留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Self-healing polymer binders for the Si and Si/carbon anodes of lithium-ion batteries

WU Shuai DI Fang ZHENG Jin-gang ZHAO Hong-wei ZHANG Han LI Li-xiang GENG Xin SUN Cheng-guo YANG Hai-ming ZHOU Wei-min JU Dong-ying AN Bai-gang

武帅, 狄方, 郑金刚, 赵宏伟, 张涵, 李莉香, 耿新, 孙呈郭, 杨海明, 周卫民, 巨东英, 安百钢. 锂离子电池硅(/碳)负极自修复聚合物黏合剂研究进展. 新型炭材料(中英文), 2022, 37(5): 802-826. doi: 10.1016/S1872-5805(22)60638-3
引用本文: 武帅, 狄方, 郑金刚, 赵宏伟, 张涵, 李莉香, 耿新, 孙呈郭, 杨海明, 周卫民, 巨东英, 安百钢. 锂离子电池硅(/碳)负极自修复聚合物黏合剂研究进展. 新型炭材料(中英文), 2022, 37(5): 802-826. doi: 10.1016/S1872-5805(22)60638-3
WU Shuai, DI Fang, ZHENG Jin-gang, ZHAO Hong-wei, ZHANG Han, LI Li-xiang, GENG Xin, SUN Cheng-guo, YANG Hai-ming, ZHOU Wei-min, JU Dong-ying, AN Bai-gang. Self-healing polymer binders for the Si and Si/carbon anodes of lithium-ion batteries. New Carbon Mater., 2022, 37(5): 802-826. doi: 10.1016/S1872-5805(22)60638-3
Citation: WU Shuai, DI Fang, ZHENG Jin-gang, ZHAO Hong-wei, ZHANG Han, LI Li-xiang, GENG Xin, SUN Cheng-guo, YANG Hai-ming, ZHOU Wei-min, JU Dong-ying, AN Bai-gang. Self-healing polymer binders for the Si and Si/carbon anodes of lithium-ion batteries. New Carbon Mater., 2022, 37(5): 802-826. doi: 10.1016/S1872-5805(22)60638-3

锂离子电池硅(/碳)负极自修复聚合物黏合剂研究进展

doi: 10.1016/S1872-5805(22)60638-3
基金项目: 国家自然科学基金项目 (51972156,51872131,51672117,51672118)
详细信息
    通讯作者:

    李莉香,教授. E-mail:lxli2005@126.com

    安百钢,教授. E-mail:bgan@ustl.edu.cn

  • 中图分类号: TB33

Self-healing polymer binders for the Si and Si/carbon anodes of lithium-ion batteries

Funds: Financial supports from National Natural Science Foundation of China (No. 51972156, 51872131, 51672117, 51672118) and Distinguished Professor of Liaoning Province (2017) are acknowledged
More Information
  • 摘要: 硅的高比容量使其成为开发先进锂离子电池倍具希望的负极材料。然而,低电导率、严重的体积效应和不稳定的固体电解质界面(SEI)等问题限制了Si负极在锂离子电池中的应用。尽管构建硅碳(Si/C)复合结构在提升Si负极的性能方面已展现优势,作为电极关键组成部分之一的黏合剂也显著影响电池的电化学性能。自修复聚合物黏合剂利用非共价键和可逆共价键自主修复Si体积变化而导致的内外部损伤以及电极微裂纹,有效提高锂离子电池的循环稳定性。自修复聚合物用于柔性锂金属电池的固态电解质,可以快速修复由于外力作用导致的固态电解质损伤和开裂,为柔性可穿戴电子产品的发展提供了广阔前景。本文综述了通过非共价键和可逆共价键交联或组装自修复聚合物黏合剂的合成、表征及其应用于Si(/C)负极的自修复机制,并简要总结了自修复聚合物在柔性锂电池固态电解质中的最新应用,进一步对应用于Si(/C)负极自修复聚合物黏合剂面临的技术挑战和设计要求进行了分析和展望。
  • FIG. 1811.  FIG. 1811.

    FIG. 1811..  FIG. 1811.

    Figure  1.  Three representative failure mechanisms of Si-based anodes: delamination, unstable SEI layer formation and pulverization[15]. Reprinted with permission by Royal Society of Chemistry.

    Figure  2.  (a) Size-dependent fracture of Si NPs by pulverization[18]. Reprinted with permission by American Chemical Society. (b) Schematic of preparation procedures of Si@C nanocomposites[20]. Reprinted with permission by Elsevier. (c) Schematic illustration of the fabrication process of the dual yolk-shell structure[25]. Reprinted with permission by Nature Research. (d) The surface modification mechanism of vinylene carbonate (VC) and lithium nitrate (LiNO3) as effective electrolyte additives[29]. Reprinted with permission by Elsevier. (e) Graphical illustration of the pre-lithiation process of the carbon-coated SiOx (c-SiOx) electrode[33]. Reprinted with permission by American Chemical Society. (f) Graphical representation of the proposed mechanism for two types of binders for Si anodes[38]. Reprinted with permission by Wiley-VCH.

