留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Controllable fabrication of superhierarchical carbon nanonetworks from 2D molecular brushes and their use in electrodes of flexible supercapacitors

LU Yu-heng TANG You-chen TANG Ke-han WU Ding-cai MA Qian

卢宇恒, 唐友臣, 唐克寒, 吴丁财, 马倩. 基于二维分子刷的超结构碳纳米网络的可控制备及其柔性超级电容器性能. 新型炭材料(中英文), 2022, 37(5): 978-987. doi: 10.1016/S1872-5805(22)60641-3
引用本文: 卢宇恒, 唐友臣, 唐克寒, 吴丁财, 马倩. 基于二维分子刷的超结构碳纳米网络的可控制备及其柔性超级电容器性能. 新型炭材料(中英文), 2022, 37(5): 978-987. doi: 10.1016/S1872-5805(22)60641-3
LU Yu-heng, TANG You-chen, TANG Ke-han, WU Ding-cai, MA Qian. Controllable fabrication of superhierarchical carbon nanonetworks from 2D molecular brushes and their use in electrodes of flexible supercapacitors. New Carbon Mater., 2022, 37(5): 978-987. doi: 10.1016/S1872-5805(22)60641-3
Citation: LU Yu-heng, TANG You-chen, TANG Ke-han, WU Ding-cai, MA Qian. Controllable fabrication of superhierarchical carbon nanonetworks from 2D molecular brushes and their use in electrodes of flexible supercapacitors. New Carbon Mater., 2022, 37(5): 978-987. doi: 10.1016/S1872-5805(22)60641-3

基于二维分子刷的超结构碳纳米网络的可控制备及其柔性超级电容器性能

doi: 10.1016/S1872-5805(22)60641-3
基金项目: 国家自然科学基金(51925308和51872336);国家重点研发计划(2021YFF0500600)
详细信息
    通讯作者:

    唐友臣,博士,助理研究员. E-mail:tangych7@mail.sysu.edu.cn

    吴丁财,博士,教授. E-mail:wudc@mail.sysu.edu.cn

    马 倩,博士. E-mail:maqian@gdph.org.cn

  • 中图分类号: TQ127.1+1

Controllable fabrication of superhierarchical carbon nanonetworks from 2D molecular brushes and their use in electrodes of flexible supercapacitors

Funds: The authors are grateful for the financial support from the projects of National Natural Science Foundation of China (51925308 and 51872336) and National Key Research and Development Program of China (2021YFF0500600)
More Information
  • 摘要: 三维碳纳米网络(3D CNNs)具有连通的导电骨架和多孔结构,可以提供多级传输通道,因此在许多领域有广阔的应用前景。然而,网络单元的物理堆叠难以形成长程导电通路,且引入微孔和小尺寸中孔的造孔过程通常比较复杂和昂贵。在本研究中,以聚丙烯醛接枝的氧化石墨烯分子刷为构筑单元、四(4-氨基苯基)甲烷为交联剂,通过席夫碱凝胶化,制备了分子刷纳米网络(MBNN);随后通过炭化处理获得超结构碳纳米网络(SHCNN)。由于MBNN良好的成炭性和纳米结构继承性,SHCNN具有氮掺杂微-中-大孔结构、高比表面积和高导电性杂化碳骨架,因此拥有丰富的活性位点并展示了良好的传质/传荷能力。作为柔性超级电容器电极,SHCNN在1 A g−1的电流密度下,比电容为180 F g−1,在8 A g−1下经10000次循环后的电容保持率高达91.4%。
  • FIG. 1821.  FIG. 1821.

    FIG. 1821..  FIG. 1821.

    Figure  1.  Schematic illustration for the preparation of SHCNNs.

    Figure  2.  (a) Digital photo of MBNN gel. (b) FT-IR spectra of GO, TAPM, GO-g-PA and MBNN. SEM images of (c) GO-g-PA, (d) MBNN and (e) SHCNN.

