留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A high-rate and ultrastable anode for lithium ion capacitors produced by modifying hard carbon with both surface oxidation and intercalation

ZHANG Lu-yao WANG He QIN Nan ZHENG Jun-sheng ZHAO Ji-gang

张璐瑶, 王赫, 秦楠, 郑俊生, 赵基钢. 表面氧化和插层改性硬碳负极锂离子电容器. 新型炭材料(中英文), 2022, 37(5): 1000-1010. doi: 10.1016/S1872-5805(22)60632-2
引用本文: 张璐瑶, 王赫, 秦楠, 郑俊生, 赵基钢. 表面氧化和插层改性硬碳负极锂离子电容器. 新型炭材料(中英文), 2022, 37(5): 1000-1010. doi: 10.1016/S1872-5805(22)60632-2
ZHANG Lu-yao, WANG He, QIN Nan, ZHENG Jun-sheng, ZHAO Ji-gang. A high-rate and ultrastable anode for lithium ion capacitors produced by modifying hard carbon with both surface oxidation and intercalation. New Carbon Mater., 2022, 37(5): 1000-1010. doi: 10.1016/S1872-5805(22)60632-2
Citation: ZHANG Lu-yao, WANG He, QIN Nan, ZHENG Jun-sheng, ZHAO Ji-gang. A high-rate and ultrastable anode for lithium ion capacitors produced by modifying hard carbon with both surface oxidation and intercalation. New Carbon Mater., 2022, 37(5): 1000-1010. doi: 10.1016/S1872-5805(22)60632-2

表面氧化和插层改性硬碳负极锂离子电容器

doi: 10.1016/S1872-5805(22)60632-2
基金项目: 国家自然科学基金(51777140);科技部科技支撑计划项目(2015BAG06B00);同济大学中央高校基本科研基金(22120180519)
详细信息
    通讯作者:

    郑俊生,副研究员. E-mail:jszheng@tongji.edu.cn

  • 中图分类号: TB33

A high-rate and ultrastable anode for lithium ion capacitors produced by modifying hard carbon with both surface oxidation and intercalation

Funds: The authors acknowledge the financial support from the National Natural Science Foundation of China (51777140), Science and Technology Support Project of Ministry of Science and Technology (2015BAG06B00), and Fundamental Research Funds for the Central Universities at Tongji University (22120180519)
More Information
  • 摘要: 由于锂离子电容器正负极材料的储能机理不同,正极材料对其功率密度和倍率性能有很大限制。硬炭是一种很有前景的锂离子电容器负极材料,对炭材料进行改性是提高锂离子电容器电化学性能的重要手段之一。本研究采用氧化插层法制备的硬炭插层复合材料(ZnCl2―OHC),0.05 A·g−1电流密度下半电池可逆容量为257.4 mAh·g−1。ZnCl2―OHC作负极、活性炭作正极的全电池容量保持可达43.3%,比未经处理硬炭作负极的全电池提高了2倍以上,1 A·g−1电流密度下充放电5 000次后容量保持率约为98.4%。因此,通过硬炭的表面氧化和插层改性可以作为未来提升锂离子电容器负极性能的一种途径。
  • FIG. 1823.  FIG. 1823.

    FIG. 1823..  FIG. 1823.

    Figure  1.  SEM images of (a, b) untreated hard carbon, (c, d) HC without ultrasound treatment and (e, f) OHC with ultrasound treatment

    Figure  2.  SEM images of (a) untreated hard carbon, (b) intercalated hard carbon (ZnCl2-HC) at 300 °C , (c) ZnCl2-HC at 400 °C, (d) ZnCl2-HC at 500 °C and (e) their XRD patterns

    Figure  3.  SEM images of different hard carbon materials, (a) HC, (b) OHC, (c) ZnCl2-HC, (d) ZnCl2-OHC and (e) XRD patterns of hard carbons treated by different means

    Figure  4.  N2 sorption isotherms of (a) HC, (b) OHC, (c) ZnCl2-HC and (d) ZnCl2-OHC

    Figure  5.  Raman spectra of hard carbon samplels by different methods

    Figure  6.  (a) XPS survey spectra of HC and ZnCl2-OHC, and the high resolution XPS spectra of (b) C1s, (c) Zn2p and (d) Cl2p of ZnCl2-OHC

    Figure  7.  Half-cell rate capability of the different hard carbon electrodes.