    Figure  3.  (a) Schematic procedure for the fabrication of PDA/GO-Si. (b) SEM images of pristine Si electrode and PDA/GO-Si electrode before and after cycles[71]. Reprinted with permission by Elsevier. (c) Schematic illustration for the preparation of C-SiOx/C. (d) Schematic illustration of lithiation and delithiation of SiOx/C and C-SiOx/C. (e) SEM images of SiOx/C (top three) and C-SiOx/C anodes (bottom three) after 200 cycles in full-cells. (f) Cycling performance of Li//SiOx/C and Li|//C-SiOx/C at 0.2C. (g) Cycling performance and Coulombic efficiencies of SiOx/C// NCM622 and C-SiOx/C//NCM622 in full cells[72]. Reprinted with permission by Elsevier.

    Figure  4.  (a) Chemical structure of the SHP. Polymer backbones (magenta lines), hydrogen-bonding sites (light-blue and dark-blue boxes). (b) Structure of the self-healing Si MP electrode during electrochemical cycling. (c) The SHP/CB composite was coated on an inflatable balloon to mimic the volume and electrical conductivity changes of Si particles during cycles[74]. Reprinted with permission by Nature Research. (d) Schematic illustration of the affinity between the SHP and Si MPs due to the presence of the native oxide layer. (e) Schematic illustration comparing the freestanding design and a conventional electrode. (f) Capacity retention and Coulombic efficiencies of the freestanding Si SHP composite anode (red) and the coated Si SHP electrode (blue) over 100 cycles at C/10[75]. Reprinted with permission by Royal Society of Chemistry.

    Figure  5.  (a) Synthesis of the elastic SHP. (b) Cycling performance of the bare carbon electrode and the carbon/Si electrodes with different amounts of the SHP at a current density of 100 mA g−1[76]. Reprinted with permission by Wiley-VCH. (c) Synthesis of the bifunctional polyurethane (BFPU) polymer. Fabrication of the Si anodes with double-wrapped polyacrylic acid (PAA)–BFPU binder. (d) Cycling performance of the Si/PAA–BFPU (1∶2) electrode at a current density of 2 and 0.8 A g−1[78]. Reprinted with permission by Wiley-VCH.

    Figure  6.  Classification of chemical bonds, supramolecular interactions and their adhesion behaviors in Si anodes[15]. Reprinted with permission by Royal Society of Chemistry.

    Figure  7.  (a) Chemical structures of P(HEA-co-DMA) and their interaction with Si. (b) Cycling and rate performance of P(HEA-co-DMA)[86]. Reprinted with permission by Elsevier. (c) Schematic illustration of the lithiation/delithiation process of Si electrodes using PAA-GA polymer with reversible double hydrogen bonds as a binder. (d) SEM images of Si/PAA and Si/PAA-GA electrodes after 108 cycles at 0.2 C[88]. Reprinted with permission by Elsevier.

    Figure  8.  (a) The schematic illustration of self-healing mechanism and self-healing test of PAA–UPy based hydrogel. (b) SEM images of Si electrodes with different binders before and after 110 cycles[90]. Reprinted with permission by Wiley-VHC. (c) Self-healing mechanism of UPy-PEG binder crosslinked via quadruple hydrogen bonds. (d) Cycling performance and Coulombic efficiency of UPy-PEG-Si-15[91]. Reprinted with permission by Elsevier Science INC. (e) Schematic illustration of the synthesis scheme and self-healing properties of CPAU. (f) Cross-sectional view of Si electrodes before and after cycling. (g) Schematic illustration of CPAU binder maintaining the integrity of the electrode materials[92]. Reprinted with permission by American Chemical Society.

    Figure  9.  (a) Molecular structure of PDBP polymer as a binder for Si anodes (left) and schematic illustration of Si-binder network configuration during cycling (right). (b) Raman spectra and mapping of Fe-PDBP prepared at pH 10 (magenta) and pH 5 (green). (c) Optical microscopy images of Fe-PDBP@pH10 based Si electrodes before and after self-healing process. (d) Cycling and rate performance of Si electrodes based on Fe-PDBP@pH10[96]. Reprinted with permission by American Chemical Society.

    Figure  10.  (a) Schematic illustration of the supramolecular network formed by crosslinking between CMC and PEGDE-Im-Zn2+ in situ on the Si/C composite. (b) Cross-sectional SEM images of Si/C electrodes. (c) Cycling performance of Si/C electrodes and the full-cells using SBR/CMC-PEG-Im-Zn2+ measured at 0.5 C along with their Coulombic efficiencies[56]. Reprinted with permission by Wiley.

    Figure  11.  (a) Formation of ionic bonds between the interface of PAA binder and Si NPs in Si composite anodes. (b) Cycling performance and Coulombic efficiency of Si-NH2/PAA composite anode at various current densities[99]. Reprinted with permission by Wiley-VHC. (c) The synthesis process of the self-healable polyelectrolyte binder. (d) Self-healing process of self-healable polyelectrolyte binder in lithiation and delithiation. (e) Self-healing process of A6D4-PA. (f) Cross-section view of Si/PAA and Si/A8D2-PA. (g) Cycling performance of the Si/A8D2-PA and SiO-graphite/A8D2-PA[100]. Reprinted with permission by Wiley-VHC.