    Figure  3.  (a) TGA curves of GO, TAPM, PA, GO-g-PA and MBNN. (b) XRD patterns and (c) Raman spectra of MBNN and SHCNN. High-resolution N1s spectra of (d) MBNN and (e) SHCNN. (f) N2 adsorption-desorption isotherms and DFT pore size distributions (inset) of MBNN and SHCNN.

    Figure  4.  Electrochemical performance of SHCNN/CC. (a) CV curves at different scan rates. (b) GCD curves at different current densities. (c) Nyquist plot and enlarged view in the high-frequency region (inset). (d) Cycling performanceat a current density of 8 A g−1 and the GCD curve of last five cycles (inset).

    Figure  5.  Digital photos of SHCNN/CC//YP50/CC device in different bending states: (a) 0°, (b) 45°, (c) 90° and (d) 135°. (e) CV curves in different bending states of SHCNN/CC//YP50/CC device. (f) GCD curves at different current densities of SHCNN/CC//YP50/CC device without bending.

  • [1] Li Y Y, Chen N, Li Z L, et al. Reborn three-dimensional graphene with ultrahigh volumetric desalination capacity[J]. Advanced Materials,2021,33(48):e2105853. doi: 10.1002/adma.202105853
    [2] Zhang W C, Lan C W, Xie X H, et al. Facile construction of hollow carbon nanosphere-interconnected network for advanced sodium-ion battery anode[J]. Journal of Colloid and Interface Science,2019,546:53-59. doi: 10.1016/j.jcis.2019.03.043
    [3] Yang Z K, Zhao C M, Qu Y T, et al. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal[J]. Advanced Materials,2019,31(12):e1808043. doi: 10.1002/adma.201808043
    [4] Meng F L, Zhong H X, Bao D, et al. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-Air batteries[J]. Journal of the Americal Chemical Society,2016,138(32):10226-10231. doi: 10.1021/jacs.6b05046
    [5] Kim M H, Choi J Y, Choi H K, et al. Carbon nanotube network structuring using two-dimensional colloidal crystal templates[J]. Advanced Materials,2008,20(3):457-461. doi: 10.1002/adma.200700956
    [6] Qiu H J, Du P, Hu K, et al. Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-Air batteries[J]. Advanced Materials,2019,31(19):e1900843. doi: 10.1002/adma.201900843
    [7] Fu G T, Yan X X, Chen Y J, et al. Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles[J]. Advanced Materials,2018,30(5):1704609. doi: 10.1002/adma.201704609
    [8] Duan J J, Chen S, Chambers B A, et al. 3D WS2 Nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes[J]. Advanced Materials,2015,27(28):4234-4241. doi: 10.1002/adma.201501692
    [9] Song Z Y, Miao L, Ruhlmann L, et al. Self-Assembled carbon superstructuresachieving ultra-stable and fast proton-coupled charge storage kinetics[J]. Advanced Materials,2021,33(49):e2104148. doi: 10.1002/adma.202104148
    [10] Feng N, Meng R J, Zu L H, et al. A polymer-direct-intercalation strategy for MoS2/carbon-derived heteroaerogels with ultrahigh pseudocapacitance[J]. Nature Communications,2019,10:1372. doi: 10.1038/s41467-019-09384-7
    [11] Hou M J, Gong S Q, Ji L L, et al. Three-dimensional porous ultrathin carbon networks reinforced PBAs-derived electrocatalysts for efficient oxygen evolution[J]. Chemical Engineering Journal,2021,419:129575. doi: 10.1016/j.cej.2021.129575
    [12] Ahsan M A, Puente Santiago A R, Hong Y, et al. Tuning of trifunctional NiCu bimetallic nanoparticles confined in a porous carbon network with surface composition and local structural distortions for the electrocatalytic oxygen reduction, oxygen and hyadrogen evolution reactions[J]. Journal of the Americal Chemical Society,2020,142(34):14688-14701. doi: 10.1021/jacs.0c06960