    Figure  8.  (a-b) Half-cell cycling performance and (c-d) charge/discharge curves of the different hard carbon electrodes

    Figure  9.  CV curves of (a)HC, (b)OHC, (c)ZnCl2-HC and (d)ZnCl2-OHC at different sweep speeds

    Figure  10.  (a) Rate capability and (b) cycling performance of the different LICs

    Table  1.   Pore structure parameters of hard carbon samples before and after treatment

    ComponentSpecific surface area (m2·g−1)
    SBETSLANGUIR
    HC2.286.29
    OHC11.5830.53
    ZnCl2-HC8.3122.39
    ZnCl2-OHC47.91120.66
    下载: 导出CSV

    Table  2.   Analysis of elements on the surface of ZnCl2-OHC

    NameStart BE (eV)Peak BE (eV)End BE (eV)Height CPSAtomic
    C1s297.98283.47279.1832914.6283.75%
    Cl2p210.03197.4190.131095.692.14%
    O1s544.98531.39525.183586.4512.73%
    Zn2p1052.031021.111015.134324.721.38%
    下载: 导出CSV
  • [1] Cao W J, Shih J, Zheng J P, et al. Development and characterization of Li-ion capacitor pouch cells[J]. Journal of Power Sources,2014,257:388-393. doi: 10.1016/j.jpowsour.2014.01.087
    [2] Zheng J, Xing G, Zhang L, et al. A minireview on high‐performance anodes for lithium‐ion capacitors[J]. Batteries & Supercaps,2021,4(6):897-908.
    [3] Jin L M, Guo X, Shen C, et al. A universal matching approach for high power-density and high cycling-stability lithium ion capacitor[J]. Journal of Power Sources,2019,441:227211. doi: 10.1016/j.jpowsour.2019.227211
    [4] Jin L M, Guo X, Gong R Q, et al. Target-oriented electrode constructions toward ultra-fast and ultra-stable all-graphene lithium ion capacitors[J]. Energy Storage Materials,2019,23:409-417. doi: 10.1016/j.ensm.2019.04.027
    [5] Guo X, Gong R Q, Qin N, et al. The influence of electrode matching on capacity decaying of hybrid lithium ion capacitor[J]. Journal of Electroanalytical Chemistry,2019,845:84-91. doi: 10.1016/j.jelechem.2019.05.046
    [6] Shellikeri A, Yturriaga S, Zheng J S, et al. Hybrid lithium-ion capacitor with LiFePO4/AC composite cathode: Long term cycle life study, rate effect and charge sharing analysis[J]. Journal of Power Sources,2018,392:285-295. doi: 10.1016/j.jpowsour.2018.05.002
    [7] Li B, Zheng J, Zhang H, et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors[J]. Advanced Materials,2018,30(17):1705670. doi: 10.1002/adma.201705670
    [8] Jin L M, Zheng J S, Wu Q, et al. Exploiting a hybrid lithium ion power source with a high energy density over 30 Wh kg-1[J]. Material Today Energy,2018,7:51-57. doi: 10.1016/j.mtener.2017.12.003
    [9] Piedboeuf M L C, Job N, Aqil A, et al. Understanding the influence of surface oxygen groups on the electrochemical behavior of porous carbons as anodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2020,12(32):36054-36065.
    [10] Fu R S, Chang Z Z, Shen C X, et al. Surface oxo-functionalized hard carbon spheres enabled superior high-rate capability and long-cycle stability for Li-ion storage[J]. Electrochimica Acta,2018,260:430-438. doi: 10.1016/j.electacta.2017.12.043
    [11] An J C, Lee E J, Hong I. Preparation of the spheroidized graphite-derived multi-layered graphene via GIC (graphite intercalation compound) method[J]. Journal of Industrial and Engineering Chemistry,2017,47:56-61. doi: 10.1016/j.jiec.2016.12.017
    [12] Park C M, Jo Y N, Park J W, et al. Anodic performances of surface-treated natural graphite for lithium ion capacitors[J]. Bulletin of the Korean Chemical Society,2014,35(9):2630-2634. doi: 10.5012/bkcs.2014.35.9.2630
    [13] Wang F, Yi J, Wang Y G, et al. Graphite intercalation compounds (GICs): A new type of promising anode material for lithium-ion batteries[J]. Advanced Energy Materials,2014,4(2):1300600. doi: 10.1002/aenm.201300600
    [14] Wang F, Li W, Hou M, et al. Sandwich-like Cr2O3–graphite intercalation composites as high-stability anode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A,2015,3(4):1703-1708. doi: 10.1039/C4TA05072J
    [15] Sun Y L, Han F, Zhang C Z, et al. FeCl3 intercalated microcrystalline graphite enables high volumetric capacity and good cycle stability for lithium-ion batteries[J]. Energy Technol-Ger,2019,7(4):1-20.