    Figure  12.  (a) Schematic illustration of the adhesion mechanism of the xPEG-GCS binder in the Si electrode. (b) Self-healing tests of the xPEG-GCS-0.5 hydrogel after physical damage at room temperature. (c) Top-view images of the GCS and xPEG-GCS-0.5 based Si NP electrodes before and after 100 cycles. (d) Long-term cycling performance and rate performance[105]. Reprinted with permission by Elsevier.

    Figure  13.  (a) Schematic illustration of synthesis of the borate ester bond-based BC-g binder and its mechanism of action on Si electrodes. (b) Mechanical characterization of the nonlinear rheological response of BC-g hydrogel. (c) Long-term cycling performance of BC-g and guar electrodes at 1 C for 300 cycles and rate performance at various C-rates[106]. Reprinted with permission by Wiley-VCH. (d) Schematic representation of the SHP binder based on DA reaction. (e) Surface SEM images of Si electrodes with DA-PAA and conventional binders before and after 100 cycles[107]. Reprinted with permission by Pergamon-Elsevier Science Ltd.

    Figure  14.  (a) Synthetic approach for the six-arm DPIL-6. (b) Images of DPIL-6-SPE stretched after self-healing for 12 h. (c) Stress strain curves of DPIL-6-SPE at different repairing times. (d) Nyquist plots of DPIL-6-SPE after five breaking and self-healing cycles. (e) Cycling performance of LiFePO4 /DPIL-6-SPE/Li batteries at 0.1C at 60 °C[114]. Reprinted with permission by Elsevier Science SA. (f) The damage and self-healing photos of PEO@BPIL SPE at 60 °C. (g) Nyquist plots of PEO@BPIL SPE after five breaking and self-healing cycles. (h) The powering of LEDs with a PEO@BPIL SPE soft-packed lithium metal battery under different bending conditions[116]. Reprinted with permission by American Chemical Society.

    Figure  15.  (a) Schematic illustration of the configuration of the Li/Self-healing SPE/LiFePO4 cell and macromolecular structure of self-healing SPE. (b) Photos of self-healing SPE tretched after self-healing for 2 h. (c) Nyquist plots of self-healing SPE after five breaking/healing cycles. (d) Photos showing the soft-packed battery under bending and unbending[115]. Reprinted with permission by Royal Society of Chemistry.