    [13] Wang C H, Kim J H, Tang J, et al. Large-scale synthesis of MOF-derived superporous carbon aerogels with extraordinary adsorption capacity for organic solvents[J]. Angewandte Chemie International Edition,2020,59(5):2066-2070. doi: 10.1002/anie.201913719
    [14] Shi Z, Zhang W B, Zhang F, et al. Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films[J]. Advanced Materials,2013,25(17):2422-2427. doi: 10.1002/adma.201204873
    [15] Ogawa T, Kumagai N and Shibasaki M. Self-assembling neodymium/sodium heterobimetallic asymmetric catalyst confined in a carbon nanotube network[J]. Angewandte Chemie International Edition,2013,52(24):6196-6201. doi: 10.1002/anie.201302236
    [16] Liu M L, Long X, Tang H Y, et al. The formation of uniform graphene-polyaniline hybrids using a completely miscible cosolvent that have an excellent electrochemical performance[J]. New Carbon Materials,2022,37(2):381-390. doi: 10.1016/S1872-5805(21)60099-9
    [17] Cheng L, Li X J, Li J, et al. Construction of three-dimensional all-carbon C60/graphene hybrids and their use in high performance supercapacitors[J]. New Carbon Materials,2020,35(6):684-695. doi: 10.1016/S1872-5805(20)60522-4
    [18] Peng G M, Xing L D, Barrio J, et al. A general synthesis of porous carbon nitride films with tunable surface area and photophysical properties[J]. Angewandte Chemie International Edition,2018,57(5):1186-1192. doi: 10.1002/anie.201711669
    [19] Tetik H, Orangi J, Yang G, et al. 3D printed MXene aerogels with truly 3D macrostructure and highly engineered microstructure for enhanced electrical and electrochemical performance[J]. Advanced Materials,2022,34(2):e2104980. doi: 10.1002/adma.202104980
    [20] Wu X H, Wang Z Y, Yu M Z, et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability[J]. Advanced Materials,2017,29(24):1607017. doi: 10.1002/adma.201607017
    [21] Zhang S C, Liu H, Yu J Y, et al. Multi-functional flexible 2D carbon nanostructured networks[J]. Nature Communications,2020,11:5134. doi: 10.1038/s41467-020-18977-6
    [22] Xiao M, Li X Y, Song Q, et al. A fully 3D interconnected graphene-carbon nanotube web allows the study of glioma infiltration in bioengineered 3D cortex-like networks[J]. Advanced Materials,2018,30(52):e1806132. doi: 10.1002/adma.201806132
    [23] Wang P, Ren Y Y, Wang R T, et al. Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries[J]. Nature Communications,2020,11:1576. doi: 10.1038/s41467-020-15416-4
    [24] Yao L, Wu Q, Zhang P X, et al. Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density[J]. Advanced Materials,2018,30(11):1706054. doi: 10.1002/adma.201706054
    [25] Lu Y H, Tang Y C, Liu R L, et al. Multifunctional templating strategy for fabrication of Fe, N-codoped hierarchical porous carbon nanosheets[J]. Chinese Journal of Polymer Science,2022,40(1):2-6. doi: 10.1007/s10118-022-2656-x
    [26] Zhu Y W, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science,2011,332(6037):1537-1541. doi: 10.1126/science.1200770
    [27] Yan L T, Xu Y L, Chen P, et al. A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: a superior multifunctional electrode for overall water splitting and Zn-Air batteries[J]. Advanced Materials,2020,32(48):e2003313. doi: 10.1002/adma.202003313
    [28] Zhang L P, Jaroniec M. Strategies for development of nanoporous materials with 2D building units[J]. Chemical Society Reviews,2020,49(16):6039-6055. doi: 10.1039/D0CS00185F