    [16] Lv S X, Zhang X G, Zhang P X, et al. One-step fabrication of nanosized LiFePO4/expanded graphite composites with a particle growth inhibitor and enhanced electrochemical performance of aqueous Li-ion capacitors[J]. RSC Advances,2019,9(25):14407-14416. doi: 10.1039/C9RA02248A
    [17] Bin X, Chen J, Cao H, et al. Preparation and structural investigation of CuCl2 graphite intercalation compounds[J]. Acta Geologica Sinica-English Edition,2008,82(5):1056-1060.
    [18] Zhang C Z, Ma J M, Han F, et al. Strong anchoring effect of ferric chloride-graphite intercalation compounds (FeCl3-GICs) with tailored epoxy groups for high-capacity and stable lithium storage[J]. Journal of Materials Chemistry A,2018,6(37):17982-17993. doi: 10.1039/C8TA06670A
    [19] Ye J C, Zang J, Tian Z W, et al. Sulfur and nitrogen co-doped hollow carbon spheres for sodium-ion batteries with superior cyclic and rate performance[J]. Journal of Materials Chemistry A,2016,4(34):13223-13227. doi: 10.1039/C6TA04592H
    [20] Odziomek M, Chaput F, Rutkowska A, et al. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries[J]. Nature Communication,2017,8:15636. doi: 10.1038/ncomms15636
    [21] Sun N, Guan Z, Liu Y, et al. Extended “adsorption–insertion” model: A new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials,2019,9(32):1901351. doi: 10.1002/aenm.201901351
    [22] Uvarov V, Popov I. Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials[J]. Materials Characterization,2013,85:111-123. doi: 10.1016/j.matchar.2013.09.002
    [23] Dysart A D, Phuah X L, Shrestha L K, et al. Room and elevated temperature lithium-ion storage in structurally submicron carbon spheres with mechanistic[J]. Carbon,2018,134:334-344. doi: 10.1016/j.carbon.2018.01.024
    [24] Li B, Xiao Z J, Chen M, et al. Rice husk-derived hybrid lithium-ion capacitors with ultra-high energy[J]. Journal of Materials Chemistry A,2017,5(46):24502-24507. doi: 10.1039/C7TA07088H
    [25] Fang Q, Zhou X, Deng W, et al. Nitrogen-doped graphene nanoscroll foam with high diffusion rate and binding affinity for removal of organic pollutants[J]. Small,2017,13(14):1603779. doi: 10.1002/smll.201603779
    [26] Yin L, Feng J L, Zhang X H, et al. Advanced sodium-ion pseudocapacitor performance of oxygen-implanted hard carbon derived from carbon spheres[J]. Journal of Materials Science,2019,54(5):4124-4134. doi: 10.1007/s10853-018-3111-9
    [27] Al Haj Y, Balamurugan J, Kim N H, et al. Nitrogen-doped graphene encapsulated cobalt iron sulfide as an advanced electrode for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A,2019,7(8):3941-3952. doi: 10.1039/C8TA12396A
    [28] Li D, Shi J, Liu H L, et al. T-Nb2O5 embedded carbon nanosheets with superior reversibility and rate capability as an anode for high energy Li-ion capacitors[J]. Sustainable Energy & Fuels,2019,3(4):1055-1065.
    [29] Yang C, Sun M, Zhang L, et al. ZnFe2O4@carbon core-shell nanoparticles encapsulated in reduced graphene oxide for high-performance Li-ion hybrid supercapacitors[J]. ACS Applied Materials Interfaces,2019,11(16):14713-14721. doi: 10.1021/acsami.8b20305
    [30] Huang S J, Yang L W, Gao M, et al. Free-standing 3D composite of CoO nanocrystals anchored on carbon nanotubes as high-power anodes in Li-ion hybrid supercapacitors[J]. Journal of Power Sources,2019,437:226934. doi: 10.1016/j.jpowsour.2019.226934
    [31] Jin L M, Shen C, Wu Q, et al. Pre-lithiation strategies for next-generation practical lithium-ion batteries [J]. Advanced Science, 2021, 8(12): 2005031.
    [32] Jin L M, Yuan J M, Shellikeri A, et al. An overview on design parameters of practical lithium-ion capacitors[J]. Batteries & Supercaps,2021,4(5):749-757.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  614
  • HTML全文浏览量:  274
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-30
  • 修回日期:  2022-07-25
  • 网络出版日期:  2022-07-28
  • 刊出日期:  2022-10-01

目录

    /

    返回文章
    返回