  • [1] Liu J X, Wang J Q, Ni Y X, et al. Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries[J]. Materials Today,2021,43:132-165. doi: 10.1016/j.mattod.2020.10.028
    [2] Son J M, Oh S, Bae S H, et al. A pair of NiCo2O4 and V2O5 nanowires directly grown on carbon fabric for highly bendable lithium-ion batteries[J]. Advanced Energy Materials,2019,9(18):1900477. doi: 10.1002/aenm.201900477
    [3] Xie L J, Tang C, Bi Z H, et al. Hard carbon anodes for next-generation Li-ion batteries: review and perspective[J]. Advanced Energy Materials,2021,11(38):2101650. doi: 10.1002/aenm.202101650
    [4] Li N, Sun M Z, Hwang S, et al. Non-equilibrium insertion of lithium ions into graphite[J]. Journal of Materials Chemistry A,2021,9(20):12080-12086. doi: 10.1039/D1TA02836G
    [5] Li X, Wang X Y, Sun J. Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries[J]. New Carbon Materials,2021,36(1):106-114. doi: 10.1016/S1872-5805(21)60008-2
    [6] Jin X, Han Y H, Zhang Z F, et al. Mesoporous single-crystal lithium titanate enabling fast-vharging Li-ion batteries[J]. Advanced Materials,2022,34(18):2109356. doi: 10.1002/adma.202109356
    [7] Huang B, Pan Z F, Su X Y, et al. Tin-based materials as versatile anodes for alkali (earth)-ion batteries[J]. Journal of Power Sources,2018,395(15):41-59.
    [8] Zhu R Y, Wang Z H, Hu X J, et al. Silicon in hollow carbon nanospheres assembled microspheres cross-linked with N-doped carbon fibers toward a binder free, high performance, and flexible anode for lithium-ion batteries[J]. Advanced Functional Materials,2021,31(33):2101487. doi: 10.1002/adfm.202101487
    [9] Cui Q, Zhong Y, Lu P, et al. Recent advances in designing high‐capacity anode nanomaterials for Li‐ion batteries and their atomic‐scale storage mechanism studies[J]. Advanced Science,2018,5(7):1700902. doi: 10.1002/advs.201700902
    [10] Huang J, Dai Q, Cui C, et al. Cake-like porous Fe3O4@C nanocomposite as high-performance anode for Li-ion battery[J]. Journal of Electroanalytical Chemistry,2022:116508.
    [11] Bresser D, Hosoi K, Howell D, et al. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA[J]. Journal of Power Sources,2018,382(1):176-178.
    [12] Kim N, Chae S, Ma J, et al. Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes[J]. Nature Communications,2017,8(812):1-10.
    [13] Bitew Z, Tesemma M, Beyene Y, et al. Nano-structured silicon and silicon based composites as anode materials for lithium ion batteries: recent progress and perspectives[J]. Sustainable Energy & Fuels,2022,6(4):1014-1050.
    [14] Lee S W, McDowell M T, Choi J W, et al. Anomalous shape changes of silicon nanopillars by electrochemical lithiation[J]. Nano Letters,2011,11(7):3034-3039. doi: 10.1021/nl201787r
    [15] Kwon T W, Choi J W, Coskun A. The emerging era of supramolecular polymeric binders in silicon anodes[J]. Chemical Society Reviews,2018,47(6):2145-2164. doi: 10.1039/C7CS00858A
    [16] Jin Y, Zhu B, Lu Z D, et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery[J]. Advanced Energy Materials,2017,7(23):1700715. doi: 10.1002/aenm.201700715
    [17] Yan Z, Jiang J, Zhang Y, et al. Scalable and low-cost synthesis of porous silicon nanoparticles as high-performance lithium-ion battery anode[J]. Materials Today Nano,2022,18:100175. doi: 10.1016/j.mtnano.2022.100175
    [18] Liu X H, Zhong L, Huang S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. Acs Nano,2012,6(2):1522-1531. doi: 10.1021/nn204476h
    [19] Zong L Q, Jin Y, Liu C, et al. Precise perforation and scalable production of Si particles from low-grade sources for high-performance lithium ion battery anodes[J]. Nano Letters,2016,16(11):7210-7215. doi: 10.1021/acs.nanolett.6b03567
    [20] Du L L, Wu W, Luo C, et al. Lignin derived Si@C composite as a high performance anode material for lithium ion batteries[J]. Solid State Ionics,2018,319:77-82. doi: 10.1016/j.ssi.2018.01.039
    [21] Qi Z Y, Dai L Q, Wang Z F, et al. Optimizing the carbon coating to eliminate electrochemical interface polarization in a high performance silicon anode for use in a lithium-ion battery[J]. New Carbon Materials,2022,37(1):245-255. doi: 10.1016/S1872-5805(22)60580-8
    [22] Obrovac M N. Si-alloy negative electrodes for Li-ion batteries[J]. Current Opinion in Electrochemistry,2018,9:8-17. doi: 10.1016/j.coelec.2018.02.002
    [23] Rage B, Delbegue D, Louvain N, et al. Engineering of silicon core-shell structures for Li-ion anodes[J]. Chemistry A European Journal,2021,27(66):16275-16290. doi: 10.1002/chem.202102470
    [24] Jin H C, Sun Q, Wang J T, et al. Preparation and electrochemical properties of novel silicon-carbon composite anode materials with a core-shell structure[J]. New Carbon Materials,2021,36(2):390-398. doi: 10.1016/S1872-5805(21)60026-4
