ selective surface engineering of graphene micro-supercapacitor chips[J]. Nano Res,2021,15(2):1492-1499. doi: 10.1007/s12274-021-3693-4
    [2] L Chi, S Zheng, J Ma, et al. 1.6 V high-voltage aqueous symmetric micro-pseudocapacitors based on two-dimensional polypyrrole/graphene nanosheets[J]. Carbon,2022,194:240-247. doi: 10.1016/j.carbon.2022.03.057
    [3] Y Zhang, S Zheng, F Zhou, et al. Multi-layer printable lithium ion micro-batteries with remarkable areal energy density and flexibility for wearable smart electronics[J]. Small,2022,18(5):e2104506-e2104513. doi: 10.1002/smll.202104506
    [4] C Meng, F Zhou, H Liu, et al. Water-in-salt ambipolar redox electrolyte extraordinarily boosting high pseudocapacitive performance of micro-supercapacitors[J]. ACS Energy Lett,2022,7(5):1706-1711. doi: 10.1021/acsenergylett.2c00329
    [5] W Lai, Y Wang, Z Lei, et al. High performance, environmentally benign and integratable Zn//MnO2microbatteries[J]. J Mater Chem A,2018,6(9):3933-3940. doi: 10.1039/C7TA10936A
    [6] A Toor, A Wen, F Maksimovic, et al. Stencil-printed lithium-ion micro batteries for IoT applications[J]. Nano Energy,2021,82:105666-105673. doi: 10.1016/j.nanoen.2020.105666
    [7] S Y Lee. Scalable and safer printed Zn//MnO2 planar micro-batteries for smart electronics[J]. Natl Sci Rev,2020,7(1):5-6. doi: 10.1093/nsr/nwz092
    [8] K A Qu, W Chen, J Guo, et al. A mini-review on preparation of functional composite fibers and their based devices[J]. Coatings,2022,12(4):473-484. doi: 10.3390/coatings12040473
    [9] S Zheng, X Shi, P Das, et al. The road towards planar microbatteries and micro-supercapacitors: From 2D to 3D device geometries[J]. Adv Mater,2019,31(50):e1900583-e1900606. doi: 10.1002/adma.201900583
    [10] Y Ren, F Meng, S Zhang, et al. CNT@MnO2 composite ink toward a flexible 3D printed micro‐zinc‐ion battery[J]. Carbon Energy,2022,4(3):446-457. doi: 10.1002/cey2.177
    [11] J F M Oudenhoven, R J M Vullers, R Schaijk. A review of the present situation and future developments of micro-batteries for wireless autonomous sensor systems[J]. Int J Energy Res,2012,36(12):1139-1150. doi: 10.1002/er.2949
    [12] J Koo, S B Kim, Y S Choi, et al. Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion[J]. Sci Adv,2020,6(35):eabb1093. doi: 10.1126/sciadv.abb1093
    [13] C Zhang, Z Peng, C Huang, et al. High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems[J]. Nano Energy,2021,81:105609-105622. doi: 10.1016/j.nanoen.2020.105609
    [14] E Sardini, M Serpelloni. Self-powered wireless sensor for air temperature and velocity measurements with energy harvesting capability[J]. IEEE Trans Instrum Meas,2011,60(5):1838-1844. doi: 10.1109/TIM.2010.2089090
    [15] Z L Wang, W Wu. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems[J]. Angew Chem Int Ed,2012,51(47):11700-21. doi: 10.1002/anie.201201656
    [16] S Zheng, J Ma, K Fang, et al. High‐voltage potassium ion micro‐supercapacitors with extraordinary volumetric energy density for wearable pressure sensor system[J]. Adv Energy Mater,2021,11(17):2003835-2003843. doi: 10.1002/aenm.202003835
    [17] K Sun, T S Wei, B Y Ahn, et al. 3D printing of interdigitated Li-ion microbattery architectures[J]. Adv Mater,2013,25(33):4539-43. doi: 10.1002/adma.201301036
    [18] X Gao, H Zhou, S Li, et al. The fast-charging properties of micro lithium-ion batteries for smart devices[J]. J Colloid Interface Sci,2022,615:141-150. doi: 10.1016/j.jcis.2022.01.105
    [19] Z Tian, Z Sun, Y Shao, et al. Ultrafast rechargeable Zn micro-batteries endowing a wearable solar charging system with high overall efficiency[J]. Energy Environ Sci,2021,14(3):1602-1611. doi: 10.1039/D0EE03623D
    [20] H Wang, R Guo, H Li, et al. 2D metal patterns transformed from 3D printed stamps for flexible Zn//MnO2 in-plane micro-batteries[J]. Chem Eng J,2022,429:132196-132203. doi: 10.1016/j.cej.2021.132196