    [29] Wu X M, Huang B, Wang Q G, et al. Wide potential and high energy density for an asymmetric aqueous supercapacitor[J]. Journal of Materials Chemistry A,2019,7(32):19017-19025. doi: 10.1039/C9TA06428A
    [30] Han X, Wu C C, Li H, et al. Three-in-one alkylamine-tuned MoOx for lab-scale to real-life aqueous supercapacitors [J]. Advanced Functional Materials, 2022, 32 (22): 2113209.
    [31] Liu J, Yang F X, Cao L L, et al. A robust nonvolatile resistive memory device based on a freestanding ultrathin 2D imine polymer film[J]. Advanced Materials,2019,31(28):e1902264. doi: 10.1002/adma.201902264
    [32] Li G Y, Zhang B, Yan J, et al. Micro- and mesoporous poly(Schiff-base)s constructed from different building blocks and their adsorption behaviors towards organic vapors and CO2 gas[J]. Journal of Materials Chemistry A,2014,2(44):18881-18888. doi: 10.1039/C4TA04429K
    [33] Tang Y C, Liu S H, Zheng B N, et al. Activation-free fabrication of high-surface-area porous carbon nanosheets from conjugated copolymers[J]. Chemical Communications,2018,54(81):11431-11434. doi: 10.1039/C8CC05703F
    [34] Zhu H X, Guo W, Wang J, et al. Tuneable design of a pulp fibre-based colorimetric sensor and its visual recognition mechanism for ppb levels of Ag+[J]. Cellulose,2019,26(17):9149-9161. doi: 10.1007/s10570-019-02713-5
    [35] Liu L Z, Mi Z, Li H H, et al. Highly selective and sensitive detection of amaranth by using carbon dots-based nanosensor[J]. RSC Advances,2019,9(45):26315-26320. doi: 10.1039/C9RA04494A
    [36] Dwivedi P K, Nair A, Mehare R S, et al. Experimental and theoretical investigations of the effect of heteroatom-doped carbon microsphere supports on the stability and storage capacity of nano-Co3O4 conversion anodes for application in lithium-ion batteries [J]. Nanoscale Advances, 2020, 2(7): 2914-2924.
    [37] Zhao J, Jiang Y F, Fan H, et al. Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship[J]. Advanced Materials,2017,29(11):1604569. doi: 10.1002/adma.201604569
    [38] Qin K Q, Wang L P, Wang N, et al. Nitrogen and oxygen co-doped 3D nanoporous duct-like graphene@carbon nano-cage hybrid films for high-performance multi-style supercapacitors[J]. Journal of Materials Chemistry A,2017,5(35):18535-18541. doi: 10.1039/C7TA05979E
    [39] Hursan D, Samu A A, Janovak L, et al. Morphological attributes govern carbon dioxide reduction on N-doped carbon electrodes[J]. Joule,2019,3(7):1719-1733. doi: 10.1016/j.joule.2019.05.007
    [40] Wang Y H, Zhang D Y, Lu Y, et al. Cable-like double-carbon layers for fast ion and electron transport: an example of CNT@NCT@MnO2 3D nanostructure for high-performance supercapacitors[J]. Carbon,2019,143:335-342. doi: 10.1016/j.carbon.2018.11.034
    [41] Tao H C, Gao Y N, Talreja N, et al. Two-dimensional nanosheets for electrocatalysis in energy generation and conversion[J]. Journal of Materials Chemistry A,2017,5(16):7257-7284. doi: 10.1039/C7TA00075H
    [42] Yan H J, Xie Y, Jiao Y Q, et al. Holey reduced graphene oxide coupled with an Mo2N-Mo2C heterojunction for efficient hydrogen evolution[J]. Advanced Materials,2018,30(2):1704156. doi: 10.1002/adma.201704156
  • SI-20220147-Wdc.pdf
  • 加载中
图(6)
计量
  • 文章访问数:  415
  • HTML全文浏览量:  280
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-24
  • 修回日期:  2022-08-15
  • 网络出版日期:  2022-08-15
  • 刊出日期:  2022-10-01

目录

    /

    返回文章
    返回