    [25] Yang L Y, Li H Z, Liu J, et al. Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries[J]. Scientific Reports,2015,5(1):10908. doi: 10.1038/srep10908
    [26] Son Y, Ma J, Kim N, et al. Quantification of pseudocapacitive contribution in nanocage-shaped silicon-carbon composite anode[J]. Advanced Energy Materials,2019,9(11):1803480. doi: 10.1002/aenm.201803480
    [27] Yang Z W, Qiu L, Zhang M K, et al. Carbon dioxide solid-phase embedding reaction of silicon-carbon nanoporous composites for lithium-ion batteries[J]. Chemical Engineering Journal,2021,423(1):130127.
    [28] Liu G P, Jiao T P, Cheng Y, et al. Interfacial enhancement of silicon-based anode by a lactam-type electrolyte additive[J]. Acs Applied Energy Materials,2021,4(9):10323-10332. doi: 10.1021/acsaem.1c02265
    [29] Yang Y Z, Yang Z, Xu Y S, et al. Synergistic effect of vinylene carbonate (VC) and LiNO3 as functional additives on interphase modulation for high performance SiO anodes[J]. Journal of Power Sources,2021,514(1):230595.
    [30] Xu C, Lindgren F, Philippe B, et al. Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive[J]. Chemistry of Materials,2015,27(7):2591-2599. doi: 10.1021/acs.chemmater.5b00339
    [31] Berhaut C L, Dominguez D Z, Tomasi D, et al. Prelithiation of silicon/graphite composite anodes: benefits and mechanisms for long-lasting Li-ion batteries[J]. Energy Storage Materials,2020,29:190-197. doi: 10.1016/j.ensm.2020.04.008
    [32] Shen Y F, Zhang J M, Pu Y F, et al. Effective chemical prelithiation strategy for building a silicon/sulfur Li-ion battery[J]. Acs Energy Letters,2019,4(7):1717-1724. doi: 10.1021/acsenergylett.9b00889
    [33] Kim H J, Choi S, Lee S J, et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells[J]. Nano Letters,2016,16(1):282-288. doi: 10.1021/acs.nanolett.5b03776
    [34] Kim S, Jeong Y K, Wang Y, et al. A "sticky" mucin-inspired DNA-polysaccharide binder for silicon and silicon-graphite blended anodes in lithium-ion batteries[J]. Advanced Materials,2018,30(26):1707594. doi: 10.1002/adma.201707594
    [35] Li S, Liu Y M, Zhang Y C, et al. A review of rational design and investigation of binders applied in silicon-based anodes for lithium-ion batteries[J]. Journal of Power Sources,2021,485(15):229331.
    [36] Kim W J, Kang J G, Kim D W. Blood clot-inspired viscoelastic fibrin gel: new aqueous binder for silicon anodes in lithium ion batteries[J]. Energy Storage Materials,2022,45:730-740. doi: 10.1016/j.ensm.2021.12.024
    [37] Kim J, Park Y K, Kim H, et al. Ambidextrous polymeric binder for silicon anodes in lithium-ion batteries[J]. Chemistry of Materials,2022,34(13):5791-5798. doi: 10.1021/acs.chemmater.2c00220
    [38] Kwon T W, Jeong Y K, Lee I, et al. Systematic molecular-level design of binders incorporating meldrum's acid for silicon anodes in lithium rechargeable batteries[J]. Advanced Materials,2014,26(47):7979-7985. doi: 10.1002/adma.201402950
    [39] Liu T F, Tong C J, Wang B, et al. Trifunctional electrode additive for high active material content and volumetric lithium-ion electrode densities[J]. Advanced Energy Materials,2019,9(10):1803390. doi: 10.1002/aenm.201803390
    [40] Chen H, Ling M, Hencz L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices[J]. Chemical Reviews,2018,118(18):8936-8982. doi: 10.1021/acs.chemrev.8b00241
    [41] Yang Y, Wu S, Zhang Y, et al. Towards efficient binders for silicon based lithium-ion battery anodes[J]. Chemical Engineering Journal,2021,406(15):126807.
    [42] Xu J, Ding C, Chen P, et al. Intrinsic self-healing polymers for advanced lithium-based batteries: Advances and strategies[J]. Applied Physics Reviews,2020,7(3):031304. doi: 10.1063/5.0008206
    [43] Zhang Y, Khanbareh H, Roscow J, et al. Self-healing of materials under high electrical stress[J]. Matter,2020,3(4):989-1008. doi: 10.1016/j.matt.2020.07.020
    [44] Kwon T W, Choi J W, Coskun A. Prospect for supramolecular chemistry in high-energy-density rechargeable batteries[J]. Joule,2019,3(3):662-682. doi: 10.1016/j.joule.2019.01.006
    [45] Yang Y, Urban M W. Self-healing of polymers via supramolecular chemistry[J]. Advanced Materials Interfaces,2018,5(17):1800384. doi: 10.1002/admi.201800384
    [46] Zhang X, Chen P, Zhao Y, et al. High-performance self-healing polyurethane binder based on aromatic disulfide bonds and hydrogen bonds for the sulfur cathode of lithium-sulfur batteries[J]. Industrial & Engineering Chemistry Research,2021,60(32):12011-12020.
    [47] Taynton P, Ni H G, Zhu C P, et al. Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks[J]. Advanced Materials,2016,28(15):2904-2909. doi: 10.1002/adma.201505245
    [48] Chen Y, Tang Z H, Zhang X H, et al. Covalently cross-linked elastomers with self-healing and malleable abilities enabled by boronic ester bonds[J]. Acs Applied Materials & Interfaces,2018,10(28):24224-24231.