    [21] Z Hao, L Xu, Q Liu, et al. On‐chip Ni–Zn microbattery based on hierarchical ordered porous Ni@Ni(OH)2 microelectrode with ultrafast ion and electron transport kinetics[J]. Adv Funct Mater,2019,29(16):1808470-1808478. doi: 10.1002/adfm.201808470
    [22] X Wang, S Zheng, F Zhou, et al. Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety[J]. Natl Sci Rev,2020,7(1):64-72. doi: 10.1093/nsr/nwz070
    [23] R Li, L Li, R Jia, et al. A flexible concentric circle structured zinc‐ion micro‐battery with electrodeposited electrodes[J]. Small Methods,2020,4(9):2000363-2000371. doi: 10.1002/smtd.202000363
    [24] M Yan, P He, Y Chen, et al. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries[J]. Adv Mater,2018,30(1):1703725-1703730. doi: 10.1002/adma.201703725
    [25] B Yin, S Zhang, K Ke, et al. Binder-free V2O5/CNT paper electrode for high rate performance zinc ion battery[J]. Nanoscale,2019,11(42):19723-19728. doi: 10.1039/C9NR07458A
    [26] C Liu, X Wang, F Xie, et al. Fabrication of Sm-doped porous In2O3 nanotubes and their excellent formaldehyde-sensing properties[J]. J Mater Sci: Mater Electron,2016,27(9):9870-9876. doi: 10.1007/s10854-016-5055-7
    [27] X Han, J Li, J Lu, et al. High mass-loading NiCo-LDH nanosheet arrays grown on carbon cloth by electrodeposition for excellent electrochemical energy storage[J]. Nano Energy,2021,86:106079-106088. doi: 10.1016/j.nanoen.2021.106079
    [28] X Wang, J Hu, W Liu, et al. Ni–Zn binary system hydroxide, oxide and sulfide materials: Synthesis and high supercapacitor performance[J]. J Mater Chem A,2015,3(46):23333-23344. doi: 10.1039/C5TA07169K
    [29] R Ramachandran, Y Lan, Z X Xu, et al. Construction of NiCo-layered double hydroxide microspheres from Ni-MOFs for high-performance asymmetric supercapacitors[J]. ACS Appl Energy Mater,2020,3(7):6633-6643. doi: 10.1021/acsaem.0c00790
    [30] X Gao, Z Jia, B Wang, et al. Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber[J]. Chem Eng J,2021,419:130019-130030. doi: 10.1016/j.cej.2021.130019
    [31] H Chen, Z Shen, Z Pan, et al. Hierarchical micro-nano sheet arrays of nickel-cobalt double hydroxides for high-rate Ni-Zn batteries[J]. Adv Sci (Weinh),2019,6(8):1802002-1802011. doi: 10.1002/advs.201802002
    [32] C Cao, X Xiang, H Zhu. High-density, uniform gallium nitride nanorods grown on Au-coated silicon substrate[J]. J Cryst Growth,2005,273(3-4):375-380. doi: 10.1016/j.jcrysgro.2004.09.050
    [33] M C Johnson, S Aloni, D E McCready, et al. Controlled vapor-liquid-solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport[J]. Cryst Growth Des,2006,6(8):1936-1941. doi: 10.1021/cg050524g
    [34] O Yaglioglu, A Cao, A J Hart, et al. Wide range control of microstructure and mechanical properties of carbon nanotube forests: A comparison between fixed and floating catalyst CVD techniques[J]. Adv Funct Mater,2012,22(23):5028-5037. doi: 10.1002/adfm.201200852
    [35] V Augustyn, J Come, M A Lowe, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nat Mater,2013,12(6):518-22. doi: 10.1038/nmat3601
    [36] H S Kim, J B Cook, H Lin, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x[J]. Nat Mater,2017,16(4):454-460. doi: 10.1038/nmat4810
    [37] M Li, W Liu, K Jiang, et al. In-situ annealed Ti3C2Tx MXene based all-solid-state flexible Zn-Ion hybrid micro supercapacitor array with enhanced stability[J]. Nanomicro Lett,2021,13(1):100-110. doi: 10.1007/s40820-021-00634-2
    [38] P Zhang, Y Li, G Wang, et al. Zn-Ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability[J]. Adv Mater,2019,31(3):e1806005-e1806010. doi: 10.1002/adma.201806005
  • supporting information20220133-Zzx.pdf
  • 加载中
图(6)
计量
  • 文章访问数:  891
  • HTML全文浏览量:  495
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-14
  • 修回日期:  2022-07-23
  • 网络出版日期:  2022-07-26
  • 刊出日期:  2022-10-01

目录

    /

    返回文章
    返回