留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The synthesis of iron-nitrogen sites embedded in electrospun carbon nanofibers with an excellent oxygen reduction reaction activity in alkaline/acidic media

XU Xiang-xiang ZHANG Nian-chao WANG Jun-ying WANG Jun-zhong

许翔翔, 张念超, 王俊英, 王俊中. 电纺炭纳米纤维的铁氮位点嵌入及电催化氧还原反应. 新型炭材料(中英文), 2023, 38(1): 154-161. doi: 10.1016/S1872-5805(22)60649-8
引用本文: 许翔翔, 张念超, 王俊英, 王俊中. 电纺炭纳米纤维的铁氮位点嵌入及电催化氧还原反应. 新型炭材料(中英文), 2023, 38(1): 154-161. doi: 10.1016/S1872-5805(22)60649-8
XU Xiang-xiang, ZHANG Nian-chao, WANG Jun-ying, WANG Jun-zhong. The synthesis of iron-nitrogen sites embedded in electrospun carbon nanofibers with an excellent oxygen reduction reaction activity in alkaline/acidic media. New Carbon Mater., 2023, 38(1): 154-161. doi: 10.1016/S1872-5805(22)60649-8
Citation: XU Xiang-xiang, ZHANG Nian-chao, WANG Jun-ying, WANG Jun-zhong. The synthesis of iron-nitrogen sites embedded in electrospun carbon nanofibers with an excellent oxygen reduction reaction activity in alkaline/acidic media. New Carbon Mater., 2023, 38(1): 154-161. doi: 10.1016/S1872-5805(22)60649-8

电纺炭纳米纤维的铁氮位点嵌入及电催化氧还原反应

doi: 10.1016/S1872-5805(22)60649-8
基金项目: 国家自然科学基金(22179138),山西省自然科学基金(20210302123005),山西省重大科技专项(20181102026)
详细信息
    通讯作者:

    王俊英,博士,副研究员. E-mail:wangjy@sxicc.ac.cn

    王俊中,博士,教授. E-mail:wangjz@ahu.edu.cn

  • 中图分类号: TB33

The synthesis of iron-nitrogen sites embedded in electrospun carbon nanofibers with an excellent oxygen reduction reaction activity in alkaline/acidic media

Funds: We acknowledge the financial support by grants from National Natural Science Foundation of China (22179138) , Natural Science Foundation of Shanxi (20210302123005) and Shanxi Major Project (20181102026)
More Information
  • 摘要: 金属氮碳型催化剂,因其高活性、大比表面积和有效的气体扩散途径,在涉气电催化领域受到高度关注。本文采用静电纺丝法和退火处理制备了镶陷铁氮活性位点的碳纳米纤维,通过在聚丙烯腈前驱体中引入g-C3N4来增强纳米纤维中Fe在氮位点上的锚定,阻止热退火过程铁纳米颗粒的形成,从而提高碱性和酸性介质中的氧还原性能(明显优于不使用g-C3N4时所得的Fe3C/CNF对照样)。所制备的Fe/CNF催化剂,表现为4e路径电还原氧的催化活性;阴极催化锌空电池的性能良好:开路电压1.49 V,功率密度146 mW cm−2,比容量703 mAh g−1。本工作呈现了一种制备涉氧电池的金属-氮-碳纳米纤维催化剂的策略。
  • FIG. 2068.  FIG. 2068.

    FIG. 2068..  FIG. 2068.

    Figure  1.  Schematic illustration of the synthesis of Fe/CNF catalyst

    Figure  2.  XRD patterns of (a) g-C3N4, (b) Fe-CNFs and Fe3C/CNFs

    Figure  3.  (a) TEM, (b) SEM, (c) STEM, (d) High-resolution STEM, (e) element mapping of Fe/CNFs. (f) SEM and (g) TEM images of Fe3C/CNFs

    Figure  4.  (a) XPS full scan spectrum, (b) high-resolution N1s spectrum and (c) high-resolution Fe2p spectrum of Fe/CNFs. (d) XPS full scan spectrum, (e) high-resolution N1s spectrum and (f) high-resolution Fe2p spectrum of Fe3C/CNFs

    Figure  5.  (a) CV curves, (b) LSV curves under various rotation speeds (400, 625, 900, 1225, 1600, 2025, 2400 r min−1) and (c) K-L plots of Fe/CNFs. (d) LSV curves, (e) Half-wave potentials and limiting current densities and (f) Tafel slopes of Fe/CNFs, Fe3C/CNFs and Pt/C

    Figure  6.  (a) CV curves, (b) LSV curves under various rotation speeds (400, 625, 900, 1225, 1600, 2025, 2400 r min−1) and (c) K-L plots of Fe/CNFs. (d) LSV curves, (e) Half-wave potentials and limiting current densities and (f) Tafel slopes of Fe/CNFs, Fe3C/CNFs and Pt/C