    [49] Li J, Wang Y, Xie X, et al. A novel multi-functional binder based on double dynamic bonds for silicon anode of lithium-ion batteries[J]. Electrochimica Acta,2022,425:140620. doi: 10.1016/j.electacta.2022.140620
    [50] Chen L, Wang S, Guo Z, et al. Double dynamic bonds tough hydrogel with high self‐healing properties based on acylhydrazone bonds and borate bonds[J]. Polymers for Advanced Technologies,2022,33(8):2528-2541. doi: 10.1002/pat.5707
    [51] Wei Y Y, Ma X Y. The self-healing cross-linked polyurethane by Diels-Alder polymerization[J]. Advances in Polymer Technology,2018,37(6):1987-1993. doi: 10.1002/adv.21857
    [52] Deng L, Zheng Y, Zheng X, et al. Design criteria for silicon‐based anode binders in half and full cells[J]. Advanced Energy Materials,2022:2200850. doi: 10.1002/aenm.202200850
    [53] Ezeigwe E R, Dong L, Manjunatha R, et al. A review of self-healing electrode and electrolyte materials and their mitigating degradation of lithium batteries[J]. Nano Energy,2021,84:105907. doi: 10.1016/j.nanoen.2021.105907
    [54] Liu M, Chen P, Pan X, et al. Synergism of flame‐retardant, self‐healing, high‐conductive and polar to a multi‐functional binder for lithium‐sulfur batteries[J]. Advanced Functional Materials,2022:2205031. doi: 10.1002/adfm.202205031
    [55] Luo P, Lai P, Huang Y, et al. A highly stretchable and self‐healing composite binder based on the hydrogen‐bond network for silicon anodes in high‐energy‐density lithium‐ion batteries[J]. ChemElectroChem,2022,9(12):e202200155.
    [56] Kim J, Park K, Cho Y, et al. Zn2+-imidazole coordination crosslinks for elastic polymeric binders in high-capacity silicon electrodes[J]. Advanced Science,2021,8(9):2004290. doi: 10.1002/advs.202004290
    [57] Kim J, Choi J, Park K, et al. Host-guest interlocked complex binder for silicon-graphite composite electrodes in lithium ion batteries[J]. Advanced Energy Materials,2022,12(11):2103718. doi: 10.1002/aenm.202103718
    [58] Jeong Y K, Kwon T W, Lee I, et al. Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes[J]. Energy & Environmental Science,2015,8(4):1224-1230.
    [59] Kuo T C, Chiou C Y, Li C C, et al. In situ cross-linked poly(ether urethane) elastomer as a binder for high-performance Si anodes of lithium-ion batteries[J]. Electrochimica Acta,2019,327(10):135011.
    [60] Wang S Y, Urban M W. Self-healing polymers[J]. Nature Reviews Materials,2020,5(8):562-583. doi: 10.1038/s41578-020-0202-4
    [61] Luo W, Chen X Q, Xia Y, et al. Surface and interface engineering of silicon-based anode materials for lithium-ion batteries[J]. Advanced Energy Materials,2017,7(24):1701083. doi: 10.1002/aenm.201701083
    [62] Xu K, Liu X F, Guan K K, et al. Research progress on coating structure of silicon anode materials for lithium-ion batteries[J]. Chemsuschem,2021,14(23):5135-5160. doi: 10.1002/cssc.202101837
    [63] Uctepe A, Demir E, Tekin B, et al. Prompt microwave-assisted synthesis of carbon coated Si nanocomposites as anode for lithium-ion batteries[J]. Solid State Ionics,2020,354:115409. doi: 10.1016/j.ssi.2020.115409
    [64] Nava G, Schwan J, Boebinger M G, et al. Silicon-core-carbon-shell nanoparticles for lithium-ion batteries: rational comparison between amorphous and graphitic carbon coatings[J]. Nano Letters,2019,19(10):7236-7245. doi: 10.1021/acs.nanolett.9b02835
    [65] Liu S W, Xu W H, Ding C H, et al. Boosting electrochemical performance of electrospun silicon-based anode materials for lithium-ion battery by surface coating a second layer of carbon[J]. Applied Surface Science,2019,494:94-100. doi: 10.1016/j.apsusc.2019.07.193
    [66] Ding N W, Chen Y, Li R, et al. Pomegranate structured C@pSi/rGO composite as high performance anode materials of lithium-ion batteries[J]. Electrochimica Acta,2021,367:137491. doi: 10.1016/j.electacta.2020.137491
    [67] Huang H J, Rao P H, Choi W M. Carbon-coated silicon/crumpled graphene composite as anode material for lithium-ion batteries[J]. Curr Appl Phys,2019,19(12):1349-1354. doi: 10.1016/j.cap.2019.08.024
    [68] Wang K, Pei S E, He Z S, et al. Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium ion battery anodes[J]. Chemical Engineering Journal,2019,356:272-281. doi: 10.1016/j.cej.2018.09.027
    [69] Dou F, Shi L Y, Chen G R, et al. Silicon/carbon composite anode materials for lithium-ion batteries[J]. Electrochemical Energy Reviews,2019,2(1):149-198. doi: 10.1007/s41918-018-00028-w
    [70] Liu Z J, Guo P Q, Liu B L, et al. Carbon-coated Si nanoparticles/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode[J]. Applied Surface Science,2017,396:41-47. doi: 10.1016/j.apsusc.2016.11.045
    [71] Wu J, Tu W M, Zhang Y, et al. Poly-dopamine coated graphite oxide/silicon composite as anode of lithium ion batteries[J]. Powder Technology,2017,311:200-205. doi: 10.1016/j.powtec.2017.01.063
    [72] Li G, Huang L B, Yan M Y, et al. An integral interface with dynamically stable evolution on micron-sized SiOx particle anode[J]. Nano Energy,2020,74:104890. doi: 10.1016/j.nanoen.2020.104890
    [73] Ren W F, Li J T, Huang Z G, et al. Fabrication of Si nanoparticles@conductive carbon framework@polymer composite as high-areal-capacity anode of lithium-ion batteries[J]. Chemelectrochem,2018,5(21):3258-3265. doi: 10.1002/celc.201800834
    [74] Wang C, Wu H, Chen Z, et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries[J]. Nature Chemistry,2013,5(12):1042-1048. doi: 10.1038/nchem.1802
    [75] Kim D, Hyun S, Han S M. Freestanding silicon microparticle and self-healing polymer composite design for effective lithiation stress relaxation[J]. Journal of Materials Chemistry A,2018,6(24):11353-11361. doi: 10.1039/C7TA11269F
    [76] Sun Y M, Lopez J, Lee H W, et al. A stretchable graphitic carbon/Si anode enabled by conformal coating of a self-healing elastic polymer[J]. Advanced Materials,2016,28(12):2455-2461. doi: 10.1002/adma.201504723
    [77] Pramanik M, Tsujimoto Y, Malgras V, et al. Mesoporous iron phosphonate electrodes with crystalline frameworks for lithium-ion batteries[J]. Chemistry of Materials,2015,27(3):1082-1089. doi: 10.1021/cm5044045
    [78] Jiao X, Yin J, Xu X, et al. Highly energy-dissipative, fast self-healing binder for stable Si anode in lithium-ion batteries[J]. Advanced Functional Materials,2021,31(3):2005699. doi: 10.1002/adfm.202005699
    [79] Liu J, Li X, Yang X, et al. Recent advances in self‐healable intelligent materials enabled by supramolecular crosslinking design[J]. Advanced Intelligent Systems,2021,3(5):2000183. doi: 10.1002/aisy.202000183
    [80] Yang Y, Wu S, Zhang Y, et al. Towards efficient binders for silicon based lithium-ion battery anodes[J]. Chemical Engineering Journal,2021,406:126807. doi: 10.1016/j.cej.2020.126807
    [81] Webber M J, Appel E A, Meijer E W, et al. Supramolecular biomaterials[J]. Nature Materials,2016,15(1):13-26. doi: 10.1038/nmat4474
    [82] Herbst F, Dohler D, Michael P, et al. Self-healing polymers via supramolecular forces[J]. Macromol Rapid Commun,2013,34(3):203-220. doi: 10.1002/marc.201200675
    [83] Enke M, Dhler D, Bode S, et al. Intrinsic self-healing polymers based on supramolecular interactions: state of the art and future directions[J]. Springer International Publishing,2015,273:59-112.
    [84] Thangavel G, Tan M, Lee P S. Advances in self-healing supramolecular soft materials and nanocomposites[J]. Nano Convergence,2019,6(29):1-18.
    [85] Su Y, Feng X, Zheng R, et al. Binary network of conductive elastic polymer constraining nanosilicon for a high-performance lithium-ion battery[J]. ACS nano,2021,15(9):14570-14579. doi: 10.1021/acsnano.1c04240
    [86] Xu Z X, Yang J, Zhang T, et al. Silicon microparticle anodes with self-healing multiple network binder[J]. Joule,2018,2(5):950-961. doi: 10.1016/j.joule.2018.02.012
    [87] Cordier P, Tournilhac F, Soulie-Ziakovic C, et al. Self-healing and thermoreversible rubber from supramolecular assembly[J]. Nature,2008,451(7181):977-980. doi: 10.1038/nature06669
    [88] Li J J, Zhang G Z, Yang Y, et al. Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries[J]. Journal of Power Sources,2018,406:102-109. doi: 10.1016/j.jpowsour.2018.10.057
    [89] Pan Y Y, Gao S L, Sun F Y, et al. Polymer binders constructed through dynamic noncovalent bonds for high-capacity silicon-based anodes[J]. Chemistry A European Journal,2019,25(47):10976-10994. doi: 10.1002/chem.201900988
    [90] Zhang G Z, Yang Y, Chen Y H, et al. A quadruple-hydrogen-bonded supramolecular binder for high-performance silicon anodes in lithium-ion batteries[J]. Small,2018,14(29):1801189. doi: 10.1002/smll.201801189
    [91] Yang J F, Zhang L C, Zhang T, et al. Self-healing strategy for Si nanoparticles towards practical application as anode materials for Li-ion batteries[J]. Electrochemistry Communications,2018,87:22-26. doi: 10.1016/j.elecom.2017.12.023
    [92] Liu Z M, Fang C, He X, et al. In situ-formed novel elastic network binder for a silicon anode in lithium-ion batteries[J]. Acs Applied Materials & Interfaces,2021,13(39):46518-46525.
    [93] Kwon T, Jeong Y K, Deniz E, et al. Dynamic cross-linking of polymeric binders based on host-guest interactions for silicon anodes in lithium ion batteries[J]. Acs Nano,2015,9(11):11317-11324. doi: 10.1021/acsnano.5b05030
    [94] Luo Y R. Comprehensive Handbook of Chemical Bond Energies [M]. CRC press, 2007.
    [95] Li C H, Zuo J L. Self-healing polymers based on coordination bonds[J]. Advanced Materials,2020,32(27):1903762.