    Figure  7.  (a) Illustration of the basic configuration of the primary ZAB using Fe/CNFs. (b) Open-circuit potential (OCP), (c) polarization and power density curves ans (d) specific capacities of ZABs at 20 mA cm−2 using Pt/C and Fe/CNFs as ORR catalysts

    Table  1.   The elemental compositions from XPS in Fe/CNFs and Fe3C/CNFs

    SampleCNOFe
    Fe/CNFs72.06%6.90%19.41%1.63%
    Fe3C/CNFs94.98%1.88%2.81%0.24%
    下载: 导出CSV
  • [1] Stephens I E L, Rossmeisl J, Chorkendorff I. Toward sustainable fuel cells[J]. Science,2016,354(6318):1378-1379. doi: 10.1126/science.aal3303
    [2] Ferrero G A, Fuertes A B, Sevilla M, et al. Efficient metal-free N-doped mesoporous carbon catalysts for ORR by a template-free approach[J]. Carbon,2016,106:179-187. doi: 10.1016/j.carbon.2016.04.080
    [3] Zhang X, Wang S, Wu C, et al. Synthesis of S-doped AuPbPt alloy nanowire-networks as superior catalysts towards the ORR and HER[J]. Journal of Materials Chemistry A,2020,8(45):23906-23918. doi: 10.1039/D0TA06543A
    [4] Najam T, Shah S S A, Ding W, et al. Role of P-doping in antipoisoning: efficient MOF-derived 3D hierarchical architectures for the oxygen reduction reaction[J]. The journal of physical chemistry C,2019,123(27):16796-16803. doi: 10.1021/acs.jpcc.9b03730
    [5] Jiang R, Zhi Q, Liu W, et al. F-doped carbon hollow nanospheres for efficient electrochemical oxygen reduction[J]. Journal of Materials Science,2022,57(10):5924-5932. doi: 10.1007/s10853-022-06972-9
    [6] Kong L, Yan J, Li P, et al. Fe2O3/C–C3N4-based tight heterojunction for boosting visible-light-driven photocatalytic water oxidation[J]. ACS Sustainable Chemistry & Engineering,2018,6(8):10436-10444.
    [7] Lin L, Zhu Q, Xu A W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions[J]. Journal of the American Chemical Society,2014,136(31):11027-11033. doi: 10.1021/ja504696r
    [8] Wu W, Wang M, Huang H, et al. Porous carbon spheres with ultra-fine Fe2N active phase for efficient electrocatalytic oxygen reduction[J]. Journal of Electronic Materials,2021,50(6):3078-3083. doi: 10.1007/s11664-021-08824-9
    [9] Hu Y, Jensen J O, Zhang W, et al. Direct synthesis of Fe3C-functionalized graphene by high temperature autoclave pyrolysis for oxygen reduction[J]. ChemSusChem,2014,7(8):2099-2103. doi: 10.1002/cssc.201402183
    [10] Hu Y, Jensen J O, Zhang W, et al. Fe3C-based oxygen reduction catalysts: synthesis, hollow spherical structures and applications in fuel cells[J]. Journal of Materials Chemistry A,2015,3(4):1752-1760. doi: 10.1039/C4TA03986F
    [11] Hou Y, Huang T, Wen Z, et al. Metal-organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@ C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions[J]. Advanced Energy Materials,2014,4(11):1400337. doi: 10.1002/aenm.201400337
    [12] Li H, Xiao N, Hao M, et al. Efficient CO2 electroreduction over pyridinic-N active sites highly exposed on wrinkled porous carbon nanosheets[J]. Chemical Engineering Journal,2018,351:613-621. doi: 10.1016/j.cej.2018.06.077
    [13] Mamtani K, Jain D, Zemlyanov D, et al. Probing the oxygen reduction reaction active sites over nitrogen-doped carbon nanostructures (CNx) in acidic media using phosphate anion[J]. ACS catalysis,2016,6(10):7249-7259. doi: 10.1021/acscatal.6b01786
    [14] Guo B, Ju Q, Ma R, et al. Mechanochemical synthesis of multi-site electrocatalysts as bifunctional zinc–air battery electrodes[J]. Journal of Materials Chemistry A,2019,7(33):19355-19363. doi: 10.1039/C9TA06411G
    [15] Guo D, Shibuya R, Akiba C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science,2016,351(6271):361-365. doi: 10.1126/science.aad0832
    [16] Mei J, Liao T, Liang J, et al. Toward promising cathode catalysts for nonlithium metal–oxygen batteries[J]. Advanced Energy Materials,2020,10(11):1901997. doi: 10.1002/aenm.201901997
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  495
  • HTML全文浏览量:  362
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-01
  • 修回日期:  2022-08-30
  • 网络出版日期:  2022-09-14
  • 刊出日期:  2023-01-06

目录

    /

    返回文章
    返回