    [96] Jeong Y K, Choi J W. Mussel-inspired self-healing metallopolymers for silicon nanoparticle anodes[J]. Acs Nano,2019,13(7):8364-8373. doi: 10.1021/acsnano.9b03837
    [97] Varley R J, Shen S, Zwaag S V D. The effect of cluster plasticisation on the self healing behaviour of ionomers[J]. Polymer,2010,51(3):679-686. doi: 10.1016/j.polymer.2009.12.025
    [98] Kalista S J, Ward T C. Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers[J]. Journal of The Royal Society Interface,2007,4(13):405-411. doi: 10.1098/rsif.2006.0169
    [99] Kang S, Yang K, White S R, et al. Silicon composite electrodes with dynamic ionic bonding[J]. Advanced Energy Materials,2017,7(17):1700045. doi: 10.1002/aenm.201700045
    [100] Jin B Y, Wang D Y, Zhu J, et al. A self-healable polyelectrolyte binder for highly stabilized sulfur, silicon, and silicon oxides electrodes[J]. Advanced Functional Materials,2021,31(41):2104433. doi: 10.1002/adfm.202104433
    [101] Ding Z J, Yuan L, Guan Q B, et al. A reconfiguring and self-healing thermoset epoxy/chain-extended bismaleimide resin system with thermally dynamic covalent bonds[J]. Polymer,2018,147:170-182. doi: 10.1016/j.polymer.2018.06.008
    [102] Ren J, Dong X, Duan Y, et al. Synthesis and self‐healing investigation of waterborne polyurethane based on reversible covalent bond[J]. Journal of Applied Polymer Science,2022,139(20):52144. doi: 10.1002/app.52144
    [103] Liu H, Wu Q, Guan X, et al. Ionically conductive self-healing polymer binders with poly (ether-thioureas) segments for high-performance silicon anodes in lithium-ion batteries[J]. ACS Applied Energy Materials,2022,5(4):4934-4944. doi: 10.1021/acsaem.2c00329
    [104] Dahlke J, Zechel S, Hager M, et al. How to design a self‐healing polymer: general concepts of dynamic covalent bonds and their application for intrinsic healable materials[J]. Advanced Materials Interfaces,2018,5(17):1800051. doi: 10.1002/admi.201800051
    [105] Nam J, Jang W, Rajeev K K, et al. Ion-conductive self-healing polymer network based on reversible imine bonding for Si electrodes[J]. Journal of Power Sources,2021,499:229968. doi: 10.1016/j.jpowsour.2021.229968
    [106] Ryu J, Kim S, Kim J, et al. Room-temperature crosslinkable natural polymer binder for high-rate and stable silicon anodes[J]. Advanced Functional Materials,2020,30(9):1908433. doi: 10.1002/adfm.201908433
    [107] Rajeev K K, Nam J, Kim E, et al. A self-healable polymer binder for Si anodes based on reversible Diels-Alder chemistry[J]. Electrochimica Acta,2020,364:137311. doi: 10.1016/j.electacta.2020.137311
    [108] Mo P, Hu Z, Mo Z, et al. Fast self-healing and self-cleaning anticorrosion coating based on dynamic reversible imine and multiple hydrogen bonds[J]. ACS Applied Polymer Materials,2022,4(7):4709-4718.
    [109] Mai W, Yu Q, Han C, et al. Self-healing materials for energy-storage devices[J]. Advanced Functional Materials,2020,30(24):1909912. doi: 10.1002/adfm.201909912
    [110] Röttger M, Domenech T, Weegen R V D, et al. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis[J]. Science,2017,356(6333):62-65. doi: 10.1126/science.aah5281
    [111] Cash J J, Kubo T, Bapat A P, et al. Room-temperature self-healing polymers based on dynamic-covalent boronic esters[J]. Macromolecules,2015,48(7):2098-2106. doi: 10.1021/acs.macromol.5b00210
    [112] Perera M M, Ayres N. Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels[J]. Polymer Chemistry,2020,11:1410-1423. doi: 10.1039/C9PY01694E
    [113] Chang J, Huang Q, Gao Y, et al. Pathways of developing high-energy-density flexible lithium batteries[J]. Advanced Materials,2021,33(46):2004419. doi: 10.1002/adma.202004419
    [114] Li R, Fang Z, Wang C, et al. Six-armed and dicationic polymeric ionic liquid for highly stretchable, nonflammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for flexible and safe lithium batteries[J]. Chemical Engineering Journal,2022,430:132706. doi: 10.1016/j.cej.2021.132706
    [115] Wang C, Yang Y, Li R, et al. Highly stretchable, nonflammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for stable and safety flexible lithium batteries[J]. Journal of Materials Chemistry A,2021,9:4758-4769. doi: 10.1039/D0TA10745J
    [116] Zhu X, Fang Z, Deng Q, et al. Poly(ionic liquid)@PEGMA block polymer initiated microphase separation architecture in poly(ethylene oxide)-based solid-state polymer electrolyte for flexible and self-healing lithium batteries[J]. ACS Sustainable Chemistry & Engineering,2022,10(13):4173-4185.
  • 加载中
图(16)
计量
  • 文章访问数:  2190
  • HTML全文浏览量:  1171
  • PDF下载量:  362
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 修回日期:  2022-08-12
  • 网络出版日期:  2022-08-15
  • 刊出日期:  2022-10-01

目录

    /

    返回文章
    返回